/*************************************************** This is a library for the ST7789 IPS SPI display. Originally written by Limor Fried/Ladyada for Adafruit Industries. Modified by Ananev Ilia ****************************************************/ #include "Arduino_ST7789.h" #include #include "pins_arduino.h" #include "wiring_private.h" #include const uint16_t ST7789_colors[]={ST7789_BLACK,ST7789_WHITE,ST7789_RED,ST7789_GREEN,ST7789_BLUE,ST7789_CYAN,ST7789_MAGENTA,\ ST7789_YELLOW,ST7789_NAVY,ST7789_DARKGREEN,ST7789_DARKCYAN,ST7789_MAROON,ST7789_PURPLE,ST7789_OLIVE,\ ST7789_LIGHTGREY,ST7789_DARKGREY,ST7789_ORANGE,ST7789_GREENYELLOW,ST7789_PINK}; #ifdef ESP32 #define ST7789_DIMMER #endif uint16_t Arduino_ST7789::GetColorFromIndex(uint8_t index) { if (index>=sizeof(ST7789_colors)/2) index=0; return ST7789_colors[index]; } static const uint8_t PROGMEM cmd_240x240[] = { // Initialization commands for 7789 screens 10, // 9 commands in list: ST7789_SWRESET, ST_CMD_DELAY, // 1: Software reset, no args, w/delay 150, // 150 ms delay ST7789_SLPOUT , ST_CMD_DELAY, // 2: Out of sleep mode, no args, w/delay 255, // 255 = 500 ms delay ST7789_COLMOD , 1+ST_CMD_DELAY, // 3: Set color mode, 1 arg + delay: 0x55, // 16-bit color 10, // 10 ms delay ST7789_MADCTL , 1, // 4: Memory access ctrl (directions), 1 arg: 0x00, // Row addr/col addr, bottom to top refresh ST7789_CASET , 4, // 5: Column addr set, 4 args, no delay: 0x00, ST7789_240x240_XSTART, // XSTART = 0 (ST7789_TFTWIDTH+ST7789_240x240_XSTART) >> 8, (ST7789_TFTWIDTH+ST7789_240x240_XSTART) & 0xFF, // XEND = 240 ST7789_RASET , 4, // 6: Row addr set, 4 args, no delay: 0x00, ST7789_240x240_YSTART, // YSTART = 0 (ST7789_TFTHEIGHT+ST7789_240x240_YSTART) >> 8, (ST7789_TFTHEIGHT+ST7789_240x240_YSTART) & 0xFF, // YEND = 240 ST7789_INVON , ST_CMD_DELAY, // 7: Inversion ON 10, ST7789_NORON , ST_CMD_DELAY, // 8: Normal display on, no args, w/delay 10, // 10 ms delay ST7789_DISPON , ST_CMD_DELAY, // 9: Main screen turn on, no args, w/delay 255 }; // 255 = 500 ms delay inline uint16_t swapcolor(uint16_t x) { return (x << 11) | (x & 0x07E0) | (x >> 11); } #if defined (SPI_HAS_TRANSACTION) static SPISettings mySPISettings; #elif defined (__AVR__) || defined(CORE_TEENSY) static uint8_t SPCRbackup; static uint8_t mySPCR; #endif #if defined (SPI_HAS_TRANSACTION) #define SPI_BEGIN_TRANSACTION() if (_hwSPI) SPI.beginTransaction(mySPISettings) #define SPI_END_TRANSACTION() if (_hwSPI) SPI.endTransaction() #else #define SPI_BEGIN_TRANSACTION() (void) #define SPI_END_TRANSACTION() (void) #endif // Constructor when using software SPI. All output pins are configurable. Arduino_ST7789::Arduino_ST7789(int8_t dc, int8_t rst, int8_t sid, int8_t sclk, int8_t cs, int8_t bp) : Renderer(ST7789_TFTWIDTH, ST7789_TFTHEIGHT) { _cs = cs; _dc = dc; _sid = sid; _sclk = sclk; _rst = rst; _hwSPI = false; _bp = bp; if(dc == -1) _SPI9bit = true; else _SPI9bit = false; } // Constructor when using hardware SPI. Faster, but must use SPI pins // specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.) Arduino_ST7789::Arduino_ST7789(int8_t dc, int8_t rst, int8_t cs, int8_t bp) : Renderer(ST7789_TFTWIDTH, ST7789_TFTHEIGHT) { _cs = cs; _dc = dc; _rst = rst; _hwSPI = true; _SPI9bit = false; _sid = _sclk = -1; _bp = bp; } void Arduino_ST7789::DisplayInit(int8_t p,int8_t size,int8_t rot,int8_t font) { setRotation(rot); //invertDisplay(false); invertDisplay(true); //setTextWrap(false); // Allow text to run off edges //cp437(true); setTextFont(font&3); setTextSize(size&7); setTextColor(ST7789_WHITE,ST7789_BLACK); setCursor(0,0); fillScreen(ST7789_BLACK); } inline void Arduino_ST7789::spiwrite(uint8_t c) { //Serial.println(c, HEX); if (_hwSPI) { #if defined (SPI_HAS_TRANSACTION) SPI.transfer(c); #elif defined (__AVR__) || defined(CORE_TEENSY) SPCRbackup = SPCR; SPCR = mySPCR; SPI.transfer(c); SPCR = SPCRbackup; #elif defined (__arm__) SPI.setClockDivider(21); //4MHz SPI.setDataMode(SPI_MODE2); SPI.transfer(c); #endif } else { if(_SPI9bit) { //9s bit send first #if defined(USE_FAST_IO) *clkport &= ~clkpinmask; if(_DCbit) *dataport |= datapinmask; else *dataport &= ~datapinmask; *clkport |= clkpinmask; #else digitalWrite(_sclk, LOW); if(_DCbit) digitalWrite(_sid, HIGH); else digitalWrite(_sid, LOW); digitalWrite(_sclk, HIGH); #endif // Fast SPI bitbang swiped from LPD8806 library for(uint8_t bit = 0x80; bit; bit >>= 1) { #if defined(USE_FAST_IO) *clkport &= ~clkpinmask; if(c & bit) *dataport |= datapinmask; else *dataport &= ~datapinmask; *clkport |= clkpinmask; #else digitalWrite(_sclk, LOW); if(c & bit) digitalWrite(_sid, HIGH); else digitalWrite(_sid, LOW); digitalWrite(_sclk, HIGH); #endif } } else { // Fast SPI bitbang swiped from LPD8806 library for(uint8_t bit = 0x80; bit; bit >>= 1) { #if defined(USE_FAST_IO) *clkport &= ~clkpinmask; if(c & bit) *dataport |= datapinmask; else *dataport &= ~datapinmask; *clkport |= clkpinmask; #else digitalWrite(_sclk, LOW); if(c & bit) digitalWrite(_sid, HIGH); else digitalWrite(_sid, LOW); digitalWrite(_sclk, HIGH); #endif } } } } void Arduino_ST7789::writecommand(uint8_t c) { DC_LOW(); CS_LOW(); SPI_BEGIN_TRANSACTION(); spiwrite(c); CS_HIGH(); SPI_END_TRANSACTION(); } void Arduino_ST7789::writedata(uint8_t c) { SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); spiwrite(c); CS_HIGH(); SPI_END_TRANSACTION(); } // Companion code to the above tables. Reads and issues // a series of LCD commands stored in PROGMEM byte array. void Arduino_ST7789::displayInit(const uint8_t *addr) { uint8_t numCommands, numArgs; uint16_t ms; //<----------------------------------------------------------------------------------------- DC_HIGH(); #if defined(USE_FAST_IO) *clkport |= clkpinmask; #else digitalWrite(_sclk, HIGH); #endif //<----------------------------------------------------------------------------------------- numCommands = pgm_read_byte(addr++); // Number of commands to follow while(numCommands--) { // For each command... writecommand(pgm_read_byte(addr++)); // Read, issue command numArgs = pgm_read_byte(addr++); // Number of args to follow ms = numArgs & ST_CMD_DELAY; // If hibit set, delay follows args numArgs &= ~ST_CMD_DELAY; // Mask out delay bit while(numArgs--) { // For each argument... writedata(pgm_read_byte(addr++)); // Read, issue argument } if(ms) { ms = pgm_read_byte(addr++); // Read post-command delay time (ms) if(ms == 255) ms = 500; // If 255, delay for 500 ms delay(ms); } } } // Initialization code common to all ST7789 displays void Arduino_ST7789::commonInit(const uint8_t *cmdList) { _ystart = _xstart = 0; _colstart = _rowstart = 0; // May be overridden in init func pinMode(_dc, OUTPUT); if (_cs>=0) { pinMode(_cs, OUTPUT); } if (_bp>=0) { #define ESP32_PWM_CHANNEL 1 #ifdef ST7789_DIMMER ledcSetup(ESP32_PWM_CHANNEL,4000,8); ledcAttachPin(_bp,ESP32_PWM_CHANNEL); ledcWrite(ESP32_PWM_CHANNEL,128); #else pinMode(_bp, OUTPUT); #endif } #if defined(USE_FAST_IO) dcport = portOutputRegister(digitalPinToPort(_dc)); dcpinmask = digitalPinToBitMask(_dc); if (_cs>=0) { csport = portOutputRegister(digitalPinToPort(_cs)); cspinmask = digitalPinToBitMask(_cs); } #endif if(_hwSPI) { // Using hardware SPI #if defined (SPI_HAS_TRANSACTION) SPI.begin(); mySPISettings = SPISettings(24000000, MSBFIRST, SPI_MODE2); #elif defined (__AVR__) || defined(CORE_TEENSY) SPCRbackup = SPCR; SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV4); SPI.setDataMode(SPI_MODE2); mySPCR = SPCR; // save our preferred state SPCR = SPCRbackup; // then restore #elif defined (__SAM3X8E__) SPI.begin(); SPI.setClockDivider(21); //4MHz SPI.setDataMode(SPI_MODE2); #endif } else { pinMode(_sclk, OUTPUT); pinMode(_sid , OUTPUT); digitalWrite(_sclk, LOW); digitalWrite(_sid, LOW); #if defined(USE_FAST_IO) clkport = portOutputRegister(digitalPinToPort(_sclk)); dataport = portOutputRegister(digitalPinToPort(_sid)); clkpinmask = digitalPinToBitMask(_sclk); datapinmask = digitalPinToBitMask(_sid); #endif } // toggle RST low to reset; CS low so it'll listen to us CS_LOW(); if (_rst != -1) { pinMode(_rst, OUTPUT); digitalWrite(_rst, HIGH); delay(50); digitalWrite(_rst, LOW); delay(50); digitalWrite(_rst, HIGH); delay(50); } if(cmdList) displayInit(cmdList); } void Arduino_ST7789::setRotation(uint8_t m) { writecommand(ST7789_MADCTL); rotation = m % 4; // can't be higher than 3 switch (rotation) { case 0: writedata(ST7789_MADCTL_MX | ST7789_MADCTL_MY | ST7789_MADCTL_RGB); _xstart = _colstart; // _ystart = _rowstart; _ystart = 80; break; case 1: writedata(ST7789_MADCTL_MY | ST7789_MADCTL_MV | ST7789_MADCTL_RGB); _ystart = _colstart; // _xstart = _rowstart; _xstart = 80; break; case 2: writedata(ST7789_MADCTL_RGB); _xstart = _colstart; _ystart = _rowstart; break; case 3: writedata(ST7789_MADCTL_MX | ST7789_MADCTL_MV | ST7789_MADCTL_RGB); _ystart = _colstart; _xstart = _rowstart; break; } } void Arduino_ST7789::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { setAddrWindow_int(x0,y0,x1-1,y1-1); } void Arduino_ST7789::setAddrWindow_int(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { uint16_t x_start = x0 + _xstart, x_end = x1 + _xstart; uint16_t y_start = y0 + _ystart, y_end = y1 + _ystart; writecommand(ST7789_CASET); // Column addr set writedata(x_start >> 8); writedata(x_start & 0xFF); // XSTART writedata(x_end >> 8); writedata(x_end & 0xFF); // XEND writecommand(ST7789_RASET); // Row addr set writedata(y_start >> 8); writedata(y_start & 0xFF); // YSTART writedata(y_end >> 8); writedata(y_end & 0xFF); // YEND writecommand(ST7789_RAMWR); // write to RAM } void Arduino_ST7789::drawPixel(int16_t x, int16_t y, uint16_t color) { if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return; setAddrWindow_int(x,y,x+1,y+1); SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); spiwrite(color >> 8); spiwrite(color); CS_HIGH(); SPI_END_TRANSACTION(); } void Arduino_ST7789::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Rudimentary clipping if((x >= _width) || (y >= _height)) return; if((y+h-1) >= _height) h = _height-y; setAddrWindow_int(x, y, x, y+h-1); uint8_t hi = color >> 8, lo = color; SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); while (h--) { spiwrite(hi); spiwrite(lo); } CS_HIGH(); SPI_END_TRANSACTION(); } void Arduino_ST7789::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Rudimentary clipping if((x >= _width) || (y >= _height)) return; if((x+w-1) >= _width) w = _width-x; setAddrWindow_int(x, y, x+w-1, y); uint8_t hi = color >> 8, lo = color; SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); while (w--) { spiwrite(hi); spiwrite(lo); } CS_HIGH(); SPI_END_TRANSACTION(); } void Arduino_ST7789::fillScreen(uint16_t color) { fillRect(0, 0, _width, _height, color); } // fill a rectangle void Arduino_ST7789::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // rudimentary clipping (drawChar w/big text requires this) if((x >= _width) || (y >= _height)) return; if((x + w - 1) >= _width) w = _width - x; if((y + h - 1) >= _height) h = _height - y; setAddrWindow_int(x, y, x+w-1, y+h-1); uint8_t hi = color >> 8, lo = color; SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); for(y=h; y>0; y--) { for(x=w; x>0; x--) { spiwrite(hi); spiwrite(lo); } delay(0); } CS_HIGH(); SPI_END_TRANSACTION(); } // Pass 8-bit (each) R,G,B, get back 16-bit packed color uint16_t Arduino_ST7789::Color565(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } void Arduino_ST7789::invertDisplay(boolean i) { writecommand(i ? ST7789_INVON : ST7789_INVOFF); } /******** low level bit twiddling **********/ inline void Arduino_ST7789::CS_HIGH(void) { if(_cs>=0) { #if defined(USE_FAST_IO) *csport |= cspinmask; #else digitalWrite(_cs, HIGH); #endif } } inline void Arduino_ST7789::CS_LOW(void) { if(_cs>=0) { #if defined(USE_FAST_IO) *csport &= ~cspinmask; #else digitalWrite(_cs, LOW); #endif } } inline void Arduino_ST7789::DC_HIGH(void) { _DCbit = true; #if defined(USE_FAST_IO) *dcport |= dcpinmask; #else digitalWrite(_dc, HIGH); #endif } inline void Arduino_ST7789::DC_LOW(void) { _DCbit = false; #if defined(USE_FAST_IO) *dcport &= ~dcpinmask; #else digitalWrite(_dc, LOW); #endif } void Arduino_ST7789::init(uint16_t width, uint16_t height) { commonInit(NULL); _colstart = ST7789_240x240_XSTART; _rowstart = ST7789_240x240_YSTART; _height = height; _width = width; displayInit(cmd_240x240); setRotation(2); } void Arduino_ST7789::DisplayOnff(int8_t on) { if (on) { writecommand(ST7789_DISPON); //Display on if (_bp>=0) { #ifdef ST7789_DIMMER ledcWrite(ESP32_PWM_CHANNEL,dimmer); #else digitalWrite(_bp,HIGH); #endif } } else { writecommand(ST7789_DISPOFF); if (_bp>=0) { #ifdef ST7789_DIMMER ledcWrite(ESP32_PWM_CHANNEL,0); #else digitalWrite(_bp,LOW); #endif } } } // dimmer 0-100 void Arduino_ST7789::dim(uint8_t dim) { dimmer = dim; if (dimmer>15) dimmer=15; dimmer=((float)dimmer/15.0)*255.0; #ifdef ESP32 ledcWrite(ESP32_PWM_CHANNEL,dimmer); #endif } void Arduino_ST7789::pushColor(uint16_t color) { SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); spiwrite(color >> 8); spiwrite(color); CS_HIGH(); SPI_END_TRANSACTION(); } void Arduino_ST7789::pushColors(uint16_t *data, uint8_t len, boolean first) { uint16_t color; SPI_BEGIN_TRANSACTION(); DC_HIGH(); CS_LOW(); while (len--) { color = *data++; spiwrite(color >> 8); spiwrite(color); } CS_HIGH(); SPI_END_TRANSACTION(); }