/* xdrv_39_heating.ino - Heating controller for Tasmota Copyright (C) 2020 Javier Arigita This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_HEATING #define XDRV_39 39 // Enable/disable debugging // #define DEBUG_HEATING #ifdef DEBUG_HEATING #define DOMOTICZ_IDX1 791 #define DOMOTICZ_IDX2 792 #define DOMOTICZ_IDX3 793 #endif enum HeatingModes { HEAT_OFF, HEAT_AUTOMATIC_OP, HEAT_MANUAL_OP }; enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP }; enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI }; enum InterfaceStates { IFACE_OFF, IFACE_ON }; enum CtrCycleStates { CYCLE_OFF, CYCLE_ON }; enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON }; enum HeatingSupportedInputSwitches { HEATING_INPUT_NONE, HEATING_INPUT_SWT1 = 1, // Buttons HEATING_INPUT_SWT2, HEATING_INPUT_SWT3, HEATING_INPUT_SWT4 }; enum HeatingSupportedOutputRelays { HEATING_OUTPUT_NONE, HEATING_OUTPUT_REL1 = 1, // Relays HEATING_OUTPUT_REL2, HEATING_OUTPUT_REL3, HEATING_OUTPUT_REL4, HEATING_OUTPUT_REL5, HEATING_OUTPUT_REL6, HEATING_OUTPUT_REL7, HEATING_OUTPUT_REL8 }; typedef union { uint16_t data; struct { uint16_t heating_mode : 2; // Operation mode of the heating system uint16_t controller_mode : 2; // Operation mode of the heating controller uint16_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active) uint16_t command_output : 1; // Flag stating state to save the command to the output (0 = inactive, 1 = active) uint16_t phase_hybrid_ctr : 1; // Phase of the hybrid controller (Ramp-up or PI) uint16_t status_output : 1; // Status of the output switch uint16_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF) uint16_t state_emergency : 1; // State for heating emergency uint16_t counter_seconds : 6; // Second counter used to track minutes }; } HeatingBitfield; #ifdef DEBUG_HEATING const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}"; #endif const char kHeatingCommands[] PROGMEM = "|" D_CMND_HEATINGMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPTARGETREAD "|" D_CMND_TEMPMEASUREDREAD "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_TEMPSENSNUMBERSET "|" D_CMND_STATEEMERGENCYSET "|" D_CMND_POWERMAXSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET; void (* const HeatingCommand[])(void) PROGMEM = { &CmndHeatingModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempTargetRead, &CmndTempMeasuredRead, &CmndTempMeasuredGrdRead, &CmndTempSensNumberSet, &CmndStateEmergencySet, &CmndPowerMaxSet, &CmndTimeManualToAutoSet, &CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet }; struct HEATING { uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement update uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous) uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state uint32_t timestamp_input_on = 0; // Timestamp of latest input On state uint32_t time_heating_total = 0; // Time heating on within a specific timeframe uint32_t time_ctr_checkpoint = 0; // Time to finalize the control cycle within the PI strategy or to switch to PI from Rampup uint32_t time_ctr_changepoint = 0; // Time until switching off output within the controller int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour uint16_t temp_target_level = HEATING_TEMP_INIT; // Target level of the heating in tenths of degrees uint16_t temp_target_level_ctr = HEATING_TEMP_INIT; // Target level set for the controller int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees int32_t time_proportional_pi; // Time proportional part of the PI controller int32_t time_integral_pi; // Time integral part of the PI controller int32_t time_total_pi; // Time total (proportional + integral) of the PI controller uint16_t kP_pi = 0; // kP value for the PI controller uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100 int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed) uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time) uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle uint8_t output_relay_number = HEATING_RELAY_NUMBER; // Output relay number uint8_t input_switch_number = HEATING_SWITCH_NUMBER; // Input switch number uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER; // Temperature sensor number uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees uint16_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes uint16_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in seconds uint16_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase uint16_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost uint16_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes uint16_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in minutes uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds uint16_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds uint16_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in minutes uint16_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in minutes uint16_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the heating will be held on uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius uint16_t power_max = HEAT_POWER_MAX; // Maximum output power in Watt uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX; // Maximum allowed energy output for heating valve in Watts HeatingBitfield status; // Bittfield including states as well as several flags } Heating; /*********************************************************************************************/ void HeatingInit() { ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING); // Make sure the Output is OFF // Init Heating.status bitfield: Heating.status.heating_mode = HEAT_OFF; Heating.status.controller_mode = CTR_HYBRID; Heating.status.sensor_alive = IFACE_OFF; Heating.status.command_output = IFACE_OFF; Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI; Heating.status.status_output = IFACE_OFF; Heating.status.status_cycle_active = CYCLE_OFF; Heating.status.state_emergency = EMERGENCY_OFF; Heating.status.counter_seconds = 0; } bool HeatingMinuteCounter() { bool result = false; Heating.status.counter_seconds++; // increment time if ((Heating.status.counter_seconds % 60) == 0) { result = true; Heating.status.counter_seconds = 0; } return(result); } inline bool HeatingSwitchIdValid(uint8_t switchId) { return (switchId >= HEATING_INPUT_SWT1 && switchId <= HEATING_INPUT_SWT4); } inline bool HeatingRelayIdValid(uint8_t relayId) { return (relayId >= HEATING_OUTPUT_REL1 && relayId <= HEATING_OUTPUT_REL8); } uint8_t HeatingSwitchStatus(uint8_t input_switch) { bool ifId = HeatingSwitchIdValid(input_switch); if(ifId) { return(SwitchGetVirtual(ifId - HEATING_INPUT_SWT1)); } else return 255; } void HeatingSignalProcessingSlow() { if ((uptime - Heating.timestamp_temp_measured_update) > ((uint32_t)Heating.time_sens_lost * 60)) { // Check if sensor alive Heating.status.sensor_alive = IFACE_OFF; Heating.temp_measured_gradient = 0; Heating.temp_measured = 0; } } void HeatingSignalProcessingFast() { if (HeatingSwitchStatus(Heating.input_switch_number)) { // Check if input switch active and register last update Heating.timestamp_input_on = uptime; } } void HeatingCtrState() { switch (Heating.status.controller_mode) { case CTR_HYBRID: // Ramp-up phase with gradient control HeatingHybridCtrPhase(); break; case CTR_PI: break; case CTR_RAMP_UP: break; } } void HeatingHybridCtrPhase() { if (Heating.status.controller_mode == CTR_HYBRID) { switch (Heating.status.phase_hybrid_ctr) { case CTR_HYBRID_RAMP_UP: // Ramp-up phase with gradient control // If ramp-up offtime counter has been initalized // AND ramp-up offtime counter value reached if((Heating.time_ctr_checkpoint != 0) && (uptime >= Heating.time_ctr_checkpoint)) { // Reset pause period Heating.time_ctr_checkpoint = 0; // Reset timers Heating.time_ctr_changepoint = 0; // Set PI controller Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI; } break; case CTR_HYBRID_PI: // PI controller phase // If no output action for a pre-defined time // AND temp target has changed // AND temp target - target actual bigger than threshold // then go to ramp-up if (((uptime - Heating.timestamp_output_off) > (60 * (uint32_t)Heating.time_allow_rampup)) && (Heating.temp_target_level != Heating.temp_target_level_ctr) &&((Heating.temp_target_level - Heating.temp_measured) > Heating.temp_rampup_delta_in)) { Heating.timestamp_rampup_start = uptime; Heating.temp_rampup_start = Heating.temp_measured; Heating.temp_rampup_meas_gradient = 0; Heating.time_rampup_deadtime = 0; Heating.counter_rampup_cycles = 1; Heating.time_ctr_changepoint = 0; Heating.time_ctr_checkpoint = 0; Heating.status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP; } break; } } #ifdef DEBUG_HEATING HeatingVirtualSwitchCtrState(); #endif } bool HeatStateAutoToManual() { bool change_state = false; // If switch input is active // OR temperature sensor is not alive // then go to manual if ((HeatingSwitchStatus(Heating.input_switch_number) == 1) || (Heating.status.sensor_alive == IFACE_OFF)) { change_state = true; } return change_state; } bool HeatStateManualToAuto() { bool change_state; // If switch input inactive // AND no switch input action (time in current state) bigger than a pre-defined time // then go to automatic if ((HeatingSwitchStatus(Heating.input_switch_number) == 0) && ((uptime - Heating.timestamp_input_on) > ((uint32_t)Heating.time_manual_to_auto * 60))) { change_state = true; } return change_state; } bool HeatStateAllToOff() { bool change_state; // If emergency mode then switch OFF the output inmediately if (Heating.status.state_emergency == EMERGENCY_ON) { Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF } return change_state; } void HeatingState() { switch (Heating.status.heating_mode) { case HEAT_OFF: // State if Off or Emergency // No change of state possible without external command break; case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp. if (HeatStateAllToOff()) { Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF } if (HeatStateAutoToManual()) { Heating.status.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP } HeatingCtrState(); break; case HEAT_MANUAL_OP: // State manual operation following input switch if (HeatStateAllToOff()) { Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF } if (HeatStateManualToAuto()) { Heating.status.heating_mode = HEAT_AUTOMATIC_OP; // Input switch inactive and timeout reached change to HEAT_AUTOMATIC_OP } break; } } void HeatingOutputRelay(bool active) { // TODO: See if the real output state can be read by f.i. bitRead(power, Heating.output_relay_number)) // If command received to enable output // AND current output status is OFF // then switch output to ON if ((active == true) && (Heating.status.status_output == IFACE_OFF)) { ExecuteCommandPower(Heating.output_relay_number, POWER_ON, SRC_HEATING); Heating.status.status_output = IFACE_ON; #ifdef DEBUG_HEATING HeatingVirtualSwitch(); #endif } // If command received to disable output // AND current output status is ON // then switch output to OFF else if ((active == false) && (Heating.status.status_output == IFACE_ON)) { ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING); Heating.timestamp_output_off = uptime; Heating.status.status_output = IFACE_OFF; #ifdef DEBUG_HEATING HeatingVirtualSwitch(); #endif } } void HeatingCalculatePI() { // Calculate error Heating.temp_pi_error = Heating.temp_target_level_ctr - Heating.temp_measured; // Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller) Heating.kP_pi = 100 / (uint16_t)(Heating.val_prop_band); // Calculate proportional Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * ((int32_t)Heating.time_pi_cycle * 60)) / 1000; // Minimum proportional action limiter // If proportional action is less than the minimum action time // AND proportional > 0 // then adjust to minimum value if ((Heating.time_proportional_pi < abs(((int32_t)Heating.time_min_action * 60))) && (Heating.time_proportional_pi > 0)) { Heating.time_proportional_pi = ((int32_t)Heating.time_min_action * 60); } if (Heating.time_proportional_pi < 0) { Heating.time_proportional_pi = 0; } else if (Heating.time_proportional_pi > ((int32_t)Heating.time_pi_cycle * 60)) { Heating.time_proportional_pi = ((int32_t)Heating.time_pi_cycle * 60); } // Calculate integral Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)((uint32_t)Heating.time_pi_cycle * 60) / (float)Heating.time_reset)) * 100); // Reset of antiwindup // If error does not lay within the integrator scope range, do not use the integral // and accumulate error = 0 if (abs(Heating.temp_pi_error) > Heating.temp_reset_anti_windup) { Heating.time_integral_pi = 0; Heating.temp_pi_accum_error = 0; } // Normal use of integrator // result will be calculated with the cummulated previous error anterior // and current error will be cummulated to the previous one else { // Hysteresis limiter // If error is less than or equal than hysteresis, limit output to 0, when temperature // is rising, never when falling. Limit cummulated error. If this is not done, // there will be very strong control actions from the integral part due to a // very high cummulated error when beingin hysteresis. This triggers high // integral actions // If we are under setpoint // AND we are within the hysteresis // AND we are rising if ((Heating.temp_pi_error >= 0) && (abs(Heating.temp_pi_error) <= (int16_t)Heating.temp_hysteresis) && (Heating.temp_measured_gradient > 0)) { Heating.temp_pi_accum_error += Heating.temp_pi_error; // Reduce accumulator error 20% in each cycle Heating.temp_pi_accum_error *= 0.8; } // If we are over setpoint // AND temperature is rising else if ((Heating.temp_pi_error < 0) && (Heating.temp_measured_gradient > 0)) { Heating.temp_pi_accum_error += Heating.temp_pi_error; // Reduce accumulator error 20% in each cycle Heating.temp_pi_accum_error *= 0.8; } else { Heating.temp_pi_accum_error += Heating.temp_pi_error; } // Limit lower limit of acumErr to 0 if (Heating.temp_pi_accum_error < 0) { Heating.temp_pi_accum_error = 0; } // Integral calculation Heating.time_integral_pi = (((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) * (int32_t)((uint32_t)Heating.time_pi_cycle * 60)) / 100000; // Antiwindup of the integrator // If integral calculation is bigger than cycle time, adjust result // to the cycle time and error will not be cummulated]] if (Heating.time_integral_pi > ((uint32_t)Heating.time_pi_cycle * 60)) { Heating.time_integral_pi = ((uint32_t)Heating.time_pi_cycle * 60); } } // Calculate output Heating.time_total_pi = Heating.time_proportional_pi + Heating.time_integral_pi; // Antiwindup of the output // If result is bigger than cycle time, the result will be adjusted // to the cylce time minus safety time and error will not be cummulated]] if (Heating.time_total_pi >= ((int32_t)Heating.time_pi_cycle * 60)) { // Limit to cycle time //at least switch down a minimum time Heating.time_total_pi = ((int32_t)Heating.time_pi_cycle * 60); } else if (Heating.time_total_pi < 0) { Heating.time_total_pi = 0; } // Target value limiter // If target value has been reached or we are over it]] if (Heating.temp_pi_error <= 0) { // If we are over the hysteresis or the gradient is positive if ((abs(Heating.temp_pi_error) > Heating.temp_hysteresis) || (Heating.temp_measured_gradient >= 0)) { Heating.time_total_pi = 0; } } // If target value has not been reached // AND we are withing the histeresis // AND gradient is positive // then set value to 0 else if ((Heating.temp_pi_error > 0) && (abs(Heating.temp_pi_error) <= Heating.temp_hysteresis) && (Heating.temp_measured_gradient > 0)) { Heating.time_total_pi = 0; } // Minimum action limiter // If result is less than the minimum action time, adjust to minimum value]] if ((Heating.time_total_pi <= abs(((uint32_t)Heating.time_min_action * 60))) && (Heating.time_total_pi != 0)) { Heating.time_total_pi = ((int32_t)Heating.time_min_action * 60); } // Maximum action limiter // If result is more than the maximum action time, adjust to maximum value]] else if (Heating.time_total_pi > abs(((int32_t)Heating.time_max_action * 60))) { Heating.time_total_pi = ((int32_t)Heating.time_max_action * 60); } // If switched off less time than safety time, do not switch off else if (Heating.time_total_pi > (((int32_t)Heating.time_pi_cycle * 60) - ((int32_t)Heating.time_min_turnoff_action * 60))) { Heating.time_total_pi = ((int32_t)Heating.time_pi_cycle * 60); } // Adjust output switch point Heating.time_ctr_changepoint = uptime + (uint32_t)Heating.time_total_pi; // Adjust next cycle point Heating.time_ctr_checkpoint = uptime + ((uint32_t)Heating.time_pi_cycle * 60); } void HeatingWorkAutomaticPI() { char result_chr[FLOATSZ]; // Remove! if ((uptime >= Heating.time_ctr_checkpoint) || (Heating.temp_target_level != Heating.temp_target_level_ctr) || ((Heating.temp_measured < Heating.temp_target_level) && (Heating.temp_measured_gradient < 0) && (Heating.status.status_cycle_active == CYCLE_OFF))) { Heating.temp_target_level_ctr = Heating.temp_target_level; HeatingCalculatePI(); // Reset cycle active Heating.status.status_cycle_active = CYCLE_OFF; } if (uptime < Heating.time_ctr_changepoint) { Heating.status.status_cycle_active = CYCLE_ON; Heating.status.command_output = IFACE_ON; } else { Heating.status.command_output = IFACE_OFF; } } void HeatingWorkAutomaticRampUp() { uint32_t time_in_rampup; int16_t temp_delta_rampup; // Update timestamp for temperature at start of ramp-up if temperature still dropping if (Heating.temp_measured < Heating.temp_rampup_start) { Heating.temp_rampup_start = Heating.temp_measured; } // Update time in ramp-up as well as delta temp time_in_rampup = uptime - Heating.timestamp_rampup_start; temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_start; // Init command output status to true Heating.status.command_output = IFACE_ON; // Update temperature target level for controller Heating.temp_target_level_ctr = Heating.temp_target_level; // If time in ramp-up < max time // AND temperature measured < target if ((time_in_rampup <= (60 * (uint32_t)Heating.time_rampup_max)) && (Heating.temp_measured < Heating.temp_target_level)) { // DEADTIME point reached // If temperature measured minus temperature at start of ramp-up >= threshold // AND deadtime still 0 if ((temp_delta_rampup >= Heating.temp_rampup_delta_out) && (Heating.time_rampup_deadtime == 0)) { // Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered // minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve int32_t time_aux; time_aux = ((time_in_rampup / 2) - Heating.time_output_delay); if (time_aux >= Heating.time_output_delay) { Heating.time_rampup_deadtime = (uint32_t)time_aux; } else { Heating.time_rampup_deadtime = Heating.time_output_delay; } // Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour Heating.temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup); Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle; // Set auxiliary variables Heating.temp_rampup_cycle = Heating.temp_measured; Heating.time_ctr_changepoint = uptime + (60 * (uint32_t)Heating.time_rampup_max); Heating.temp_rampup_output_off = Heating.temp_target_level_ctr; } // Gradient calculation every time_rampup_cycle else if ((Heating.time_rampup_deadtime > 0) && (uptime >= Heating.time_rampup_nextcycle)) { // Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle // temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle)) temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_cycle; uint32_t time_total_rampup = (uint32_t)Heating.time_rampup_cycle * Heating.counter_rampup_cycles; // Translate into gradient per hour (thousandths of ° per hour) Heating.temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup); if (Heating.temp_rampup_meas_gradient > 0) { // Calculate time to switch Off and come out of ramp-up // y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec // Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed) // x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime // Heating.time_ctr_changepoint = (uint32_t)(((float)(Heating.temp_target_level_ctr - Heating.temp_rampup_cycle) / (float)temp_delta_rampup) * (float)(time_total_rampup)) + (uint32_t)(Heating.time_rampup_nextcycle - (time_total_rampup)) - Heating.time_rampup_deadtime; Heating.time_ctr_changepoint = (uint32_t)(((float)(Heating.temp_target_level_ctr - Heating.temp_rampup_cycle) * (float)(time_total_rampup)) / (float)temp_delta_rampup) + (uint32_t)(Heating.time_rampup_nextcycle - (time_total_rampup)) - Heating.time_rampup_deadtime; // Calculate temperature for switching off the output // y = (((y2-y1)/(x2-x1))*(x-x1)) + y1 // Heating.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) * (float)(Heating.time_ctr_changepoint - (uptime - (time_total_rampup)))) + Heating.temp_rampup_cycle; Heating.temp_rampup_output_off = (int16_t)(((float)temp_delta_rampup * (float)(Heating.time_ctr_changepoint - (uptime - (time_total_rampup)))) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) + Heating.temp_rampup_cycle; // Set auxiliary variables Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle; Heating.temp_rampup_cycle = Heating.temp_measured; // Reset period counter Heating.counter_rampup_cycles = 1; } else { // Increase the period counter Heating.counter_rampup_cycles++; // Set another period Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle; // Reset time_ctr_changepoint and temp_rampup_output_off Heating.time_ctr_changepoint = uptime + (60 * (uint32_t)Heating.time_rampup_max) - time_in_rampup; Heating.temp_rampup_output_off = Heating.temp_target_level_ctr; } // Set time to get out of calibration Heating.time_ctr_checkpoint = Heating.time_ctr_changepoint + Heating.time_rampup_deadtime; } // Set output switch ON or OFF // If deadtime has not been calculated // or checkpoint has not been calculated // or it is not yet time and temperature to switch it off acc. to calculations // or gradient is <= 0 if ((Heating.time_rampup_deadtime == 0) || (Heating.time_ctr_checkpoint == 0) || (uptime < Heating.time_ctr_changepoint) || (Heating.temp_measured < Heating.temp_rampup_output_off) || (Heating.temp_rampup_meas_gradient <= 0)) { Heating.status.command_output = IFACE_ON; } else { Heating.status.command_output = IFACE_OFF; } } else { // If we have not reached the temperature, start with an initial value for accumulated error for the PI controller if (Heating.temp_measured < Heating.temp_target_level_ctr) { Heating.temp_pi_accum_error = Heating.temp_rampup_pi_acc_error; } // Set to now time to get out of calibration Heating.time_ctr_checkpoint = uptime; // Switch Off output Heating.status.command_output = IFACE_OFF; } } void HeatingCtrWork() { switch (Heating.status.controller_mode) { case CTR_HYBRID: // Ramp-up phase with gradient control switch (Heating.status.phase_hybrid_ctr) { case CTR_HYBRID_RAMP_UP: HeatingWorkAutomaticRampUp(); break; case CTR_HYBRID_PI: HeatingWorkAutomaticPI(); break; } break; case CTR_PI: HeatingWorkAutomaticPI(); break; case CTR_RAMP_UP: HeatingWorkAutomaticRampUp(); break; } } void HeatingWork() { switch (Heating.status.heating_mode) { case HEAT_OFF: // State if Off or Emergency Heating.status.command_output = IFACE_OFF; break; case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp. HeatingCtrWork(); break; case HEAT_MANUAL_OP: // State manual operation following input switch Heating.time_ctr_checkpoint = 0; break; } bool output_command; if (Heating.status.command_output == IFACE_OFF) { output_command = false; } else { output_command = true; } HeatingOutputRelay(output_command); } void HeatingDiagnostics() { // TODOs: // 1. Check time max for output switch on not exceeded // 2. Check state of output corresponds to command // 3. Check maximum power at output switch not exceeded } void HeatingController() { HeatingState(); HeatingWork(); } #ifdef DEBUG_HEATING void HeatingVirtualSwitch() { char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC; Response_P(DOMOTICZ_MES, DOMOTICZ_IDX1, (0 == Heating.status.status_output) ? 0 : 1, ""); MqttPublish(domoticz_in_topic); } void HeatingVirtualSwitchCtrState() { char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC; Response_P(DOMOTICZ_MES, DOMOTICZ_IDX2, (0 == Heating.status.phase_hybrid_ctr) ? 0 : 1, ""); MqttPublish(domoticz_in_topic); //Response_P(DOMOTICZ_MES, DOMOTICZ_IDX3, (0 == Heating.time_ctr_changepoint) ? 0 : 1, ""); //MqttPublish(domoticz_in_topic); } #endif /*********************************************************************************************\ * Commands \*********************************************************************************************/ void CmndHeatingModeSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data)); if ((value >= HEAT_OFF) && (value <= HEAT_MANUAL_OP)) { Heating.status.heating_mode = value; Heating.timestamp_input_on = 0; // Reset last manual switch timer if command set externally } } ResponseCmndNumber((int)Heating.status.heating_mode); } void CmndTempFrostProtectSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= 0) && (value <= 255)) { Heating.temp_frost_protect = value; } } ResponseCmndFloat((float)(Heating.temp_frost_protect) / 10, 1); } void CmndControllerModeSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= CTR_RAMP_UP)) { Heating.status.controller_mode = value; } } ResponseCmndNumber((int)Heating.status.controller_mode); } void CmndInputSwitchSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if (HeatingSwitchIdValid(value)) { Heating.input_switch_number = value; Heating.timestamp_input_on = uptime; } } ResponseCmndNumber((int)Heating.input_switch_number); } void CmndOutputRelaySet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if (HeatingRelayIdValid(value)) { Heating.output_relay_number = value; } } ResponseCmndNumber((int)Heating.output_relay_number); } void CmndTimeAllowRampupSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value < 86400)) { Heating.time_allow_rampup = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_allow_rampup * 60)); } void CmndTempMeasuredSet(void) { if (XdrvMailbox.data_len > 0) { int16_t value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= -1000) && (value <= 1000)) { uint32_t timestamp = uptime; // Calculate temperature gradient if temperature value has changed if (value != Heating.temp_measured) { int16_t temp_delta = (value - Heating.temp_measured); // in tenths of degrees uint32_t time_delta = (timestamp - Heating.timestamp_temp_meas_change_update); // in seconds Heating.temp_measured_gradient = (int32_t)((360000 * (int32_t)temp_delta) / (int32_t)time_delta); // hundreths of degrees per hour Heating.temp_measured = value; Heating.timestamp_temp_meas_change_update = timestamp; } Heating.timestamp_temp_measured_update = timestamp; Heating.status.sensor_alive = IFACE_ON; } } ResponseCmndFloat(((float)Heating.temp_measured) / 10, 1); } void CmndTempTargetSet(void) { if (XdrvMailbox.data_len > 0) { uint16_t value = (uint16_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= -1000) && (value <= 1000) && (value >= Heating.temp_frost_protect)) { Heating.temp_target_level = value; } } ResponseCmndFloat(((float)Heating.temp_target_level) / 10, 1); } void CmndTempTargetRead(void) { ResponseCmndFloat(((float)Heating.temp_target_level) / 10, 1); } void CmndTempMeasuredRead(void) { ResponseCmndFloat((float)(Heating.temp_measured) / 10, 1); } void CmndTempMeasuredGrdRead(void) { ResponseCmndFloat((float)(Heating.temp_measured_gradient) / 1000, 1); } void CmndTempSensNumberSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 255)) { Heating.temp_sens_number = value; } } ResponseCmndNumber((int)Heating.temp_sens_number); } void CmndStateEmergencySet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1)) { Heating.status.state_emergency = (uint16_t)value; } } ResponseCmndNumber((int)Heating.status.state_emergency); } void CmndPowerMaxSet(void) { if (XdrvMailbox.data_len > 0) { uint16_t value = (uint16_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1300)) { Heating.power_max = value; } } ResponseCmndNumber((int)Heating.power_max); } void CmndTimeManualToAutoSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_manual_to_auto = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_manual_to_auto * 60)); } void CmndTimeOnLimitSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_on_limit = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_on_limit * 60)); } void CmndPropBandSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 20)) { Heating.val_prop_band = value; } } ResponseCmndNumber((int)Heating.val_prop_band); } void CmndTimeResetSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_reset = value; } } ResponseCmndNumber((int)Heating.time_reset); } void CmndTimePiCycleSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_pi_cycle = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_pi_cycle * 60)); } void CmndTempAntiWindupResetSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= (float)(0)) && (value <= (float)(100.0))) { Heating.temp_reset_anti_windup = value; } } ResponseCmndFloat((float)(Heating.temp_reset_anti_windup) / 10, 1); } void CmndTempHystSet(void) { if (XdrvMailbox.data_len > 0) { int8_t value = (int8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= -100) && (value <= 100)) { Heating.temp_hysteresis = value; } } ResponseCmndFloat((float)(Heating.temp_hysteresis) / 10, 1); } void CmndTimeMaxActionSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_max_action = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_max_action * 60)); } void CmndTimeMinActionSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_min_action = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_min_action * 60)); } void CmndTimeSensLostSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_sens_lost = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_sens_lost * 60)); } void CmndTimeMinTurnoffActionSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_min_turnoff_action = (uint16_t)(value / 60); } } ResponseCmndNumber((int)((uint32_t)Heating.time_min_turnoff_action * 60)); } void CmndTempRupDeltInSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= 0) && (value <= 100)) { Heating.temp_rampup_delta_in = value; } } ResponseCmndFloat((float)(Heating.temp_rampup_delta_in) / 10, 1); } void CmndTempRupDeltOutSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= 0) && (value <= 100)) { Heating.temp_rampup_delta_out = value; } } ResponseCmndFloat((float)(Heating.temp_rampup_delta_out) / 10, 1); } void CmndTimeRampupMaxSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Heating.time_rampup_max = (uint16_t)(value / 60); } } ResponseCmndNumber((int)(((uint32_t)Heating.time_rampup_max) * 60)); } void CmndTimeRampupCycleSet(void) { if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 54000)) { Heating.time_rampup_cycle = (uint16_t)value; } } ResponseCmndNumber((int)Heating.time_rampup_cycle); } void CmndTempRampupPiAccErrSet(void) { if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); if ((value >= 0) && (value <= 250)) { Heating.temp_rampup_pi_acc_error = value; } } ResponseCmndFloat((float)(Heating.temp_rampup_pi_acc_error) / 10, 1); } void CmndTimePiProportRead(void) { ResponseCmndNumber((int)Heating.time_proportional_pi); } void CmndTimePiIntegrRead(void) { ResponseCmndNumber((int)Heating.time_integral_pi); } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv39(uint8_t function) { #ifdef DEBUG_HEATING char result_chr[FLOATSZ]; #endif bool result = false; switch (function) { case FUNC_INIT: HeatingInit(); break; case FUNC_LOOP: HeatingSignalProcessingFast(); HeatingDiagnostics(); break; case FUNC_SERIAL: break; case FUNC_EVERY_SECOND: if (HeatingMinuteCounter()) { HeatingSignalProcessingSlow(); HeatingController(); #ifdef DEBUG_HEATING AddLog_P2(LOG_LEVEL_DEBUG, PSTR("")); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Heating Start ------")); dtostrfd(Heating.status.counter_seconds, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.counter_seconds: %s"), result_chr); dtostrfd(Heating.status.heating_mode, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.heating_mode: %s"), result_chr); dtostrfd(Heating.status.controller_mode, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.controller_mode: %s"), result_chr); dtostrfd(Heating.status.phase_hybrid_ctr, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.phase_hybrid_ctr: %s"), result_chr); dtostrfd(Heating.status.sensor_alive, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.sensor_alive: %s"), result_chr); dtostrfd(Heating.status.status_output, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.status_output: %s"), result_chr); dtostrfd(Heating.status.status_cycle_active, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.status_cycle_active: %s"), result_chr); dtostrfd(Heating.time_proportional_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_proportional_pi: %s"), result_chr); dtostrfd(Heating.time_integral_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_integral_pi: %s"), result_chr); dtostrfd(Heating.time_total_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_total_pi: %s"), result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Heating End ------")); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("")); #endif } break; case FUNC_COMMAND: result = DecodeCommand(kHeatingCommands, HeatingCommand); break; } return result; } #endif // USE_HEATING