/* xnrg_02_cse7766.ino - CSE7766 and HLW8032 energy sensor support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_CSE7766 /*********************************************************************************************\ * CSE7759 and CSE7766 - Energy (Sonoff S31 and Sonoff Pow R2) * HLW8032 - Energy (Blitzwolf SHP5) * * Needs GPIO_CSE7766_RX only * * Based on datasheet from http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf \*********************************************************************************************/ #define XNRG_02 2 #define CSE_MAX_INVALID_POWER 128 // Number of invalid power receipts before deciding active power is zero #define CSE_NOT_CALIBRATED 0xAA #define CSE_PULSES_NOT_INITIALIZED -1 #define CSE_PREF 1000 #define CSE_UREF 100 #define CSE_BUFFER_SIZE 25 #include TasmotaSerial *CseSerial = nullptr; struct CSE { long voltage_cycle = 0; long current_cycle = 0; long power_cycle = 0; long power_cycle_first = 0; long cf_pulses = 0; long cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED; int byte_counter = 0; uint8_t *rx_buffer = nullptr; uint8_t power_invalid = 0; bool received = false; } Cse; void CseReceived(void) { // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 // F2 5A 02 F7 60 00 03 61 00 40 10 05 72 40 51 A6 58 63 10 1B E1 7F 4D 4E - F2 = Power cycle exceeds range - takes too long - No load // 55 5A 02 F7 60 00 03 5A 00 40 10 04 8B 9F 51 A6 58 18 72 75 61 AC A1 30 - 55 = Ok, 61 = Power not valid (load below 5W) // 55 5A 02 F7 60 00 03 AB 00 40 10 02 60 5D 51 A6 58 03 E9 EF 71 0B 7A 36 - 55 = Ok, 71 = Ok // Hd Id VCal---- Voltage- ICal---- Current- PCal---- Power--- Ad CF--- Ck uint8_t header = Cse.rx_buffer[0]; if ((header & 0xFC) == 0xFC) { AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: Abnormal hardware")); return; } // Get chip calibration data (coefficients) and use as initial defaults if (HLW_UREF_PULSE == Settings.energy_voltage_calibration) { long voltage_coefficient = 191200; // uSec if (CSE_NOT_CALIBRATED != header) { voltage_coefficient = Cse.rx_buffer[2] << 16 | Cse.rx_buffer[3] << 8 | Cse.rx_buffer[4]; } Settings.energy_voltage_calibration = voltage_coefficient / CSE_UREF; } if (HLW_IREF_PULSE == Settings.energy_current_calibration) { long current_coefficient = 16140; // uSec if (CSE_NOT_CALIBRATED != header) { current_coefficient = Cse.rx_buffer[8] << 16 | Cse.rx_buffer[9] << 8 | Cse.rx_buffer[10]; } Settings.energy_current_calibration = current_coefficient; } if (HLW_PREF_PULSE == Settings.energy_power_calibration) { long power_coefficient = 5364000; // uSec if (CSE_NOT_CALIBRATED != header) { power_coefficient = Cse.rx_buffer[14] << 16 | Cse.rx_buffer[15] << 8 | Cse.rx_buffer[16]; } Settings.energy_power_calibration = power_coefficient / CSE_PREF; } uint8_t adjustement = Cse.rx_buffer[20]; Cse.voltage_cycle = Cse.rx_buffer[5] << 16 | Cse.rx_buffer[6] << 8 | Cse.rx_buffer[7]; Cse.current_cycle = Cse.rx_buffer[11] << 16 | Cse.rx_buffer[12] << 8 | Cse.rx_buffer[13]; Cse.power_cycle = Cse.rx_buffer[17] << 16 | Cse.rx_buffer[18] << 8 | Cse.rx_buffer[19]; Cse.cf_pulses = Cse.rx_buffer[21] << 8 | Cse.rx_buffer[22]; if (Energy.power_on) { // Powered on if (adjustement & 0x40) { // Voltage valid Energy.voltage[0] = (float)(Settings.energy_voltage_calibration * CSE_UREF) / (float)Cse.voltage_cycle; } if (adjustement & 0x10) { // Power valid Cse.power_invalid = 0; if ((header & 0xF2) == 0xF2) { // Power cycle exceeds range Energy.active_power[0] = 0; } else { if (0 == Cse.power_cycle_first) { Cse.power_cycle_first = Cse.power_cycle; } // Skip first incomplete Cse.power_cycle if (Cse.power_cycle_first != Cse.power_cycle) { Cse.power_cycle_first = -1; Energy.active_power[0] = (float)(Settings.energy_power_calibration * CSE_PREF) / (float)Cse.power_cycle; } else { Energy.active_power[0] = 0; } } } else { if (Cse.power_invalid < Settings.param[P_CSE7766_INVALID_POWER]) { // Allow measurements down to about 1W Cse.power_invalid++; } else { Cse.power_cycle_first = 0; Energy.active_power[0] = 0; // Powered on but no load } } if (adjustement & 0x20) { // Current valid if (0 == Energy.active_power[0]) { Energy.current[0] = 0; } else { Energy.current[0] = (float)Settings.energy_current_calibration / (float)Cse.current_cycle; } } } else { // Powered off Cse.power_cycle_first = 0; Energy.voltage[0] = 0; Energy.active_power[0] = 0; Energy.current[0] = 0; } } bool CseSerialInput(void) { while (CseSerial->available()) { yield(); uint8_t serial_in_byte = CseSerial->read(); if (Cse.received) { Cse.rx_buffer[Cse.byte_counter++] = serial_in_byte; if (24 == Cse.byte_counter) { AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Cse.rx_buffer, 24); uint8_t checksum = 0; for (uint32_t i = 2; i < 23; i++) { checksum += Cse.rx_buffer[i]; } if (checksum == Cse.rx_buffer[23]) { Energy.data_valid[0] = 0; CseReceived(); Cse.received = false; return true; } else { AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: " D_CHECKSUM_FAILURE)); do { // Sync buffer with data (issue #1907 and #3425) memmove(Cse.rx_buffer, Cse.rx_buffer +1, 24); Cse.byte_counter--; } while ((Cse.byte_counter > 2) && (0x5A != Cse.rx_buffer[1])); if (0x5A != Cse.rx_buffer[1]) { Cse.received = false; Cse.byte_counter = 0; } } } } else { if ((0x5A == serial_in_byte) && (1 == Cse.byte_counter)) { // 0x5A - Packet header 2 Cse.received = true; } else { Cse.byte_counter = 0; } Cse.rx_buffer[Cse.byte_counter++] = serial_in_byte; } } } /********************************************************************************************/ void CseEverySecond(void) { if (Energy.data_valid[0] > ENERGY_WATCHDOG) { Cse.voltage_cycle = 0; Cse.current_cycle = 0; Cse.power_cycle = 0; } else { long cf_frequency = 0; if (CSE_PULSES_NOT_INITIALIZED == Cse.cf_pulses_last_time) { Cse.cf_pulses_last_time = Cse.cf_pulses; // Init after restart } else { if (Cse.cf_pulses < Cse.cf_pulses_last_time) { // Rolled over after 65535 pulses cf_frequency = (65536 - Cse.cf_pulses_last_time) + Cse.cf_pulses; } else { cf_frequency = Cse.cf_pulses - Cse.cf_pulses_last_time; } if (cf_frequency && Energy.active_power[0]) { unsigned long delta = (cf_frequency * Settings.energy_power_calibration) / 36; // prevent invalid load delta steps even checksum is valid (issue #5789): // if (delta <= (3680*100/36) * 10 ) { // max load for S31/Pow R2: 3.68kW // prevent invalid load delta steps even checksum is valid but allow up to 4kW (issue #7155): if (delta <= (4000*100/36) * 10 ) { // max load for S31/Pow R2: 4.00kW Cse.cf_pulses_last_time = Cse.cf_pulses; Energy.kWhtoday_delta += delta; } else { AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: Load overflow")); Cse.cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED; } EnergyUpdateToday(); } } } } void CseSnsInit(void) { // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions // CseSerial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), Pin(GPIO_CSE7766_TX), 1); CseSerial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), -1, 1); if (CseSerial->begin(4800, 2)) { // Fake Software Serial 8E1 by using two stop bits if (CseSerial->hardwareSerial()) { SetSerial(4800, TS_SERIAL_8E1); ClaimSerial(); } if (0 == Settings.param[P_CSE7766_INVALID_POWER]) { Settings.param[P_CSE7766_INVALID_POWER] = CSE_MAX_INVALID_POWER; // SetOption39 1..255 } Cse.power_invalid = Settings.param[P_CSE7766_INVALID_POWER]; } else { energy_flg = ENERGY_NONE; } } void CseDrvInit(void) { // if (PinUsed(GPIO_CSE7766_RX) && PinUsed(GPIO_CSE7766_TX)) { if (PinUsed(GPIO_CSE7766_RX)) { Cse.rx_buffer = (uint8_t*)(malloc(CSE_BUFFER_SIZE)); if (Cse.rx_buffer != nullptr) { energy_flg = XNRG_02; } } } bool CseCommand(void) { bool serviced = true; if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len && Cse.power_cycle) { Settings.energy_power_calibration = (unsigned long)(CharToFloat(XdrvMailbox.data) * Cse.power_cycle) / CSE_PREF; } } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len && Cse.voltage_cycle) { Settings.energy_voltage_calibration = (unsigned long)(CharToFloat(XdrvMailbox.data) * Cse.voltage_cycle) / CSE_UREF; } } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len && Cse.current_cycle) { Settings.energy_current_calibration = (unsigned long)(CharToFloat(XdrvMailbox.data) * Cse.current_cycle) / 1000; } } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg02(uint8_t function) { bool result = false; switch (function) { case FUNC_LOOP: if (CseSerial) { CseSerialInput(); } break; case FUNC_ENERGY_EVERY_SECOND: CseEverySecond(); break; case FUNC_COMMAND: result = CseCommand(); break; case FUNC_INIT: CseSnsInit(); break; case FUNC_PRE_INIT: CseDrvInit(); break; } return result; } #endif // USE_CSE7766 #endif // USE_ENERGY_SENSOR