/* xsns_09_bmp.ino - BMP pressure, temperature, humidity and gas sensor support for Sonoff-Tasmota Copyright (C) 2019 Heiko Krupp and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_BMP /*********************************************************************************************\ * BMP085, BMP180, BMP280, BME280, BME680 - Pressure, Temperature, Humidity (BME280/BME680) and gas (BME680) * * Source: Heiko Krupp and Adafruit Industries * * I2C Address: 0x76 or 0x77 \*********************************************************************************************/ #define XSNS_09 9 #define BMP_ADDR1 0x76 #define BMP_ADDR2 0x77 #define BMP180_CHIPID 0x55 #define BMP280_CHIPID 0x58 #define BME280_CHIPID 0x60 #define BME680_CHIPID 0x61 #define BMP_REGISTER_CHIPID 0xD0 #define BMP_MAX_SENSORS 2 const char kBmpTypes[] PROGMEM = "BMP180|BMP280|BME280|BME680"; typedef struct { uint8_t bmp_address; // I2C bus address char bmp_name[7]; // Sensor name - "BMPXXX" uint8_t bmp_type; uint8_t bmp_model; #ifdef USE_BME680 uint8_t bme680_state; float bmp_gas_resistance; #endif // USE_BME680 float bmp_temperature; float bmp_pressure; float bmp_humidity; } bmp_sensors_t; uint8_t bmp_addresses[] = { BMP_ADDR1, BMP_ADDR2 }; uint8_t bmp_count = 0; uint8_t bmp_once = 1; bmp_sensors_t *bmp_sensors = NULL; /*********************************************************************************************\ * BMP085 and BME180 \*********************************************************************************************/ #define BMP180_REG_CONTROL 0xF4 #define BMP180_REG_RESULT 0xF6 #define BMP180_TEMPERATURE 0x2E #define BMP180_PRESSURE3 0xF4 // Max. oversampling -> OSS = 3 #define BMP180_AC1 0xAA #define BMP180_AC2 0xAC #define BMP180_AC3 0xAE #define BMP180_AC4 0xB0 #define BMP180_AC5 0xB2 #define BMP180_AC6 0xB4 #define BMP180_VB1 0xB6 #define BMP180_VB2 0xB8 #define BMP180_MB 0xBA #define BMP180_MC 0xBC #define BMP180_MD 0xBE #define BMP180_OSS 3 typedef struct { int16_t cal_ac1; int16_t cal_ac2; int16_t cal_ac3; int16_t cal_b1; int16_t cal_b2; int16_t cal_mc; int16_t cal_md; uint16_t cal_ac4; uint16_t cal_ac5; uint16_t cal_ac6; } bmp180_cal_data_t; bmp180_cal_data_t *bmp180_cal_data = NULL; bool Bmp180Calibration(uint8_t bmp_idx) { if (!bmp180_cal_data) { bmp180_cal_data = (bmp180_cal_data_t*)malloc(BMP_MAX_SENSORS * sizeof(bmp180_cal_data_t)); } if (!bmp180_cal_data) { return false; } bmp180_cal_data[bmp_idx].cal_ac1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC1); bmp180_cal_data[bmp_idx].cal_ac2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC2); bmp180_cal_data[bmp_idx].cal_ac3 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC3); bmp180_cal_data[bmp_idx].cal_ac4 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC4); bmp180_cal_data[bmp_idx].cal_ac5 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC5); bmp180_cal_data[bmp_idx].cal_ac6 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC6); bmp180_cal_data[bmp_idx].cal_b1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB1); bmp180_cal_data[bmp_idx].cal_b2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB2); bmp180_cal_data[bmp_idx].cal_mc = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MC); bmp180_cal_data[bmp_idx].cal_md = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MD); // Check for Errors in calibration data. Value never is 0x0000 or 0xFFFF if (!bmp180_cal_data[bmp_idx].cal_ac1 | !bmp180_cal_data[bmp_idx].cal_ac2 | !bmp180_cal_data[bmp_idx].cal_ac3 | !bmp180_cal_data[bmp_idx].cal_ac4 | !bmp180_cal_data[bmp_idx].cal_ac5 | !bmp180_cal_data[bmp_idx].cal_ac6 | !bmp180_cal_data[bmp_idx].cal_b1 | !bmp180_cal_data[bmp_idx].cal_b2 | !bmp180_cal_data[bmp_idx].cal_mc | !bmp180_cal_data[bmp_idx].cal_md) { return false; } if ((bmp180_cal_data[bmp_idx].cal_ac1 == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_ac2 == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_ac3 == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_ac4 == 0xFFFF) | (bmp180_cal_data[bmp_idx].cal_ac5 == 0xFFFF) | (bmp180_cal_data[bmp_idx].cal_ac6 == 0xFFFF) | (bmp180_cal_data[bmp_idx].cal_b1 == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_b2 == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_mc == (int16_t)0xFFFF) | (bmp180_cal_data[bmp_idx].cal_md == (int16_t)0xFFFF)) { return false; } return true; } void Bmp180Read(uint8_t bmp_idx) { if (!bmp180_cal_data) { return; } I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_TEMPERATURE); delay(5); // 5ms conversion time int ut = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT); int32_t xt1 = (ut - (int32_t)bmp180_cal_data[bmp_idx].cal_ac6) * ((int32_t)bmp180_cal_data[bmp_idx].cal_ac5) >> 15; int32_t xt2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_mc << 11) / (xt1 + (int32_t)bmp180_cal_data[bmp_idx].cal_md); int32_t bmp180_b5 = xt1 + xt2; bmp_sensors[bmp_idx].bmp_temperature = ((bmp180_b5 + 8) >> 4) / 10.0; I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution delay(2 + (4 << BMP180_OSS)); // 26ms conversion time at ultra high resolution uint32_t up = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT); up >>= (8 - BMP180_OSS); int32_t b6 = bmp180_b5 - 4000; int32_t x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b2 * ((b6 * b6) >> 12)) >> 11; int32_t x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac2 * b6) >> 11; int32_t x3 = x1 + x2; int32_t b3 = ((((int32_t)bmp180_cal_data[bmp_idx].cal_ac1 * 4 + x3) << BMP180_OSS) + 2) >> 2; x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac3 * b6) >> 13; x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b1 * ((b6 * b6) >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; uint32_t b4 = ((uint32_t)bmp180_cal_data[bmp_idx].cal_ac4 * (uint32_t)(x3 + 32768)) >> 15; uint32_t b7 = ((uint32_t)up - b3) * (uint32_t)(50000UL >> BMP180_OSS); int32_t p; if (b7 < 0x80000000) { p = (b7 * 2) / b4; } else { p = (b7 / b4) * 2; } x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; p += ((x1 + x2 + (int32_t)3791) >> 4); bmp_sensors[bmp_idx].bmp_pressure = (float)p / 100.0; // convert to mbar } /*********************************************************************************************\ * BMP280 and BME280 * * Programmer : BMP280/BME280 Datasheet and Adafruit with changes by Theo Arends \*********************************************************************************************/ #define BME280_REGISTER_CONTROLHUMID 0xF2 #define BME280_REGISTER_CONTROL 0xF4 #define BME280_REGISTER_CONFIG 0xF5 #define BME280_REGISTER_PRESSUREDATA 0xF7 #define BME280_REGISTER_TEMPDATA 0xFA #define BME280_REGISTER_HUMIDDATA 0xFD #define BME280_REGISTER_DIG_T1 0x88 #define BME280_REGISTER_DIG_T2 0x8A #define BME280_REGISTER_DIG_T3 0x8C #define BME280_REGISTER_DIG_P1 0x8E #define BME280_REGISTER_DIG_P2 0x90 #define BME280_REGISTER_DIG_P3 0x92 #define BME280_REGISTER_DIG_P4 0x94 #define BME280_REGISTER_DIG_P5 0x96 #define BME280_REGISTER_DIG_P6 0x98 #define BME280_REGISTER_DIG_P7 0x9A #define BME280_REGISTER_DIG_P8 0x9C #define BME280_REGISTER_DIG_P9 0x9E #define BME280_REGISTER_DIG_H1 0xA1 #define BME280_REGISTER_DIG_H2 0xE1 #define BME280_REGISTER_DIG_H3 0xE3 #define BME280_REGISTER_DIG_H4 0xE4 #define BME280_REGISTER_DIG_H5 0xE5 #define BME280_REGISTER_DIG_H6 0xE7 typedef struct { uint16_t dig_T1; int16_t dig_T2; int16_t dig_T3; uint16_t dig_P1; int16_t dig_P2; int16_t dig_P3; int16_t dig_P4; int16_t dig_P5; int16_t dig_P6; int16_t dig_P7; int16_t dig_P8; int16_t dig_P9; int16_t dig_H2; int16_t dig_H4; int16_t dig_H5; uint8_t dig_H1; uint8_t dig_H3; int8_t dig_H6; } Bme280CalibrationData_t; Bme280CalibrationData_t *Bme280CalibrationData = NULL; bool Bmx280Calibrate(uint8_t bmp_idx) { // if (I2cRead8(bmp_address, BMP_REGISTER_CHIPID) != BME280_CHIPID) return false; if (!Bme280CalibrationData) { Bme280CalibrationData = (Bme280CalibrationData_t*)malloc(BMP_MAX_SENSORS * sizeof(Bme280CalibrationData_t)); } if (!Bme280CalibrationData) { return false; } Bme280CalibrationData[bmp_idx].dig_T1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T1); Bme280CalibrationData[bmp_idx].dig_T2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T2); Bme280CalibrationData[bmp_idx].dig_T3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T3); Bme280CalibrationData[bmp_idx].dig_P1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P1); Bme280CalibrationData[bmp_idx].dig_P2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P2); Bme280CalibrationData[bmp_idx].dig_P3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P3); Bme280CalibrationData[bmp_idx].dig_P4 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P4); Bme280CalibrationData[bmp_idx].dig_P5 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P5); Bme280CalibrationData[bmp_idx].dig_P6 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P6); Bme280CalibrationData[bmp_idx].dig_P7 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P7); Bme280CalibrationData[bmp_idx].dig_P8 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P8); Bme280CalibrationData[bmp_idx].dig_P9 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P9); if (BME280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { // #1051 Bme280CalibrationData[bmp_idx].dig_H1 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H1); Bme280CalibrationData[bmp_idx].dig_H2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H2); Bme280CalibrationData[bmp_idx].dig_H3 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H3); Bme280CalibrationData[bmp_idx].dig_H4 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF); Bme280CalibrationData[bmp_idx].dig_H5 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5) >> 4); Bme280CalibrationData[bmp_idx].dig_H6 = (int8_t)I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H6); I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x00); // sleep mode since writes to config can be ignored in normal mode (Datasheet 5.4.5/6 page 27) // Set before CONTROL_meas (DS 5.4.3) I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROLHUMID, 0x01); // 1x oversampling I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONFIG, 0xA0); // 1sec standby between measurements (to limit self heating), IIR filter off I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x27); // 1x oversampling, normal mode } else { I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit) } return true; } void Bme280Read(uint8_t bmp_idx) { if (!Bme280CalibrationData) { return; } int32_t adc_T = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_TEMPDATA); adc_T >>= 4; int32_t vart1 = ((((adc_T >> 3) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1 << 1))) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_T2)) >> 11; int32_t vart2 = (((((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1)) * ((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1))) >> 12) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_T3)) >> 14; int32_t t_fine = vart1 + vart2; float T = (t_fine * 5 + 128) >> 8; bmp_sensors[bmp_idx].bmp_temperature = T / 100.0; int32_t adc_P = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_PRESSUREDATA); adc_P >>= 4; int64_t var1 = ((int64_t)t_fine) - 128000; int64_t var2 = var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P6; var2 = var2 + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P5) << 17); var2 = var2 + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P4) << 35); var1 = ((var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P3) >> 8) + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)Bme280CalibrationData[bmp_idx].dig_P1) >> 33; if (0 == var1) { return; // avoid exception caused by division by zero } int64_t p = 1048576 - adc_P; p = (((p << 31) - var2) * 3125) / var1; var1 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P9) * (p >> 13) * (p >> 13)) >> 25; var2 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P7) << 4); bmp_sensors[bmp_idx].bmp_pressure = (float)p / 25600.0; if (BMP280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { return; } int32_t adc_H = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_HUMIDDATA); int32_t v_x1_u32r = (t_fine - ((int32_t)76800)); v_x1_u32r = (((((adc_H << 14) - (((int32_t)Bme280CalibrationData[bmp_idx].dig_H4) << 20) - (((int32_t)Bme280CalibrationData[bmp_idx].dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H2) + 8192) >> 14)); v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H1)) >> 4)); v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r; v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r; float h = (v_x1_u32r >> 12); bmp_sensors[bmp_idx].bmp_humidity = h / 1024.0; } #ifdef USE_BME680 /*********************************************************************************************\ * BME680 support by Bosch https://github.com/BoschSensortec/BME680_driver \*********************************************************************************************/ #include struct bme680_dev *gas_sensor = NULL; static void BmeDelayMs(uint32_t ms) { delay(ms); } bool Bme680Init(uint8_t bmp_idx) { if (!gas_sensor) { gas_sensor = (bme680_dev*)malloc(BMP_MAX_SENSORS * sizeof(bme680_dev)); } if (!gas_sensor) { return false; } gas_sensor[bmp_idx].dev_id = bmp_sensors[bmp_idx].bmp_address; gas_sensor[bmp_idx].intf = BME680_I2C_INTF; gas_sensor[bmp_idx].read = &I2cReadBuffer; gas_sensor[bmp_idx].write = &I2cWriteBuffer; gas_sensor[bmp_idx].delay_ms = BmeDelayMs; /* amb_temp can be set to 25 prior to configuring the gas sensor * or by performing a few temperature readings without operating the gas sensor. */ gas_sensor[bmp_idx].amb_temp = 25; int8_t rslt = BME680_OK; rslt = bme680_init(&gas_sensor[bmp_idx]); if (rslt != BME680_OK) { return false; } /* Set the temperature, pressure and humidity settings */ gas_sensor[bmp_idx].tph_sett.os_hum = BME680_OS_2X; gas_sensor[bmp_idx].tph_sett.os_pres = BME680_OS_4X; gas_sensor[bmp_idx].tph_sett.os_temp = BME680_OS_8X; gas_sensor[bmp_idx].tph_sett.filter = BME680_FILTER_SIZE_3; /* Set the remaining gas sensor settings and link the heating profile */ gas_sensor[bmp_idx].gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; /* Create a ramp heat waveform in 3 steps */ gas_sensor[bmp_idx].gas_sett.heatr_temp = 320; /* degree Celsius */ gas_sensor[bmp_idx].gas_sett.heatr_dur = 150; /* milliseconds */ /* Select the power mode */ /* Must be set before writing the sensor configuration */ gas_sensor[bmp_idx].power_mode = BME680_FORCED_MODE; /* Set the required sensor settings needed */ uint8_t set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL; /* Set the desired sensor configuration */ rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor[bmp_idx]); if (rslt != BME680_OK) { return false; } bmp_sensors[bmp_idx].bme680_state = 0; return true; } void Bme680Read(uint8_t bmp_idx) { if (!gas_sensor) { return; } int8_t rslt = BME680_OK; if (BME680_CHIPID == bmp_sensors[bmp_idx].bmp_type) { if (0 == bmp_sensors[bmp_idx].bme680_state) { /* Trigger the next measurement if you would like to read data out continuously */ rslt = bme680_set_sensor_mode(&gas_sensor[bmp_idx]); if (rslt != BME680_OK) { return; } /* Get the total measurement duration so as to sleep or wait till the * measurement is complete */ // uint16_t meas_period; // bme680_get_profile_dur(&meas_period, &gas_sensor[bmp_idx]); // delay(meas_period); /* Delay till the measurement is ready */ // 183 mSec - we'll wait a second bmp_sensors[bmp_idx].bme680_state = 1; } else { bmp_sensors[bmp_idx].bme680_state = 0; struct bme680_field_data data; rslt = bme680_get_sensor_data(&data, &gas_sensor[bmp_idx]); if (rslt != BME680_OK) { return; } bmp_sensors[bmp_idx].bmp_temperature = data.temperature / 100.0; bmp_sensors[bmp_idx].bmp_humidity = data.humidity / 1000.0; bmp_sensors[bmp_idx].bmp_pressure = data.pressure / 100.0; /* Avoid using measurements from an unstable heating setup */ if (data.status & BME680_GASM_VALID_MSK) { bmp_sensors[bmp_idx].bmp_gas_resistance = data.gas_resistance / 1000.0; } else { bmp_sensors[bmp_idx].bmp_gas_resistance = 0; } } } return; } #endif // USE_BME680 /********************************************************************************************/ void BmpDetect(void) { if (bmp_count) return; int bmp_sensor_size = BMP_MAX_SENSORS * sizeof(bmp_sensors_t); if (!bmp_sensors) { bmp_sensors = (bmp_sensors_t*)malloc(bmp_sensor_size); } if (!bmp_sensors) { return; } memset(bmp_sensors, 0, bmp_sensor_size); // Init defaults to 0 for (uint8_t i = 0; i < BMP_MAX_SENSORS; i++) { uint8_t bmp_type = I2cRead8(bmp_addresses[i], BMP_REGISTER_CHIPID); if (bmp_type) { bmp_sensors[bmp_count].bmp_address = bmp_addresses[i]; bmp_sensors[bmp_count].bmp_type = bmp_type; bmp_sensors[bmp_count].bmp_model = 0; bool success = false; switch (bmp_type) { case BMP180_CHIPID: success = Bmp180Calibration(bmp_count); break; case BME280_CHIPID: bmp_sensors[bmp_count].bmp_model++; // 2 case BMP280_CHIPID: bmp_sensors[bmp_count].bmp_model++; // 1 success = Bmx280Calibrate(bmp_count); break; #ifdef USE_BME680 case BME680_CHIPID: bmp_sensors[bmp_count].bmp_model = 3; // 3 success = Bme680Init(bmp_count); break; #endif // USE_BME680 } if (success) { GetTextIndexed(bmp_sensors[bmp_count].bmp_name, sizeof(bmp_sensors[bmp_count].bmp_name), bmp_sensors[bmp_count].bmp_model, kBmpTypes); AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, bmp_sensors[bmp_count].bmp_name, bmp_sensors[bmp_count].bmp_address); bmp_count++; } } } } void BmpRead(void) { if (!bmp_sensors) { return; } for (uint8_t bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) { switch (bmp_sensors[bmp_idx].bmp_type) { case BMP180_CHIPID: Bmp180Read(bmp_idx); break; case BMP280_CHIPID: case BME280_CHIPID: Bme280Read(bmp_idx); break; #ifdef USE_BME680 case BME680_CHIPID: Bme680Read(bmp_idx); break; #endif // USE_BME680 } } SetGlobalValues(ConvertTemp(bmp_sensors[0].bmp_temperature), bmp_sensors[0].bmp_humidity); } void BmpEverySecond(void) { if (91 == (uptime %100)) { // 1mS BmpDetect(); } else { // 2mS BmpRead(); } } void BmpShow(bool json) { if (!bmp_sensors) { return; } for (uint8_t bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) { if (bmp_sensors[bmp_idx].bmp_type) { float bmp_sealevel = 0.0; if (bmp_sensors[bmp_idx].bmp_pressure != 0.0) { bmp_sealevel = (bmp_sensors[bmp_idx].bmp_pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0), 5.255)) - 21.6; bmp_sealevel = ConvertPressure(bmp_sealevel); } float bmp_temperature = ConvertTemp(bmp_sensors[bmp_idx].bmp_temperature); float bmp_pressure = ConvertPressure(bmp_sensors[bmp_idx].bmp_pressure); char name[10]; strlcpy(name, bmp_sensors[bmp_idx].bmp_name, sizeof(name)); if (bmp_count > 1) { snprintf_P(name, sizeof(name), PSTR("%s-%02X"), name, bmp_sensors[bmp_idx].bmp_address); // BMXXXX-XX } char temperature[33]; dtostrfd(bmp_temperature, Settings.flag2.temperature_resolution, temperature); char pressure[33]; dtostrfd(bmp_pressure, Settings.flag2.pressure_resolution, pressure); char sea_pressure[33]; dtostrfd(bmp_sealevel, Settings.flag2.pressure_resolution, sea_pressure); char humidity[33]; dtostrfd(bmp_sensors[bmp_idx].bmp_humidity, Settings.flag2.humidity_resolution, humidity); #ifdef USE_BME680 char gas_resistance[33]; dtostrfd(bmp_sensors[bmp_idx].bmp_gas_resistance, 2, gas_resistance); #endif // USE_BME680 if (json) { char json_humidity[40]; snprintf_P(json_humidity, sizeof(json_humidity), PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity); char json_sealevel[40]; snprintf_P(json_sealevel, sizeof(json_sealevel), PSTR(",\"" D_JSON_PRESSUREATSEALEVEL "\":%s"), sea_pressure); #ifdef USE_BME680 char json_gas[40]; snprintf_P(json_gas, sizeof(json_gas), PSTR(",\"" D_JSON_GAS "\":%s"), gas_resistance); snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s%s}"), mqtt_data, name, temperature, (bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "", (bmp_sensors[bmp_idx].bmp_model >= 3) ? json_gas : ""); #else snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s}"), mqtt_data, name, temperature, (bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : ""); #endif // USE_BME680 #ifdef USE_DOMOTICZ if ((0 == tele_period) && (0 == bmp_idx)) { // We want the same first sensor to report to Domoticz in case a read is missed DomoticzTempHumPressureSensor(temperature, humidity, pressure); #ifdef USE_BME680 if (bmp_sensors[bmp_idx].bmp_model >= 3) { DomoticzSensor(DZ_AIRQUALITY, (uint32_t)bmp_sensors[bmp_idx].bmp_gas_resistance); } #endif // USE_BME680 } #endif // USE_DOMOTICZ #ifdef USE_KNX if (0 == tele_period) { KnxSensor(KNX_TEMPERATURE, bmp_temperature); KnxSensor(KNX_HUMIDITY, bmp_sensors[bmp_idx].bmp_humidity); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, name, temperature, TempUnit()); if (bmp_sensors[bmp_idx].bmp_model >= 2) { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, name, humidity); } snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_PRESSURE, mqtt_data, name, pressure, PressureUnit().c_str()); if (Settings.altitude != 0) { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SEAPRESSURE, mqtt_data, name, sea_pressure, PressureUnit().c_str()); } #ifdef USE_BME680 if (bmp_sensors[bmp_idx].bmp_model >= 3) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{s}%s " D_GAS "{m}%s " D_UNIT_KILOOHM "{e}"), mqtt_data, name, gas_resistance); } #endif // USE_BME680 #endif // USE_WEBSERVER } } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns09(uint8_t function) { bool result = false; if (i2c_flg) { switch (function) { case FUNC_INIT: BmpDetect(); break; case FUNC_EVERY_SECOND: BmpEverySecond(); break; case FUNC_JSON_APPEND: BmpShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: BmpShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_BMP #endif // USE_I2C