/* support_switch.ino - switch support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define SWITCH_V3 #ifdef SWITCH_V3 /*********************************************************************************************\ * Switch support with input filter * * Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c) \*********************************************************************************************/ const uint8_t SWITCH_PROBE_INTERVAL = 10; // Time in milliseconds between switch input probe const uint8_t SWITCH_FAST_PROBE_INTERVAL =2;// Time in milliseconds between switch input probe for AC detection const uint8_t AC_PERIOD = (20 + SWITCH_FAST_PROBE_INTERVAL - 1) / SWITCH_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals #include Ticker TickerSwitch; struct SWITCH { unsigned long debounce = 0; // Switch debounce timer uint16_t no_pullup_mask = 0; // Switch pull-up bitmask flags uint8_t state[MAX_SWITCHES] = { 0 }; uint8_t last_state[MAX_SWITCHES]; // Last wall switch states uint8_t hold_timer[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold uint8_t virtual_state[MAX_SWITCHES]; // Virtual switch states uint8_t first_change = 0; uint8_t present = 0; } Switch; /********************************************************************************************/ void SwitchPullupFlag(uint16 switch_bit) { bitSet(Switch.no_pullup_mask, switch_bit); } void SwitchSetVirtual(uint32_t index, uint8_t state) { Switch.virtual_state[index] = state; } uint8_t SwitchGetVirtual(uint32_t index) { return Switch.virtual_state[index]; } uint8_t SwitchLastState(uint32_t index) { return Switch.last_state[index]; } bool SwitchState(uint32_t index) { uint32_t switchmode = Settings.switchmode[index]; return ((FOLLOW_INV == switchmode) || (PUSHBUTTON_INV == switchmode) || (PUSHBUTTONHOLD_INV == switchmode) || (FOLLOWMULTI_INV == switchmode) || (PUSHHOLDMULTI_INV == switchmode) || (PUSHON_INV == switchmode) ) ^ Switch.last_state[index]; } /*********************************************************************************************/ void SwitchProbe(void) { if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit uint8_t state_filter; uint8_t debounce_flags = Settings.switch_debounce % 10; uint8_t force_high = debounce_flags &1; // 51, 101, 151 etc uint8_t force_low = debounce_flags &2; // 52, 102, 152 etc uint8_t ac_detect = debounce_flags == 9; uint8_t switch_probe_interval; uint8_t first_change = Switch.first_change; if (ac_detect) { switch_probe_interval = SWITCH_FAST_PROBE_INTERVAL; if (Settings.switch_debounce < 2 * AC_PERIOD * SWITCH_FAST_PROBE_INTERVAL + 9) { state_filter = 2 * AC_PERIOD; } else if (Settings.switch_debounce > (0x7f - 2 * AC_PERIOD) * SWITCH_FAST_PROBE_INTERVAL) { state_filter = 0x7f; } else { state_filter = (Settings.switch_debounce - 9) / SWITCH_FAST_PROBE_INTERVAL; } } else { switch_probe_interval = SWITCH_PROBE_INTERVAL; state_filter = Settings.switch_debounce / SWITCH_PROBE_INTERVAL; // 5, 10, 15 } for (uint32_t i = 0; i < MAX_SWITCHES; i++) { if (PinUsed(GPIO_SWT1, i)) { // Olimex user_switch2.c code to fix 50Hz induced pulses if (1 == digitalRead(Pin(GPIO_SWT1, i))) { if (ac_detect) { // Enabled with SwitchDebounce x9 Switch.state[i] |= 0x80; if (Switch.state[i] > 0x80) { Switch.state[i]--; if (0x80 == Switch.state[i]) { Switch.virtual_state[i] = 0; Switch.first_change = false; } } } else { if (force_high) { // Enabled with SwitchDebounce x1 if (1 == Switch.virtual_state[i]) { Switch.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0 } } if (Switch.state[i] < state_filter) { Switch.state[i]++; if (state_filter == Switch.state[i]) { Switch.virtual_state[i] = 1; } } } } else { if (ac_detect) { // Enabled with SwitchDebounce x9 /* * Moes MS-104B and similar devices using an AC detection circuitry * on their switch inputs generating an ~4 ms long low pulse every * AC wave. We start the time measurement on the falling edge. * * state: bit7: previous state, bit6..0: counter */ if (Switch.state[i] & 0x80) { Switch.state[i] &= 0x7f; if (Switch.state[i] < state_filter - 2 * AC_PERIOD) { Switch.state[i] += 2 * AC_PERIOD; } else { Switch.state[i] = state_filter; Switch.virtual_state[i] = 1; if (first_change) { Switch.last_state[i] = 1; Switch.first_change = false; } } } else { if (Switch.state[i] > 0x00) { Switch.state[i]--; if (0x00 == Switch.state[i]) { Switch.virtual_state[i] = 0; Switch.first_change = false; } } } } else { if (force_low) { // Enabled with SwitchDebounce x2 if (0 == Switch.virtual_state[i]) { Switch.state[i] = 0; // With noisy input keep current state 0 unless constant 1 } } if (Switch.state[i] > 0) { Switch.state[i]--; if (0 == Switch.state[i]) { Switch.virtual_state[i] = 0; } } } } } } TickerSwitch.attach_ms(switch_probe_interval, SwitchProbe); // Re-arm as core 2.3.0 does only support ONCE mode } void SwitchInit(void) { uint8_t ac_detect = Settings.switch_debounce % 10 == 9; Switch.present = 0; for (uint32_t i = 0; i < MAX_SWITCHES; i++) { Switch.last_state[i] = 1; // Init global to virtual switch state; if (PinUsed(GPIO_SWT1, i)) { Switch.present++; pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_SWT1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP)); if (ac_detect) { Switch.state[i] = 0x80 + 2 * AC_PERIOD; Switch.last_state[i] = 0; // Will set later in the debouncing code } else { Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check } } Switch.virtual_state[i] = Switch.last_state[i]; } if (Switch.present) { if (ac_detect) { TickerSwitch.attach_ms(SWITCH_FAST_PROBE_INTERVAL, SwitchProbe); Switch.first_change = true; } else { TickerSwitch.attach_ms(SWITCH_PROBE_INTERVAL, SwitchProbe); } } } /*********************************************************************************************\ * Switch handler \*********************************************************************************************/ void SwitchHandler(uint8_t mode) { if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit uint16_t loops_per_second = 1000 / Settings.switch_debounce; for (uint32_t i = 0; i < MAX_SWITCHES; i++) { if (PinUsed(GPIO_SWT1, i) || (mode)) { uint8_t button = Switch.virtual_state[i]; uint8_t switchflag = POWER_TOGGLE +1; if (Switch.hold_timer[i]) { Switch.hold_timer[i]--; if (Switch.hold_timer[i] == loops_per_second * Settings.param[P_HOLD_TIME] / 25) { if ((Settings.switchmode[i] == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) { SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT } if ((Settings.switchmode[i] == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i])) { SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT } } if (0 == Switch.hold_timer[i]) { switch (Settings.switchmode[i]) { case TOGGLEMULTI: switchflag = POWER_TOGGLE; // Toggle after hold break; case FOLLOWMULTI: switchflag = button &1; // Follow wall switch state after hold break; case FOLLOWMULTI_INV: switchflag = ~button &1; // Follow inverted wall switch state after hold break; case PUSHHOLDMULTI: if (NOT_PRESSED == button) { Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 25; SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT } else { SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT } break; case PUSHHOLDMULTI_INV: if (PRESSED == button) { Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 25; SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT } else { SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT } break; default: SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT break; } } } if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i])) switch (Settings.switchmode[i]) { case TOGGLE: case PUSHBUTTON_TOGGLE: switchflag = POWER_TOGGLE; // Toggle break; case FOLLOW: switchflag = button &1; // Follow wall switch state break; case FOLLOW_INV: switchflag = ~button &1; // Follow inverted wall switch state break; case PUSHBUTTON: if (PRESSED == button) { switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd } break; case PUSHBUTTON_INV: if (NOT_PRESSED == button) { switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd } break; case PUSHBUTTONHOLD: if (PRESSED == button) { Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press } if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) { Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer... switchflag = POWER_TOGGLE; // ...and Toggle } break; case PUSHBUTTONHOLD_INV: if (NOT_PRESSED == button) { Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press... } if ((PRESSED == button) && (Switch.hold_timer[i])) { Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer. switchflag = POWER_TOGGLE; // ...and Toggle } break; case TOGGLEMULTI: case FOLLOWMULTI: case FOLLOWMULTI_INV: if (Switch.hold_timer[i]) { Switch.hold_timer[i] = 0; SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT } else { Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window } break; case PUSHHOLDMULTI: if (NOT_PRESSED == button) { if (Switch.hold_timer[i] != 0) { SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT } } else { if (Switch.hold_timer[i] > loops_per_second * Settings.param[P_HOLD_TIME] / 25) { switchflag = POWER_TOGGLE; // Toggle with pushbutton } else { SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT } } Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; break; case PUSHHOLDMULTI_INV: if (PRESSED == button) { if (Switch.hold_timer[i] != 0) { SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT } } else { if (Switch.hold_timer[i] > loops_per_second * Settings.param[P_HOLD_TIME] / 25) { switchflag = POWER_TOGGLE; // Toggle with pushbutton } else { SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT } } Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; break; case PUSHON: if (PRESSED == button) { switchflag = POWER_ON; // Power ON with pushbutton to Gnd } break; case PUSHON_INV: if (NOT_PRESSED == button) { switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd } break; } Switch.last_state[i] = button; } if (switchflag <= POWER_TOGGLE) { if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < devices_present) } } } } } void SwitchLoop(void) { if (Switch.present) { if (TimeReached(Switch.debounce)) { SetNextTimeInterval(Switch.debounce, Settings.switch_debounce); SwitchHandler(0); } } } #endif // SWITCH_V3