/* xdrv_31_tasmota_slave.ino - Support for external microcontroller slave on serial Copyright (C) 2019 Andre Thomas and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_TASMOTA_SLAVE /*********************************************************************************************\ * Tasmota slave \*********************************************************************************************/ #define XDRV_31 31 #define CONST_STK_CRC_EOP 0x20 #define CMND_STK_GET_SYNC 0x30 #define CMND_STK_SET_DEVICE 0x42 #define CMND_STK_SET_DEVICE_EXT 0x45 #define CMND_STK_ENTER_PROGMODE 0x50 #define CMND_STK_LEAVE_PROGMODE 0x51 #define CMND_STK_LOAD_ADDRESS 0x55 #define CMND_STK_PROG_PAGE 0x64 /*************************************************\ * Tasmota Slave Specific Commands \*************************************************/ #define CMND_START 0xFC #define CMND_END 0xFD #define CMND_FEATURES 0x01 #define CMND_JSON 0x02 #define CMND_FUNC_EVERY_SECOND 0x03 #define CMND_FUNC_EVERY_100_MSECOND 0x04 #define CMND_SLAVE_SEND 0x05 #define CMND_PUBLISH_TELE 0x06 #define PARAM_DATA_START 0xFE #define PARAM_DATA_END 0xFF #include /* * Embedding class in here since its rather specific to Arduino bootloader */ class SimpleHexParse { public: SimpleHexParse(void); uint8_t parseLine(char *hexline); uint8_t ptr_l = 0; uint8_t ptr_h = 0; bool PageIsReady = false; bool firstrun = true; bool EndOfFile = false; uint8_t FlashPage[128]; uint8_t FlashPageIdx = 0; uint8_t layoverBuffer[16]; uint8_t layoverIdx = 0; uint8_t getByte(char *hexline, uint8_t idx); }; SimpleHexParse::SimpleHexParse(void) { } uint8_t SimpleHexParse::parseLine(char *hexline) { if (layoverIdx) { memcpy(&FlashPage[0], &layoverBuffer[0], layoverIdx); FlashPageIdx = layoverIdx; layoverIdx = 0; } uint8_t len = getByte(hexline, 1); uint8_t addr_h = getByte(hexline, 2); uint8_t addr_l = getByte(hexline, 3); uint8_t rectype = getByte(hexline, 4); for (uint8_t idx = 0; idx < len; idx++) { if (FlashPageIdx < 128) { FlashPage[FlashPageIdx] = getByte(hexline, idx+5); FlashPageIdx++; } else { // We have layover bytes layoverBuffer[layoverIdx] = getByte(hexline, idx+5); layoverIdx++; } } if (1 == rectype) { EndOfFile = true; while (FlashPageIdx < 128) { FlashPage[FlashPageIdx] = 0xFF; FlashPageIdx++; } } if (FlashPageIdx == 128) { if (firstrun) { firstrun = false; } else { ptr_l += 0x40; if (ptr_l == 0) { ptr_l = 0; ptr_h++; } } firstrun = false; PageIsReady = true; } return 0; } uint8_t SimpleHexParse::getByte(char* hexline, uint8_t idx) { char buff[3]; buff[3] = '\0'; memcpy(&buff, &hexline[(idx*2)-1], 2); return strtol(buff, 0, 16); } /* * End of embedded class SimpleHexParse */ struct TSLAVE { uint32_t spi_hex_size = 0; uint32_t spi_sector_counter = 0; uint8_t spi_sector_cursor = 0; uint8_t inverted = LOW; bool type = false; bool flashing = false; bool SerialEnabled = false; uint8_t waitstate = 0; // We use this so that features detection does not slow down other stuff on startup } TSlave; typedef union { uint32_t data; struct { uint32_t func_json_append : 1; // Slave supports providing a JSON for TELEPERIOD uint32_t func_every_second : 1; // Slave supports receiving a FUNC_EVERY_SECOND callback with no response uint32_t func_every_100_msecond : 1; // Slave supports receiving a FUNC_EVERY_100_MSECOND callback with no response uint32_t func_slave_send : 1; // Slave supports receiving commands with "slave send xxx" uint32_t spare4 : 1; uint32_t spare5 : 1; uint32_t spare6 : 1; uint32_t spare7 : 1; uint32_t spare8 : 1; uint32_t spare9 : 1; uint32_t spare10 : 1; uint32_t spare11 : 1; uint32_t spare12 : 1; uint32_t spare13 : 1; uint32_t spare14 : 1; uint32_t spare15 : 1; uint32_t spare16 : 1; uint32_t spare17 : 1; uint32_t spare18 : 1; uint32_t spare19 : 1; uint32_t spare20 : 1; uint32_t spare21 : 1; uint32_t spare22 : 1; uint32_t spare23 : 1; uint32_t spare24 : 1; uint32_t spare25 : 1; uint32_t spare26 : 1; uint32_t spare27 : 1; uint32_t spare28 : 1; uint32_t spare29 : 1; uint32_t spare30 : 1; uint32_t spare31 : 1; }; } TSlaveFeatureCfg; /* * The structure below must remain 4 byte aligned to be compatible with * Tasmota as master */ struct TSLAVE_FEATURES { uint32_t features_version; TSlaveFeatureCfg features; } TSlaveSettings; struct TSLAVE_COMMAND { uint8_t command; uint8_t parameter; uint8_t unused2; uint8_t unused3; } TSlaveCommand; TasmotaSerial *TasmotaSlave_Serial; uint32_t TasmotaSlave_FlashStart(void) { return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side } uint8_t TasmotaSlave_UpdateInit(void) { TSlave.spi_hex_size = 0; TSlave.spi_sector_counter = TasmotaSlave_FlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored TSlave.spi_sector_cursor = 0; return 0; } void TasmotaSlave_Reset(void) { if (TSlave.SerialEnabled) { digitalWrite(pin[GPIO_TASMOTASLAVE_RST], !TSlave.inverted); delay(1); digitalWrite(pin[GPIO_TASMOTASLAVE_RST], TSlave.inverted); delay(1); digitalWrite(pin[GPIO_TASMOTASLAVE_RST], !TSlave.inverted); delay(5); } } uint8_t TasmotaSlave_waitForSerialData(int dataCount, int timeout) { int timer = 0; while (timer < timeout) { if (TasmotaSlave_Serial->available() >= dataCount) { return 1; } delay(1); timer++; } return 0; } uint8_t TasmotaSlave_sendBytes(uint8_t* bytes, int count) { TasmotaSlave_Serial->write(bytes, count); TasmotaSlave_waitForSerialData(2, 250); uint8_t sync = TasmotaSlave_Serial->read(); uint8_t ok = TasmotaSlave_Serial->read(); if ((sync == 0x14) && (ok == 0x10)) { return 1; } return 0; } uint8_t TasmotaSlave_execCmd(uint8_t cmd) { uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP }; return TasmotaSlave_sendBytes(bytes, 2); } uint8_t TasmotaSlave_execParam(uint8_t cmd, uint8_t* params, int count) { uint8_t bytes[32]; bytes[0] = cmd; int i = 0; while (i < count) { bytes[i + 1] = params[i]; i++; } bytes[i + 1] = CONST_STK_CRC_EOP; return TasmotaSlave_sendBytes(bytes, i + 2); } uint8_t TasmotaSlave_exitProgMode(void) { return TasmotaSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode } uint8_t TasmotaSlave_SetupFlash(void) { uint8_t ProgParams[] = {0x86, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0xff, 0xff, 0xff, 0xff, 0x00, 0x80, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00}; uint8_t ExtProgParams[] = {0x05, 0x04, 0xd7, 0xc2, 0x00}; TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_FLASH_SPEED); if (TasmotaSlave_Serial->hardwareSerial()) { ClaimSerial(); } TasmotaSlave_Reset(); uint8_t timeout = 0; uint8_t no_error = 0; while (50 > timeout) { if (TasmotaSlave_execCmd(CMND_STK_GET_SYNC)) { timeout = 200; no_error = 1; } timeout++; delay(1); } if (no_error) { AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Found bootloader")); } else { no_error = 0; AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Bootloader could not be found")); } if (no_error) { if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams))) { } else { no_error = 0; AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (1)")); } } if (no_error) { if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams))) { } else { no_error = 0; AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (2)")); } } if (no_error) { if (TasmotaSlave_execCmd(CMND_STK_ENTER_PROGMODE)) { } else { no_error = 0; AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Failed to put bootloader into programming mode")); } } return no_error; } uint8_t TasmotaSlave_loadAddress(uint8_t adrHi, uint8_t adrLo) { uint8_t params[] = { adrLo, adrHi }; return TasmotaSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params)); } void TasmotaSlave_FlashPage(uint8_t addr_h, uint8_t addr_l, uint8_t* data) { uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46}; TasmotaSlave_loadAddress(addr_h, addr_l); TasmotaSlave_Serial->write(Header, 4); for (int i = 0; i < 128; i++) { TasmotaSlave_Serial->write(data[i]); } TasmotaSlave_Serial->write(CONST_STK_CRC_EOP); TasmotaSlave_waitForSerialData(2, 250); TasmotaSlave_Serial->read(); TasmotaSlave_Serial->read(); } void TasmotaSlave_Flash(void) { bool reading = true; uint32_t read = 0; uint32_t processed = 0; char thishexline[50]; uint8_t position = 0; char* flash_buffer; SimpleHexParse hexParse = SimpleHexParse(); if (!TasmotaSlave_SetupFlash()) { AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Flashing aborted!")); TSlave.flashing = false; restart_flag = 2; return; } flash_buffer = new char[SPI_FLASH_SEC_SIZE]; uint32_t flash_start = TasmotaSlave_FlashStart() * SPI_FLASH_SEC_SIZE; while (reading) { ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE); read = read + SPI_FLASH_SEC_SIZE; if (read >= TSlave.spi_hex_size) { reading = false; } for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) { processed++; if ((processed <= TSlave.spi_hex_size) && (!hexParse.EndOfFile)) { if (':' == flash_buffer[ca]) { position = 0; } if (0x0D == flash_buffer[ca]) { thishexline[position] = 0; hexParse.parseLine(thishexline); if (hexParse.PageIsReady) { TasmotaSlave_FlashPage(hexParse.ptr_h, hexParse.ptr_l, hexParse.FlashPage); hexParse.PageIsReady = false; hexParse.FlashPageIdx = 0; } } else { if (0x0A != flash_buffer[ca]) { thishexline[position] = flash_buffer[ca]; position++; } } } } } TasmotaSlave_exitProgMode(); AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Flash done!")); TSlave.flashing = false; restart_flag = 2; } void TasmotaSlave_SetFlagFlashing(bool value) { TSlave.flashing = value; } bool TasmotaSlave_GetFlagFlashing(void) { return TSlave.flashing; } void TasmotaSlave_WriteBuffer(uint8_t *buf, size_t size) { if (0 == TSlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first ESP.flashEraseSector(TSlave.spi_sector_counter); } TSlave.spi_sector_cursor++; ESP.flashWrite((TSlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((TSlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size); TSlave.spi_hex_size = TSlave.spi_hex_size + size; if (2 == TSlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase TSlave.spi_sector_cursor = 0; TSlave.spi_sector_counter++; } } void TasmotaSlave_Init(void) { if (TSlave.type) { return; } if (10 > TSlave.waitstate) { TSlave.waitstate++; return; } if (!TSlave.SerialEnabled) { if ((pin[GPIO_TASMOTASLAVE_RXD] < 99) && (pin[GPIO_TASMOTASLAVE_TXD] < 99) && ((pin[GPIO_TASMOTASLAVE_RST] < 99) || (pin[GPIO_TASMOTASLAVE_RST_INV] < 99))) { TasmotaSlave_Serial = new TasmotaSerial(pin[GPIO_TASMOTASLAVE_RXD], pin[GPIO_TASMOTASLAVE_TXD], 1, 0, 200); if (TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_SERIAL_SPEED)) { if (TasmotaSlave_Serial->hardwareSerial()) { ClaimSerial(); } TasmotaSlave_Serial->setTimeout(50); if (pin[GPIO_TASMOTASLAVE_RST_INV] < 99) { pin[GPIO_TASMOTASLAVE_RST] = pin[GPIO_TASMOTASLAVE_RST_INV]; pin[GPIO_TASMOTASLAVE_RST_INV] = 99; TSlave.inverted = HIGH; } pinMode(pin[GPIO_TASMOTASLAVE_RST], OUTPUT); TSlave.SerialEnabled = true; TasmotaSlave_Reset(); AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Enabled")); } } } if (TSlave.SerialEnabled) { // All go for hardware now we need to detect features if there are any TasmotaSlave_sendCmnd(CMND_FEATURES, 0); char buffer[32]; TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)); uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)); memcpy(&TSlaveSettings, &buffer, sizeof(TSlaveSettings)); if (20191101 == TSlaveSettings.features_version) { TSlave.type = true; AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u"), TSlaveSettings.features_version); } } } void TasmotaSlave_Show(void) { if ((TSlave.type) && (TSlaveSettings.features.func_json_append)) { char buffer[100]; TasmotaSlave_sendCmnd(CMND_JSON, 0); TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)-1); uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)-1); buffer[len] = '\0'; ResponseAppend_P(PSTR(",\"TasmotaSlave\":%s"), buffer); } } void TasmotaSlave_sendCmnd(uint8_t cmnd, uint8_t param) { TSlaveCommand.command = cmnd; TSlaveCommand.parameter = param; char buffer[sizeof(TSlaveCommand)+2]; buffer[0] = CMND_START; memcpy(&buffer[1], &TSlaveCommand, sizeof(TSlaveCommand)); buffer[sizeof(TSlaveCommand)+1] = CMND_END; for (uint8_t ca = 0; ca < sizeof(buffer); ca++) { TasmotaSlave_Serial->write(buffer[ca]); } } #define D_PRFX_SLAVE "Slave" #define D_CMND_SLAVE_RESET "Reset" #define D_CMND_SLAVE_SEND "Send" const char kTasmotaSlaveCommands[] PROGMEM = D_PRFX_SLAVE "|" D_CMND_SLAVE_RESET "|" D_CMND_SLAVE_SEND; void (* const TasmotaSlaveCommand[])(void) PROGMEM = { &CmndTasmotaSlaveReset, &CmndTasmotaSlaveSend }; void CmndTasmotaSlaveReset(void) { TasmotaSlave_Reset(); TSlave.type = false; // Force redetection TSlave.waitstate = 7; // give it at least 3 seconds to restart from bootloader ResponseCmndDone(); } void CmndTasmotaSlaveSend(void) { if (0 < XdrvMailbox.data_len) { TasmotaSlave_sendCmnd(CMND_SLAVE_SEND, XdrvMailbox.data_len); TasmotaSlave_Serial->write(char(PARAM_DATA_START)); for (uint8_t idx = 0; idx < XdrvMailbox.data_len; idx++) { TasmotaSlave_Serial->write(XdrvMailbox.data[idx]); } TasmotaSlave_Serial->write(char(PARAM_DATA_END)); } ResponseCmndDone(); } void TasmotaSlave_ProcessIn(void) { uint8_t cmnd = TasmotaSlave_Serial->read(); switch (cmnd) { case CMND_START: TasmotaSlave_waitForSerialData(sizeof(TSlaveCommand),50); uint8_t buffer[sizeof(TSlaveCommand)]; for (uint8_t idx = 0; idx < sizeof(TSlaveCommand); idx++) { buffer[idx] = TasmotaSlave_Serial->read(); } TasmotaSlave_Serial->read(); // read trailing byte of command memcpy(&TSlaveCommand, &buffer, sizeof(TSlaveCommand)); if (CMND_PUBLISH_TELE == TSlaveCommand.command) { // We need to publish stat/ with incoming stream as content char inbuf[sizeof(TSlaveCommand.parameter)+1]; TasmotaSlave_waitForSerialData(TSlaveCommand.parameter, 50); TasmotaSlave_Serial->read(); // Read leading byte for (uint8_t idx = 0; idx < TSlaveCommand.parameter; idx++) { inbuf[idx] = TasmotaSlave_Serial->read(); } TasmotaSlave_Serial->read(); // Read trailing byte inbuf[TSlaveCommand.parameter] = '\0'; Response_P(PSTR("{\"TasmotaSlave\":")); ResponseAppend_P("%s", inbuf); ResponseJsonEnd(); MqttPublishPrefixTopic_P(RESULT_OR_TELE, mqtt_data); XdrvRulesProcess(); } break; default: break; } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv31(uint8_t function) { bool result = false; switch (function) { case FUNC_EVERY_100_MSECOND: if (TSlave.type) { if (TasmotaSlave_Serial->available()) { TasmotaSlave_ProcessIn(); } if (TSlaveSettings.features.func_every_100_msecond) { TasmotaSlave_sendCmnd(CMND_FUNC_EVERY_100_MSECOND, 0); } } break; case FUNC_EVERY_SECOND: if ((TSlave.type) && (TSlaveSettings.features.func_every_second)) { TasmotaSlave_sendCmnd(CMND_FUNC_EVERY_SECOND, 0); } TasmotaSlave_Init(); break; case FUNC_JSON_APPEND: if ((TSlave.type) && (TSlaveSettings.features.func_json_append)) { TasmotaSlave_Show(); } break; case FUNC_COMMAND: result = DecodeCommand(kTasmotaSlaveCommands, TasmotaSlaveCommand); break; } return result; } #endif // USE_TASMOTA_SLAVE