/*
xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_CSE7761
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow)
* {"NAME":"Sonoff Dual R3","GPIO":[0,0,1,0,0,0,3232,3200,0,0,225,0,0,0,0,0,0,0,0,0,1,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
*
* Based on datasheet from ChipSea and analysing serial data
* See https://github.com/arendst/Tasmota/discussions/10793
\*********************************************************************************************/
#define XNRG_19 19
//#define CSE7761_SIMULATE
#define CSE7761_UREF 42563 // RmsUc
#define CSE7761_IREF 52241 // RmsIAC
#define CSE7761_PREF 44513 // PowerPAC
#define CSE7761_REG_SYSCON 0x00 // System Control Register
#define CSE7761_REG_EMUCON 0x01 // Metering control register
#define CSE7761_REG_EMUCON2 0x13 // Metering control register 2
#define CSE7761_REG_UFREQ 0x23 // Voltage Frequency Register
#define CSE7761_REG_RMSIA 0x24 // The effective value of channel A current
#define CSE7761_REG_RMSIB 0x25 // The effective value of channel B current
#define CSE7761_REG_RMSU 0x26 // Voltage RMS
#define CSE7761_REG_POWERPA 0x2C // Channel A active power, update rate 27.2Hz
#define CSE7761_REG_POWERPB 0x2D // Channel B active power, update rate 27.2Hz
#define CSE7761_REG_SYSSTATUS 0x43 // System status register
#define CSE7761_REG_COEFFOFFSET 0x6E // Coefficient checksum offset (0xFFFF)
#define CSE7761_REG_COEFFCHKSUM 0x6F // Coefficient checksum
#define CSE7761_REG_RMSIAC 0x70 // Channel A effective current conversion coefficient
#define CSE7761_REG_RMSIBC 0x71 // Channel B effective current conversion coefficient
#define CSE7761_REG_RMSUC 0x72 // Effective voltage conversion coefficient
#define CSE7761_REG_POWERPAC 0x73 // Channel A active power conversion coefficient
#define CSE7761_REG_POWERPBC 0x74 // Channel B active power conversion coefficient
#define CSE7761_REG_POWERSC 0x75 // Apparent power conversion coefficient
#define CSE7761_REG_ENERGYAC 0x76 // Channel A energy conversion coefficient
#define CSE7761_REG_ENERGYBC 0x77 // Channel B energy conversion coefficient
#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command
#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets
#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power,
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
// The channel indicated by the signal of power overload is channel A
#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power,
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
// The channel indicated by the signal of power overload is channel B
#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation
#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC };
#include
TasmotaSerial *Cse7761Serial = nullptr;
struct {
uint32_t voltage_rms = 0;
uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint16_t coefficient[8] = { 0 };
uint8_t energy_update = 0;
uint8_t init = 4;
uint8_t ready = 0;
} CSE7761Data;
void Cse7761Write(uint32_t reg, uint32_t data) {
uint8_t buffer[5];
buffer[0] = 0xA5;
buffer[1] = reg;
uint32_t len = 2;
if (data) {
if (data < 0xFF) {
buffer[2] = data & 0xFF;
len = 3;
} else {
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = data & 0xFF;
len = 4;
}
uint8_t crc = 0;
for (uint32_t i = 0; i < len; i++) {
crc += buffer[i];
}
buffer[len] = ~crc;
len++;
}
Cse7761Serial->write(buffer, len);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
}
uint32_t Cse7761Read(uint32_t reg, uint32_t size) {
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
Cse7761Write(reg, 0);
uint8_t buffer[8] = { 0 };
uint32_t rcvd = 0;
uint32_t timeout = millis() + 3;
// while (!TimeReached(timeout) && (rcvd <= size)) {
while (!TimeReached(timeout)) {
int value = Cse7761Serial->read();
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
buffer[rcvd++] = value;
}
}
if (!rcvd) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx none"));
return 0;
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %*_H"), rcvd, buffer);
if (rcvd > 5) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx overflow"));
return 0;
}
rcvd--;
uint32_t result = 0;
uint8_t crc = 0xA5 + reg;
for (uint32_t i = 0; i < rcvd; i++) {
result = (result << 8) | buffer[i];
crc += buffer[i];
}
crc = ~crc;
if (crc != buffer[rcvd]) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rx %*_H, CRC error %02X"), rcvd +1, buffer, crc);
return 1;
}
return result;
}
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) {
uint32_t value = Cse7761Read(reg, size);
if (1 == value) { // CRC Error so use previous value read
value = prev;
}
return value;
}
uint32_t Cse7761Ref(uint32_t unit) {
switch (unit) {
case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
case RmsIAC: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
case PowerPAC: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
}
return 0;
}
bool Cse7761ChipInit(void) {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i, 2);
calc_chksum += CSE7761Data.coefficient[i];
}
calc_chksum = ~calc_chksum;
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET, 2);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM, 2);
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_voltage_calibration = Cse7761Ref(RmsUC);
Settings.energy_current_calibration = Cse7761Ref(RmsIAC);
Settings.energy_power_calibration = Cse7761Ref(PowerPAC);
}
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
// delay(8); // Exception on ESP8266
uint32_t timeout = millis() + 8;
while (!TimeReached(timeout)) { }
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS, 1);
#ifdef CSE7761_SIMULATE
sys_status = 0x11;
#endif
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
/*
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
Bit name Function description
15-11 NC -, the default is 1
10 ADC2ON
=1, means ADC current channel B is on (Sonoff Dual R3 Pow)
=0, means ADC current channel B is closed
9 NC -, the default is 1.
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
=1XX, PGA of current channel B=16 (Sonoff Dual R3 Pow)
=011, PGA of current channel B=8
=010, PGA of current channel B=4
=001, PGA of current channel B=2
=000, PGA of current channel B=1
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
=1XX, PGA of voltage U=16
=011, PGA of voltage U=8
=010, PGA of voltage U=4
=001, PGA of voltage U=2
=000, PGA of voltage U=1 (Sonoff Dual R3 Pow)
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
=1XX, PGA of current channel A=16 (Sonoff Dual R3 Pow)
=011, PGA of current channel A=8
=010, PGA of current channel A=4
=001, PGA of current channel A=2
=000, PGA of current channel A=1
*/
Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04);
/*
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
Bit name Function description
15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor:
=2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow)
=2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-.
=2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+.
=2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-.
After measuring these four results and averaging, the AD value of the current measured temperature can be obtained.
13 tensor_en Temperature measurement module control
=0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow)
=1 when the temperature measurement module is turned on;
12 comp_off Comparator module close signal:
=0 when the comparator module is in working state
=1 when the comparator module is off (Sonoff Dual R3 Pow)
11-10 Pmode[1:0] Selection of active energy calculation method:
Pmode =00, both positive and negative active energy participate in the accumulation,
the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow)
Pmode = 01, only accumulate positive active energy;
Pmode = 10, both positive and negative active energy participate in the accumulation,
and the accumulation method is absolute value method. No reverse active power indication;
Pmode =11, reserved, the mode is the same as Pmode =00
9 NC -
8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0:
=0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow)
=1, indicating that the ZX output changes at both the positive and negative zero crossings
7 ZXD0
=0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow)
=1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal
6 HPFIBOFF
=0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel B
5 HPFIAOFF
=0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel A
4 HPFUOFF
=0, enable U channel digital high pass filter (Sonoff Dual R3 Pow)
=1, turn off the U channel digital high-pass filter
3-2 NC -
1 PBRUN
=1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFB pulse output and active energy register accumulation.
0 PARUN
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFA pulse output and active energy register accumulation.
*/
Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003);
/*
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
Bit name Function description
15-13 NC -
12 SDOCmos
=1, SDO pin CMOS open-drain output
=0, SDO pin CMOS output (Sonoff Dual R3 Pow)
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
Clear after reading is not supported in UART mode
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PB is cleared after reading;
10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode,
Clear after reading is not supported in UART mode
=1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PA is cleared after reading;
9-8 DUPSEL[1:0] Average register update frequency control
=00, Update frequency 3.4Hz
=01, Update frequency 6.8Hz
=10, Update frequency 13.65Hz
=11, Update frequency 27.3Hz (Sonoff Dual R3 Pow)
7 CHS_IB Current channel B measurement selection signal
=1, measure the current of channel B (Sonoff Dual R3 Pow)
=0, measure the internal temperature of the chip
6 PfactorEN Power factor function enable
=1, turn on the power factor output function (Sonoff Dual R3 Pow)
=0, turn off the power factor output function
5 WaveEN Waveform data, instantaneous data output enable signal
=1, turn on the waveform data output function
=0, turn off the waveform data output function (Sonoff Dual R3 Pow)
4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first
=1, turn on the voltage drop detection function
=0, turn off the voltage drop detection function (Sonoff Dual R3 Pow)
3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first
=1, turn on the overvoltage, overcurrent, and overload detection functions
=0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow)
2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal
=1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions
=0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow)
1 PeakEN Peak detect enable signal
=1, turn on the peak detection function
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
0 NC Default is 1
*/
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1);
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write failed"));
return false;
}
return true;
}
void Cse7761GetData(void) {
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
// and when the highest bit is 1, the reading will be processed as zero
// The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit.
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms, 3);
#ifdef CSE7761_SIMULATE
value = 2342160; // 237.7V
#endif
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3);
#ifdef CSE7761_SIMULATE
value = 455;
#endif
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
#ifdef CSE7761_SIMULATE
value = 217;
#endif
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
#ifdef CSE7761_SIMULATE
value = 29760; // 0.185A
#endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4);
#ifdef CSE7761_SIMULATE
value = 2126641; // 44.05W
#endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: U%d, I%d/%d, P%d/%d"),
CSE7761Data.voltage_rms,
CSE7761Data.current_rms[0], CSE7761Data.current_rms[1],
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
if (Energy.power_on) { // Powered on
// Voltage = RmsU * RmsUC * 10 / 0x400000
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
// Current = RmsIA * RmsIAC / 0x800000
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
CSE7761Data.energy[channel] += Energy.active_power[channel];
CSE7761Data.energy_update++;
}
}
}
}
/********************************************************************************************/
void Cse7761Every200ms(void) {
if (2 == CSE7761Data.ready) {
Cse7761GetData();
}
}
void Cse7761EverySecond(void) {
if (CSE7761Data.init) {
if (3 == CSE7761Data.init) {
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
}
else if (2 == CSE7761Data.init) {
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
#ifdef CSE7761_SIMULATE
syscon = 0x0A04;
#endif
if ((0x0A04 == syscon) && Cse7761ChipInit()) {
CSE7761Data.ready = 1;
}
}
else if (1 == CSE7761Data.init) {
if (1 == CSE7761Data.ready) {
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
CSE7761Data.ready = 2;
}
}
CSE7761Data.init--;
}
else {
if (2 == CSE7761Data.ready) {
if (CSE7761Data.energy_update) {
uint32_t energy_sum = ((CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000) / CSE7761Data.energy_update;
if (energy_sum) {
Energy.kWhtoday_delta += energy_sum / 36;
EnergyUpdateToday();
}
}
CSE7761Data.energy[0] = 0;
CSE7761Data.energy[1] = 0;
CSE7761Data.energy_update = 0;
}
}
}
void Cse7761SnsInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1);
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
if (Cse7761Serial->hardwareSerial()) {
SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Cse7761DrvInit(void) {
if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) {
CSE7761Data.ready = 0;
CSE7761Data.init = 4; // Init setup steps
Energy.phase_count = 2; // Handle two channels as two phases
Energy.voltage_common = true; // Use common voltage
TasmotaGlobal.energy_driver = XNRG_19;
}
}
bool Cse7761Command(void) {
bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGECAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) {
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
Settings.energy_power_calibration = ((CSE7761Data.active_power[channel]) / value) * 100;
}
}
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) {
if ((value > 10000) && (value < 26000)) { // Between 100V and 260V
Settings.energy_voltage_calibration = (CSE7761Data.voltage_rms * 100) / value;
}
}
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) {
if ((value > 1000) && (value < 1000000)) { // Between 10mA and 10A
Settings.energy_current_calibration = ((CSE7761Data.current_rms[channel] * 100) / value) * 1000;
}
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg19(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_EVERY_200_MSECOND:
Cse7761Every200ms();
break;
case FUNC_ENERGY_EVERY_SECOND:
Cse7761EverySecond();
break;
case FUNC_COMMAND:
result = Cse7761Command();
break;
case FUNC_INIT:
Cse7761SnsInit();
break;
case FUNC_PRE_INIT:
Cse7761DrvInit();
break;
}
return result;
}
#endif // USE_CSE7761
#endif // USE_ENERGY_SENSOR