/* Touchscreen library for XPT2046 Touch Controller Chip * Copyright (c) 2015, Paul Stoffregen, paul@pjrc.com * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "XPT2046_Touchscreen.h" #define Z_THRESHOLD 400 #define Z_THRESHOLD_INT 75 #define MSEC_THRESHOLD 3 #define SPI_SETTING SPISettings(2000000, MSBFIRST, SPI_MODE0) static XPT2046_Touchscreen *isrPinptr; void isrPin(void); bool XPT2046_Touchscreen::begin(SPIClass &wspi) { #ifdef ESP32 if (!bus) { _pspi = &wspi; } else { #ifndef CONFIG_IDF_TARGET_ESP32C3 #ifndef CONFIG_IDF_TARGET_ESP32S2 if (bus == 1) { _pspi = new SPIClass(HSPI); } else { #ifndef CONFIG_IDF_TARGET_ESP32S3 _pspi = new SPIClass(VSPI); #endif } #endif #endif } //Serial.printf("sclk=%d :: miso=%d, mosi=%d, irq=%d, bus=%d ", sclk, miso, mosi, tirqPin, bus); _pspi->begin(sclk, miso, mosi, -1); #else _pspi = &wspi; _pspi->begin(); #endif pinMode(csPin, OUTPUT); digitalWrite(csPin, HIGH); if (255 != tirqPin) { pinMode( tirqPin, INPUT ); attachInterrupt(digitalPinToInterrupt(tirqPin), isrPin, FALLING); isrPinptr = this; } return true; } #if defined(_FLEXIO_SPI_H_) #define FLEXSPI_SETTING FlexIOSPISettings(2000000, MSBFIRST, SPI_MODE0) bool XPT2046_Touchscreen::begin(FlexIOSPI &wflexspi) { _pspi = nullptr; // make sure we dont use this one... _pflexspi = &wflexspi; _pflexspi->begin(); pinMode(csPin, OUTPUT); digitalWrite(csPin, HIGH); if (255 != tirqPin) { pinMode( tirqPin, INPUT ); attachInterrupt(digitalPinToInterrupt(tirqPin), isrPin, FALLING); isrPinptr = this; } return true; } #endif ISR_PREFIX void isrPin( void ) { XPT2046_Touchscreen *o = isrPinptr; o->isrWake = true; } TS_Point XPT2046_Touchscreen::getPoint() { update(); return TS_Point(xraw, yraw, zraw); } bool XPT2046_Touchscreen::tirqTouched() { return (isrWake); } bool XPT2046_Touchscreen::touched() { update(); return (zraw >= Z_THRESHOLD); } void XPT2046_Touchscreen::readData(uint16_t *x, uint16_t *y, uint8_t *z) { update(); *x = xraw; *y = yraw; *z = zraw; } bool XPT2046_Touchscreen::bufferEmpty() { return ((millis() - msraw) < MSEC_THRESHOLD); } static int16_t besttwoavg( int16_t x , int16_t y , int16_t z ) { int16_t da, db, dc; int16_t reta = 0; if ( x > y ) da = x - y; else da = y - x; if ( x > z ) db = x - z; else db = z - x; if ( z > y ) dc = z - y; else dc = y - z; if ( da <= db && da <= dc ) reta = (x + y) >> 1; else if ( db <= da && db <= dc ) reta = (x + z) >> 1; else reta = (y + z) >> 1; // else if ( dc <= da && dc <= db ) reta = (x + y) >> 1; return (reta); } // TODO: perhaps a future version should offer an option for more oversampling, // with the RANSAC algorithm https://en.wikipedia.org/wiki/RANSAC void XPT2046_Touchscreen::update() { int16_t data[6]; int z; if (!isrWake) return; uint32_t now = millis(); if (now - msraw < MSEC_THRESHOLD) return; if (_pspi) { _pspi->beginTransaction(SPI_SETTING); digitalWrite(csPin, LOW); _pspi->transfer(0xB1 /* Z1 */); int16_t z1 = _pspi->transfer16(0xC1 /* Z2 */) >> 3; z = z1 + 4095; int16_t z2 = _pspi->transfer16(0x91 /* X */) >> 3; z -= z2; if (z >= Z_THRESHOLD) { _pspi->transfer16(0x91 /* X */); // dummy X measure, 1st is always noisy data[0] = _pspi->transfer16(0xD1 /* Y */) >> 3; data[1] = _pspi->transfer16(0x91 /* X */) >> 3; // make 3 x-y measurements data[2] = _pspi->transfer16(0xD1 /* Y */) >> 3; data[3] = _pspi->transfer16(0x91 /* X */) >> 3; } else data[0] = data[1] = data[2] = data[3] = 0; // Compiler warns these values may be used unset on early exit. data[4] = _pspi->transfer16(0xD0 /* Y */) >> 3; // Last Y touch power down data[5] = _pspi->transfer16(0) >> 3; digitalWrite(csPin, HIGH); _pspi->endTransaction(); } #if defined(_FLEXIO_SPI_H_) else if (_pflexspi) { _pflexspi->beginTransaction(FLEXSPI_SETTING); digitalWrite(csPin, LOW); _pflexspi->transfer(0xB1 /* Z1 */); int16_t z1 = _pflexspi->transfer16(0xC1 /* Z2 */) >> 3; z = z1 + 4095; int16_t z2 = _pflexspi->transfer16(0x91 /* X */) >> 3; z -= z2; if (z >= Z_THRESHOLD) { _pflexspi->transfer16(0x91 /* X */); // dummy X measure, 1st is always noisy data[0] = _pflexspi->transfer16(0xD1 /* Y */) >> 3; data[1] = _pflexspi->transfer16(0x91 /* X */) >> 3; // make 3 x-y measurements data[2] = _pflexspi->transfer16(0xD1 /* Y */) >> 3; data[3] = _pflexspi->transfer16(0x91 /* X */) >> 3; } else data[0] = data[1] = data[2] = data[3] = 0; // Compiler warns these values may be used unset on early exit. data[4] = _pflexspi->transfer16(0xD0 /* Y */) >> 3; // Last Y touch power down data[5] = _pflexspi->transfer16(0) >> 3; digitalWrite(csPin, HIGH); _pflexspi->endTransaction(); } #endif // If we do not have either _pspi or _pflexspi than bail. else return; //Serial.printf("z=%d :: z1=%d, z2=%d ", z, z1, z2); if (z < 0) z = 0; if (z < Z_THRESHOLD) { // if ( !touched ) { // Serial.println(); zraw = 0; if (z < Z_THRESHOLD_INT) { // if ( !touched ) { if (255 != tirqPin) isrWake = false; } return; } zraw = z; // Average pair with least distance between each measured x then y //Serial.printf(" z1=%d,z2=%d ", z1, z2); //Serial.printf("p=%d, %d,%d %d,%d %d,%d", zraw, //data[0], data[1], data[2], data[3], data[4], data[5]); int16_t x = besttwoavg( data[0], data[2], data[4] ); int16_t y = besttwoavg( data[1], data[3], data[5] ); //Serial.printf(" %d,%d", x, y); //Serial.println(); if (z >= Z_THRESHOLD) { msraw = now; // good read completed, set wait switch (rotation) { case 0: xraw = 4095 - y; yraw = x; break; case 1: xraw = x; yraw = y; break; case 2: xraw = y; yraw = 4095 - x; break; default: // 3 xraw = 4095 - x; yraw = 4095 - y; } } }