/* support_esp.ino - ESP specific code for Tasmota Copyright (C) 2021 Theo Arends / Jörg Schüler-Maroldt This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*********************************************************************************************\ * ESP8266 and ESP32 specific code * * At the end the common Tasmota calls are provided \*********************************************************************************************/ /*********************************************************************************************\ * ESP8266 Support \*********************************************************************************************/ #ifdef ESP8266 extern "C" { extern struct rst_info resetInfo; } uint32_t ESP_ResetInfoReason(void) { return resetInfo.reason; } String ESP_getResetReason(void) { return ESP.getResetReason(); } uint32_t ESP_getChipId(void) { return ESP.getChipId(); } uint32_t ESP_getSketchSize(void) { return ESP.getSketchSize(); } uint32_t ESP_getFreeHeap(void) { return ESP.getFreeHeap(); } void ESP_Restart(void) { // ESP.restart(); // This results in exception 3 on restarts on core 2.3.0 ESP.reset(); } uint32_t FlashWriteStartSector(void) { return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side } uint32_t FlashWriteMaxSector(void) { return (((uint32_t)&_FS_start - 0x40200000) / SPI_FLASH_SEC_SIZE) - 2; } uint8_t* FlashDirectAccess(void) { return (uint8_t*)(0x40200000 + (FlashWriteStartSector() * SPI_FLASH_SEC_SIZE)); } void *special_malloc(uint32_t size) { return malloc(size); } void *special_realloc(void *ptr, size_t size) { return realloc(ptr, size); } String GetDeviceHardware(void) { char buff[10]; // esptool.py get_efuses uint32_t efuse1 = *(uint32_t*)(0x3FF00050); uint32_t efuse2 = *(uint32_t*)(0x3FF00054); // uint32_t efuse3 = *(uint32_t*)(0x3FF00058); // uint32_t efuse4 = *(uint32_t*)(0x3FF0005C); bool is_8285 = ( (efuse1 & (1 << 4)) || (efuse2 & (1 << 16)) ); if (is_8285 && (ESP.getFlashChipRealSize() > 1048576)) { is_8285 = false; // ESP8285 can only have 1M flash } if (is_8285) { strcpy_P(buff, PSTR("ESP8285")); } else { strcpy_P(buff, PSTR("ESP8266EX")); } return String(buff); } #endif /*********************************************************************************************\ * ESP32 Support \*********************************************************************************************/ #ifdef ESP32 // Handle 20k of NVM #include // See libraries\ESP32\examples\ResetReason.ino #if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+ #if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4 #include "esp32/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2 #include "esp32s2/rom/rtc.h" #else #error Target CONFIG_IDF_TARGET is not supported #endif #else // ESP32 Before IDF 4.0 #include "rom/rtc.h" #endif #include void NvmLoad(const char *sNvsName, const char *sName, void *pSettings, unsigned nSettingsLen) { nvs_handle handle; noInterrupts(); nvs_open(sNvsName, NVS_READONLY, &handle); size_t size = nSettingsLen; nvs_get_blob(handle, sName, pSettings, &size); nvs_close(handle); interrupts(); } void NvmSave(const char *sNvsName, const char *sName, const void *pSettings, unsigned nSettingsLen) { nvs_handle handle; noInterrupts(); nvs_open(sNvsName, NVS_READWRITE, &handle); nvs_set_blob(handle, sName, pSettings, nSettingsLen); nvs_commit(handle); nvs_close(handle); interrupts(); } int32_t NvmErase(const char *sNvsName) { nvs_handle handle; noInterrupts(); int32_t result = nvs_open(sNvsName, NVS_READWRITE, &handle); if (ESP_OK == result) { result = nvs_erase_all(handle); } if (ESP_OK == result) { result = nvs_commit(handle); } nvs_close(handle); interrupts(); return result; } void SettingsErase(uint8_t type) { // SDK and Tasmota data is held in default NVS partition // Tasmota data is held also in file /.settings on default filesystem // cal_data - SDK PHY calibration data as documented in esp_phy_init.h // qpc - Tasmota Quick Power Cycle state // main - Tasmota Settings data int32_t r1, r2, r3; switch (type) { case 0: // Reset 2 = Erase all flash from program end to end of physical flash case 2: // Reset 5, 6 = Erase all flash from program end to end of physical flash excluding filesystem // nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc. r1 = NvmErase("qpc"); r2 = NvmErase("main"); r3 = TfsDeleteFile(TASM_FILE_SETTINGS); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3); break; case 1: // Reset 3 = SDK parameter area case 4: // WIFI_FORCE_RF_CAL_ERASE = SDK parameter area r1 = esp_phy_erase_cal_data_in_nvs(); // r1 = NvmErase("cal_data"); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " PHY data (%d)"), r1); break; case 3: // QPC Reached = QPC, Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) // nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc. r1 = NvmErase("qpc"); r2 = NvmErase("main"); // r3 = esp_phy_erase_cal_data_in_nvs(); // r3 = NvmErase("cal_data"); // AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota (%d,%d) and PHY data (%d)"), r1, r2, r3); r3 = TfsDeleteFile(TASM_FILE_SETTINGS); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3); break; } } uint32_t SettingsRead(void *data, size_t size) { uint32_t source = 1; if (!TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)data, size)) { source = 0; NvmLoad("main", "Settings", data, size); } return source; } void SettingsWrite(const void *pSettings, unsigned nSettingsLen) { TfsSaveFile(TASM_FILE_SETTINGS, (const uint8_t*)pSettings, nSettingsLen); NvmSave("main", "Settings", pSettings, nSettingsLen); } void QPCRead(void *pSettings, unsigned nSettingsLen) { NvmLoad("qpc", "pcreg", pSettings, nSettingsLen); } void QPCWrite(const void *pSettings, unsigned nSettingsLen) { NvmSave("qpc", "pcreg", pSettings, nSettingsLen); } void NvsInfo(void) { nvs_stats_t nvs_stats; nvs_get_stats(NULL, &nvs_stats); AddLog(LOG_LEVEL_INFO, PSTR("NVS: Used %d/%d entries, NameSpaces %d"), nvs_stats.used_entries, nvs_stats.total_entries, nvs_stats.namespace_count); } // // Flash memory mapping // // See Esp.cpp #include "Esp.h" #include "esp_spi_flash.h" #include #include #include #include extern "C" { #include "esp_ota_ops.h" #include "esp_image_format.h" } #include "esp_system.h" #if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+ #if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4 #include "esp32/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2 #include "esp32s2/rom/spi_flash.h" #else #error Target CONFIG_IDF_TARGET is not supported #endif #else // ESP32 Before IDF 4.0 #include "rom/spi_flash.h" #endif uint32_t EspFlashBaseAddress(void) { const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } return partition->address; // For tasmota 0x00010000 or 0x00200000 } uint32_t EspFlashBaseEndAddress(void) { const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } return partition->address + partition->size; // For tasmota 0x00200000 or 0x003F0000 } uint8_t* EspFlashMmap(uint32_t address) { static spi_flash_mmap_handle_t handle = 0; if (handle) { spi_flash_munmap(handle); handle = 0; } const uint8_t* data; int32_t err = spi_flash_mmap(address, 5 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&data, &handle); /* AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Spi_flash_map %d"), err); spi_flash_mmap_dump(); */ return (uint8_t*)data; } /* int32_t EspPartitionMmap(uint32_t action) { static spi_flash_mmap_handle_t handle; int32_t err = 0; if (1 == action) { const esp_partition_t *partition = esp_ota_get_running_partition(); // const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } err = esp_partition_mmap(partition, 0, 4 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&TasmotaGlobal_mmap_data, &handle); AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Partition start 0x%08X, Partition end 0x%08X, Mmap data 0x%08X"), partition->address, partition->size, TasmotaGlobal_mmap_data); } else { spi_flash_munmap(handle); handle = 0; } return err; } */ // // Crash stuff // void CrashDump(void) { } bool CrashFlag(void) { return false; } void CrashDumpClear(void) { } void CmndCrash(void) { /* volatile uint32_t dummy; dummy = *((uint32_t*) 0x00000000); */ } // Do an infinite loop to trigger WDT watchdog void CmndWDT(void) { /* volatile uint32_t dummy = 0; while (1) { dummy++; } */ } // This will trigger the os watch after OSWATCH_RESET_TIME (=120) seconds void CmndBlockedLoop(void) { /* while (1) { delay(1000); } */ } // // ESP32 specific // #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" void DisableBrownout(void) { // https://github.com/espressif/arduino-esp32/issues/863#issuecomment-347179737 WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); // Disable brownout detector } // // ESP32 Alternatives // String ESP32GetResetReason(uint32_t cpu_no) { #if CONFIG_IDF_TARGET_ESP32 // tools\sdk\include\esp32\rom\rtc.h switch (rtc_get_reset_reason(cpu_no)) { case POWERON_RESET : return F("Vbat power on reset"); // 1 case SW_RESET : return F("Software reset digital core"); // 3 case OWDT_RESET : return F("Legacy watch dog reset digital core"); // 4 case DEEPSLEEP_RESET : return F("Deep Sleep reset digital core"); // 5 case SDIO_RESET : return F("Reset by SLC module, reset digital core"); // 6 case TG0WDT_SYS_RESET : return F("Timer Group0 Watch dog reset digital core"); // 7 case TG1WDT_SYS_RESET : return F("Timer Group1 Watch dog reset digital core"); // 8 case RTCWDT_SYS_RESET : return F("RTC Watch dog Reset digital core"); // 9 case INTRUSION_RESET : return F("Instrusion tested to reset CPU"); // 10 case TGWDT_CPU_RESET : return F("Time Group reset CPU"); // 11 case SW_CPU_RESET : return F("Software reset CPU"); // 12 case RTCWDT_CPU_RESET : return F("RTC Watch dog Reset CPU"); // 13 case EXT_CPU_RESET : return F("or APP CPU, reseted by PRO CPU"); // 14 case RTCWDT_BROWN_OUT_RESET : return F("Reset when the vdd voltage is not stable"); // 15 case RTCWDT_RTC_RESET : return F("RTC Watch dog reset digital core and rtc module"); // 16 } #elif CONFIG_IDF_TARGET_ESP32S2 // tools\sdk\esp32\include\esp_rom\include\esp32s2\rom\rtc.h switch (rtc_get_reset_reason(cpu_no)) { case POWERON_RESET : return F("Vbat power on reset"); // 1 case RTC_SW_SYS_RESET : return F("Software reset digital core"); // 3 case DEEPSLEEP_RESET : return F("Deep Sleep reset digital core"); // 5 case TG0WDT_SYS_RESET : return F("Timer Group0 Watch dog reset digital core"); // 7 case TG1WDT_SYS_RESET : return F("Timer Group1 Watch dog reset digital core"); // 8 case RTCWDT_SYS_RESET : return F("RTC Watch dog Reset digital core"); // 9 case INTRUSION_RESET : return F("Instrusion tested to reset CPU"); // 10 case TG0WDT_CPU_RESET : return F("Time Group0 reset CPU"); // 11 case RTC_SW_CPU_RESET : return F("Software reset CPU"); // 12 case RTCWDT_CPU_RESET : return F("RTC Watch dog Reset CPU"); // 13 case RTCWDT_BROWN_OUT_RESET : return F("Reset when the vdd voltage is not stable"); // 15 case RTCWDT_RTC_RESET : return F("RTC Watch dog reset digital core and rtc module"); // 16 case TG1WDT_CPU_RESET : return F("Time Group1 reset CPU"); // 17 case SUPER_WDT_RESET : return F("Super watchdog reset digital core and rtc module"); // 18 case GLITCH_RTC_RESET : return F("Glitch reset digital core and rtc module"); // 19 } #endif return F("No meaning"); // 0 and undefined } String ESP_getResetReason(void) { return ESP32GetResetReason(0); // CPU 0 } uint32_t ESP_ResetInfoReason(void) { RESET_REASON reason = rtc_get_reset_reason(0); #if CONFIG_IDF_TARGET_ESP32 if (POWERON_RESET == reason) { return REASON_DEFAULT_RST; } if (SW_CPU_RESET == reason) { return REASON_SOFT_RESTART; } if (DEEPSLEEP_RESET == reason) { return REASON_DEEP_SLEEP_AWAKE; } if (SW_RESET == reason) { return REASON_EXT_SYS_RST; } #elif CONFIG_IDF_TARGET_ESP32S2 if (POWERON_RESET == reason) { return REASON_DEFAULT_RST; } if (RTC_SW_CPU_RESET == reason) { return REASON_SOFT_RESTART; } if (DEEPSLEEP_RESET == reason) { return REASON_DEEP_SLEEP_AWAKE; } if (RTC_SW_SYS_RESET == reason) { return REASON_EXT_SYS_RST; } #endif return -1; //no "official error code", but should work with the current code base } uint32_t ESP_getChipId(void) { uint32_t id = 0; for (uint32_t i = 0; i < 17; i = i +8) { id |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i; } return id; } uint32_t ESP_getSketchSize(void) { static uint32_t sketchsize = 0; if (!sketchsize) { sketchsize = ESP.getSketchSize(); // This takes almost 2 seconds on an ESP32 } return sketchsize; } uint32_t ESP_getFreeHeap(void) { return ESP.getFreeHeap(); } uint32_t ESP_getMaxAllocHeap(void) { // largest block of heap that can be allocated at once uint32_t free_block_size = ESP.getMaxAllocHeap(); if (free_block_size > 100) { free_block_size -= 100; } return free_block_size; } void ESP_Restart(void) { ESP.restart(); } uint32_t FlashWriteStartSector(void) { // Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage uint32_t aligned_address = ((EspFlashBaseAddress() + (2 * SPI_FLASH_MMU_PAGE_SIZE)) / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE; return aligned_address / SPI_FLASH_SEC_SIZE; } uint32_t FlashWriteMaxSector(void) { // Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage uint32_t aligned_end_address = (EspFlashBaseEndAddress() / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE; return aligned_end_address / SPI_FLASH_SEC_SIZE; } uint8_t* FlashDirectAccess(void) { uint32_t address = FlashWriteStartSector() * SPI_FLASH_SEC_SIZE; uint8_t* data = EspFlashMmap(address); /* AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Flash start address 0x%08X, Mmap address 0x%08X"), address, data); uint8_t buf[32]; memcpy(buf, data, sizeof(buf)); AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&buf, 32); */ return data; } void *special_malloc(uint32_t size) { if (psramFound()) { return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); } else { return malloc(size); } } void *special_realloc(void *ptr, size_t size) { if (psramFound()) { return heap_caps_realloc(ptr, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); } else { return realloc(ptr, size); } } float CpuTemperature(void) { return ConvertTemp(temperatureRead()); } String GetDeviceHardware(void) { /* Source: esp-idf esp_system.h and esptool typedef enum { CHIP_ESP32 = 1, //!< ESP32 CHIP_ESP32S2 = 2, //!< ESP32-S2 CHIP_ESP32S3 = 4, //!< ESP32-S3 CHIP_ESP32C3 = 5, //!< ESP32-C3 } esp_chip_model_t; // Chip feature flags, used in esp_chip_info_t #define CHIP_FEATURE_EMB_FLASH BIT(0) //!< Chip has embedded flash memory #define CHIP_FEATURE_WIFI_BGN BIT(1) //!< Chip has 2.4GHz WiFi #define CHIP_FEATURE_BLE BIT(4) //!< Chip has Bluetooth LE #define CHIP_FEATURE_BT BIT(5) //!< Chip has Bluetooth Classic // The structure represents information about the chip typedef struct { esp_chip_model_t model; //!< chip model, one of esp_chip_model_t uint32_t features; //!< bit mask of CHIP_FEATURE_x feature flags uint8_t cores; //!< number of CPU cores uint8_t revision; //!< chip revision number } esp_chip_info_t; */ esp_chip_info_t chip_info; esp_chip_info(&chip_info); uint32_t chip_model = chip_info.model; uint32_t chip_revision = chip_info.revision; // uint32_t chip_revision = ESP.getChipRevision(); bool rev3 = (3 == chip_revision); // bool single_core = (1 == ESP.getChipCores()); bool single_core = (1 == chip_info.cores); if (chip_model < 2) { // ESP32 #ifdef CONFIG_IDF_TARGET_ESP32 /* esptool: def get_pkg_version(self): word3 = self.read_efuse(3) pkg_version = (word3 >> 9) & 0x07 pkg_version += ((word3 >> 2) & 0x1) << 3 return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_version = chip_ver & 0x7; switch (pkg_version) { case 0: if (single_core) { return F("ESP32-S0WDQ6"); } else { return F("ESP32-D0WDQ6"); } case 1: if (single_core) { return F("ESP32-S0WD"); } else { return F("ESP32-D0WD"); } case 2: return F("ESP32-D2WD"); case 4: return F("ESP32-U4WDH"); case 5: if (rev3) { return F("ESP32-PICO-V3"); } else { return F("ESP32-PICO-D4"); } case 6: return F("ESP32-PICO-V3-02"); } #endif // CONFIG_IDF_TARGET_ESP32 return F("ESP32"); } else if (2 == chip_model) { // ESP32-S2 #ifdef CONFIG_IDF_TARGET_ESP32S2 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ // uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); // uint32_t pkg_version = chip_ver & 0x7; uint32_t pkg_version = esp_efuse_get_pkg_ver(); switch (pkg_version) { case 0: return F("ESP32-S2"); case 1: return F("ESP32-S2FH16"); case 2: return F("ESP32-S2FH32"); } #endif // CONFIG_IDF_TARGET_ESP32S2 return F("ESP32-S2"); } else if (4 == chip_model) { // ESP32-S3 return F("ESP32-S3"); } else if (5 == chip_model) { // ESP32-C3 #ifdef CONFIG_IDF_TARGET_ESP32C3 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ // uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); // uint32_t pkg_version = chip_ver & 0x7; uint32_t pkg_version = esp_efuse_get_pkg_ver(); switch (pkg_version) { case 0: return F("ESP32-C3"); } #endif // CONFIG_IDF_TARGET_ESP32C3 return F("ESP32-C3"); } else if (6 == chip_model) { // ESP32-S3(beta3) return F("ESP32-S3(beta3)"); } else if (7 == chip_model) { // ESP32-C6 #ifdef CONFIG_IDF_TARGET_ESP32C6 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ // uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); // uint32_t pkg_version = chip_ver & 0x7; uint32_t pkg_version = esp_efuse_get_pkg_ver(); switch (pkg_version) { case 0: return F("ESP32-C6"); } #endif // CONFIG_IDF_TARGET_ESP32C6 return F("ESP32-C6"); } return F("ESP32"); } #endif // ESP32 /*********************************************************************************************\ * ESP Support \*********************************************************************************************/ uint32_t ESP_getFreeHeap1024(void) { return ESP_getFreeHeap() / 1024; } /* float ESP_getFreeHeap1024(void) { return ((float)ESP_getFreeHeap()) / 1024; } */ /*********************************************************************************************\ * High entropy hardware random generator * Thanks to DigitalAlchemist \*********************************************************************************************/ // Based on code from https://raw.githubusercontent.com/espressif/esp-idf/master/components/esp32/hw_random.c uint32_t HwRandom(void) { #if ESP8266 // https://web.archive.org/web/20160922031242/http://esp8266-re.foogod.com/wiki/Random_Number_Generator #define _RAND_ADDR 0x3FF20E44UL #endif // ESP8266 #ifdef ESP32 #define _RAND_ADDR 0x3FF75144UL #endif // ESP32 static uint32_t last_ccount = 0; uint32_t ccount; uint32_t result = 0; do { ccount = ESP.getCycleCount(); result ^= *(volatile uint32_t *)_RAND_ADDR; } while (ccount - last_ccount < 64); last_ccount = ccount; return result ^ *(volatile uint32_t *)_RAND_ADDR; #undef _RAND_ADDR }