/* sonoff.ino - Sonoff-Tasmota firmware for iTead Sonoff, Wemos and NodeMCU hardware Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*==================================================== Prerequisites: - Change libraries/PubSubClient/src/PubSubClient.h #define MQTT_MAX_PACKET_SIZE 1000 - Select IDE Tools - Flash Mode: "DOUT" - Select IDE Tools - Flash Size: "1M (no SPIFFS)" ====================================================*/ // Location specific includes #include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_3_0) #include "sonoff_version.h" // Sonoff-Tasmota version information #include "sonoff.h" // Enumeration used in my_user_config.h #include "my_user_config.h" // Fixed user configurable options #ifdef USE_CONFIG_OVERRIDE #include "user_config_override.h" // Configuration overrides for my_user_config.h #endif #ifdef USE_MQTT_TLS #include // we need to include before "sonoff_post.h" to take precedence over the BearSSL version in Arduino #endif // USE_MQTT_TLS #include "sonoff_post.h" // Configuration overrides for all previous includes #include "i18n.h" // Language support configured by my_user_config.h #include "sonoff_template.h" // Hardware configuration #ifdef ARDUINO_ESP8266_RELEASE_2_4_0 #include "lwip/init.h" #if LWIP_VERSION_MAJOR != 1 #error Please use stable lwIP v1.4 #endif #endif // Libraries #include // Ota #include // Ota #include // Webserver, Updater #include // WemoHue, IRremote, Domoticz #ifdef USE_ARDUINO_OTA #include // Arduino OTA #ifndef USE_DISCOVERY #define USE_DISCOVERY #endif #endif // USE_ARDUINO_OTA #ifdef USE_DISCOVERY #include // MQTT, Webserver, Arduino OTA #endif // USE_DISCOVERY #ifdef USE_I2C #include // I2C support library #endif // USE_I2C #ifdef USE_SPI #include // SPI support, TFT #endif // USE_SPI // Structs #include "settings.h" enum TasmotaCommands { CMND_BACKLOG, CMND_DELAY, CMND_POWER, CMND_FANSPEED, CMND_STATUS, CMND_STATE, CMND_POWERONSTATE, CMND_PULSETIME, CMND_BLINKTIME, CMND_BLINKCOUNT, CMND_SENSOR, CMND_SAVEDATA, CMND_SETOPTION, CMND_TEMPERATURE_RESOLUTION, CMND_HUMIDITY_RESOLUTION, CMND_PRESSURE_RESOLUTION, CMND_POWER_RESOLUTION, CMND_VOLTAGE_RESOLUTION, CMND_FREQUENCY_RESOLUTION, CMND_CURRENT_RESOLUTION, CMND_ENERGY_RESOLUTION, CMND_WEIGHT_RESOLUTION, CMND_MODULE, CMND_MODULES, CMND_ADC, CMND_ADCS, CMND_GPIO, CMND_GPIOS, CMND_PWM, CMND_PWMFREQUENCY, CMND_PWMRANGE, CMND_COUNTER, CMND_COUNTERTYPE, CMND_COUNTERDEBOUNCE, CMND_BUTTONDEBOUNCE, CMND_SWITCHDEBOUNCE, CMND_SLEEP, CMND_UPGRADE, CMND_UPLOAD, CMND_OTAURL, CMND_SERIALLOG, CMND_SYSLOG, CMND_LOGHOST, CMND_LOGPORT, CMND_IPADDRESS, CMND_NTPSERVER, CMND_AP, CMND_SSID, CMND_PASSWORD, CMND_HOSTNAME, CMND_WIFICONFIG, CMND_FRIENDLYNAME, CMND_SWITCHMODE, CMND_INTERLOCK, CMND_TEMPLATE, CMND_TELEPERIOD, CMND_RESTART, CMND_RESET, CMND_TIMEZONE, CMND_TIMESTD, CMND_TIMEDST, CMND_ALTITUDE, CMND_LEDPOWER, CMND_LEDSTATE, CMND_LEDMASK, CMND_I2CSCAN, CMND_SERIALSEND, CMND_BAUDRATE, CMND_SERIALDELIMITER, CMND_DRIVER }; const char kTasmotaCommands[] PROGMEM = D_CMND_BACKLOG "|" D_CMND_DELAY "|" D_CMND_POWER "|" D_CMND_FANSPEED "|" D_CMND_STATUS "|" D_CMND_STATE "|" D_CMND_POWERONSTATE "|" D_CMND_PULSETIME "|" D_CMND_BLINKTIME "|" D_CMND_BLINKCOUNT "|" D_CMND_SENSOR "|" D_CMND_SAVEDATA "|" D_CMND_SETOPTION "|" D_CMND_TEMPERATURE_RESOLUTION "|" D_CMND_HUMIDITY_RESOLUTION "|" D_CMND_PRESSURE_RESOLUTION "|" D_CMND_POWER_RESOLUTION "|" D_CMND_VOLTAGE_RESOLUTION "|" D_CMND_FREQUENCY_RESOLUTION "|" D_CMND_CURRENT_RESOLUTION "|" D_CMND_ENERGY_RESOLUTION "|" D_CMND_WEIGHT_RESOLUTION "|" D_CMND_MODULE "|" D_CMND_MODULES "|" D_CMND_ADC "|" D_CMND_ADCS "|" D_CMND_GPIO "|" D_CMND_GPIOS "|" D_CMND_PWM "|" D_CMND_PWMFREQUENCY "|" D_CMND_PWMRANGE "|" D_CMND_COUNTER "|" D_CMND_COUNTERTYPE "|" D_CMND_COUNTERDEBOUNCE "|" D_CMND_BUTTONDEBOUNCE "|" D_CMND_SWITCHDEBOUNCE "|" D_CMND_SLEEP "|" D_CMND_UPGRADE "|" D_CMND_UPLOAD "|" D_CMND_OTAURL "|" D_CMND_SERIALLOG "|" D_CMND_SYSLOG "|" D_CMND_LOGHOST "|" D_CMND_LOGPORT "|" D_CMND_IPADDRESS "|" D_CMND_NTPSERVER "|" D_CMND_AP "|" D_CMND_SSID "|" D_CMND_PASSWORD "|" D_CMND_HOSTNAME "|" D_CMND_WIFICONFIG "|" D_CMND_FRIENDLYNAME "|" D_CMND_SWITCHMODE "|" D_CMND_INTERLOCK "|" D_CMND_TEMPLATE "|" D_CMND_TELEPERIOD "|" D_CMND_RESTART "|" D_CMND_RESET "|" D_CMND_TIMEZONE "|" D_CMND_TIMESTD "|" D_CMND_TIMEDST "|" D_CMND_ALTITUDE "|" D_CMND_LEDPOWER "|" D_CMND_LEDSTATE "|" D_CMND_LEDMASK "|" D_CMND_I2CSCAN "|" D_CMND_SERIALSEND "|" D_CMND_BAUDRATE "|" D_CMND_SERIALDELIMITER "|" D_CMND_DRIVER; const char kSleepMode[] PROGMEM = "Dynamic|Normal"; // Global variables SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit WiFiUDP PortUdp; // UDP Syslog and Alexa unsigned long feature_drv1; // Compiled driver feature map unsigned long feature_drv2; // Compiled driver feature map unsigned long feature_sns1; // Compiled sensor feature map unsigned long feature_sns2; // Compiled sensor feature map unsigned long serial_polling_window = 0; // Serial polling window unsigned long state_second = 0; // State second timer unsigned long state_50msecond = 0; // State 50msecond timer unsigned long state_100msecond = 0; // State 100msecond timer unsigned long state_250msecond = 0; // State 250msecond timer unsigned long pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer unsigned long blink_timer = 0; // Power cycle timer unsigned long backlog_delay = 0; // Command backlog delay power_t power = 0; // Current copy of Settings.power power_t blink_power; // Blink power state power_t blink_mask = 0; // Blink relay active mask power_t blink_powersave; // Blink start power save state power_t latching_power = 0; // Power state at latching start power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off)) int baudrate = APP_BAUDRATE; // Serial interface baud rate int serial_in_byte_counter = 0; // Index in receive buffer int ota_state_flag = 0; // OTA state flag int ota_result = 0; // OTA result int restart_flag = 0; // Sonoff restart flag int wifi_state_flag = WIFI_RESTART; // Wifi state flag int tele_period = 1; // Tele period timer int blinks = 201; // Number of LED blinks uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year uint32_t loop_load_avg = 0; // Indicative loop load average uint32_t global_update = 0; // Timestamp of last global temperature and humidity update float global_temperature = 9999; // Provide a global temperature to be used by some sensors float global_humidity = 0; // Provide a global humidity to be used by some sensors float global_pressure = 0; // Provide a global pressure to be used by some sensors char *ota_url; // OTA url string pointer uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command uint16_t blink_counter = 0; // Number of blink cycles uint16_t seriallog_timer = 0; // Timer to disable Seriallog uint16_t syslog_timer = 0; // Timer to re-enable syslog_level int16_t save_data_counter; // Counter and flag for config save to Flash RulesBitfield rules_flag; // Rule state flags (16 bits) uint8_t state_250mS = 0; // State 250msecond per second flag uint8_t latching_relay_pulse = 0; // Latching relay pulse timer uint8_t backlog_index = 0; // Command backlog index uint8_t backlog_pointer = 0; // Command backlog pointer uint8_t sleep; // Current copy of Settings.sleep uint8_t blinkspeed = 1; // LED blink rate uint8_t pin[GPIO_MAX]; // Possible pin configurations uint8_t active_device = 1; // Active device in ExecuteCommandPower uint8_t leds_present = 0; // Max number of LED supported uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_power = 0; // LED power state uint8_t ledlnk_inverted = 0; // Link LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted) uint8_t counter_no_pullup = 0; // Counter input pullup flag (1 = No pullup) uint8_t energy_flg = 0; // Energy monitor configured uint8_t light_type = 0; // Light types uint8_t serial_in_byte; // Received byte uint8_t ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter uint8_t web_log_index = 1; // Index in Web log buffer (should never be 0) uint8_t devices_present = 0; // Max number of devices supported uint8_t seriallog_level; // Current copy of Settings.seriallog_level uint8_t syslog_level; // Current copy of Settings.syslog_level uint8_t my_module_type; // Current copy of Settings.module or user template type uint8_t my_adc0; // Active copy of Module ADC0 //uint8_t mdns_delayed_start = 0; // mDNS delayed start bool serial_local = false; // Handle serial locally; bool fallback_topic_flag = false; // Use Topic or FallbackTopic bool backlog_mutex = false; // Command backlog pending bool interlock_mutex = false; // Interlock power command pending bool stop_flash_rotate = false; // Allow flash configuration rotation bool blinkstate = false; // LED state bool latest_uptime_flag = true; // Signal latest uptime bool pwm_present = false; // Any PWM channel configured with SetOption15 0 bool dht_flg = false; // DHT configured bool i2c_flg = false; // I2C configured bool spi_flg = false; // SPI configured bool soft_spi_flg = false; // Software SPI configured bool ntp_force_sync = false; // Force NTP sync bool ntp_synced_message = false; // NTP synced message flag myio my_module; // Active copy of Module GPIOs (17 x 8 bits) gpio_flag my_module_flag; // Active copy of Template GPIO flags StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits) char my_version[33]; // Composed version string char my_image[33]; // Code image and/or commit char my_hostname[33]; // Composed Wifi hostname char mqtt_client[33]; // Composed MQTT Clientname char mqtt_topic[33]; // Composed MQTT topic char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer char mqtt_data[MESSZ]; // MQTT publish buffer and web page ajax buffer char log_data[LOGSZ]; // Logging char web_log[WEB_LOG_SIZE] = {'\0'}; // Web log buffer String backlog[MAX_BACKLOG]; // Command backlog /********************************************************************************************/ char* Format(char* output, const char* input, int size) { char *token; uint8_t digits = 0; if (strstr(input, "%") != nullptr) { strlcpy(output, input, size); token = strtok(output, "%"); if (strstr(input, "%") == input) { output[0] = '\0'; } else { token = strtok(nullptr, ""); } if (token != nullptr) { digits = atoi(token); if (digits) { char tmp[size]; if (strchr(token, 'd')) { snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits); snprintf_P(output, size, tmp, ESP.getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname } else { snprintf_P(tmp, size, PSTR("%s%c0%dX"), output, '%', digits); snprintf_P(output, size, tmp, ESP.getChipId()); // %06X - full chip ID in hex } } else { if (strchr(token, 'd')) { snprintf_P(output, size, PSTR("%s%d"), output, ESP.getChipId()); // %d - full chip ID in dec digits = 8; } } } } if (!digits) { strlcpy(output, input, size); } return output; } char* GetOtaUrl(char *otaurl, size_t otaurl_size) { if (strstr(Settings.ota_url, "%04d") != nullptr) { // OTA url contains placeholder for chip ID snprintf(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId() & 0x1fff); } else if (strstr(Settings.ota_url, "%d") != nullptr) { // OTA url contains placeholder for chip ID snprintf_P(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId()); } else { strlcpy(otaurl, Settings.ota_url, otaurl_size); } return otaurl; } char* GetTopic_P(char *stopic, uint8_t prefix, char *topic, const char* subtopic) { /* prefix 0 = Cmnd prefix 1 = Stat prefix 2 = Tele prefix 4 = Cmnd fallback prefix 5 = Stat fallback prefix 6 = Tele fallback */ char romram[CMDSZ]; String fulltopic; snprintf_P(romram, sizeof(romram), subtopic); if (fallback_topic_flag || (prefix > 3)) { prefix &= 3; fulltopic = FPSTR(kPrefixes[prefix]); fulltopic += F("/"); fulltopic += mqtt_client; fulltopic += F("_fb"); // cmnd/_fb } else { fulltopic = Settings.mqtt_fulltopic; if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) { fulltopic += F("/"); fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops } for (uint32_t i = 0; i < 3; i++) { if ('\0' == Settings.mqtt_prefix[i][0]) { snprintf_P(Settings.mqtt_prefix[i], sizeof(Settings.mqtt_prefix[i]), kPrefixes[i]); } } fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), Settings.mqtt_prefix[prefix]); fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), topic); fulltopic.replace(F("%hostname%"), my_hostname); String token_id = WiFi.macAddress(); token_id.replace(":", ""); fulltopic.replace(F("%id%"), token_id); } fulltopic.replace(F("#"), ""); fulltopic.replace(F("//"), "/"); if (!fulltopic.endsWith("/")) fulltopic += "/"; snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram); return stopic; } char* GetFallbackTopic_P(char *stopic, uint8_t prefix, const char* subtopic) { return GetTopic_P(stopic, prefix +4, nullptr, subtopic); } char* GetStateText(uint8_t state) { if (state > 3) { state = 1; } return Settings.state_text[state]; } /********************************************************************************************/ void SetLatchingRelay(power_t lpower, uint8_t state) { // power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off // power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off // power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On // power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished latching_power = lpower; latching_relay_pulse = 2; // max 200mS (initiated by stateloop()) } for (uint32_t i = 0; i < devices_present; i++) { uint8_t port = (i << 1) + ((latching_power >> i) &1); if (pin[GPIO_REL1 +port] < 99) { digitalWrite(pin[GPIO_REL1 +port], bitRead(rel_inverted, port) ? !state : state); } } } void SetDevicePower(power_t rpower, int source) { uint8_t state; ShowSource(source); if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on power = (1 << devices_present) -1; rpower = power; } if (Settings.flag.interlock) { // Allow only one or no relay set for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { power_t mask = 1; uint8_t count = 0; for (uint32_t j = 0; j < devices_present; j++) { if ((Settings.interlock[i] & mask) && (rpower & mask)) { count++; } mask <<= 1; } if (count > 1) { mask = ~Settings.interlock[i]; // Turn interlocked group off as there would be multiple relays on power &= mask; rpower &= mask; } } } XdrvMailbox.index = rpower; XdrvCall(FUNC_SET_POWER); // Signal power state XdrvMailbox.index = rpower; XdrvMailbox.payload = source; if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced // Serviced } else if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) { Serial.write(0xA0); Serial.write(0x04); Serial.write(rpower &0xFF); Serial.write(0xA1); Serial.write('\n'); Serial.flush(); } else if (EXS_RELAY == my_module_type) { SetLatchingRelay(rpower, 1); } else { for (uint32_t i = 0; i < devices_present; i++) { state = rpower &1; if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) { digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? !state : state); } rpower >>= 1; } } } void SetLedPowerIdx(uint8_t led, uint8_t state) { if ((99 == pin[GPIO_LEDLNK]) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present if (pin[GPIO_LED2] < 99) { led = 1; } } if (pin[GPIO_LED1 + led] < 99) { uint8_t mask = 1 << led; if (state) { state = 1; led_power |= mask; } else { led_power &= (0xFF ^ mask); } digitalWrite(pin[GPIO_LED1 + led], bitRead(led_inverted, led) ? !state : state); } } void SetLedPower(uint8_t state) { if (99 == pin[GPIO_LEDLNK]) { // Legacy - Only use LED1 and/or LED2 SetLedPowerIdx(0, state); } else { power_t mask = 1; for (uint32_t i = 0; i < leds_present; i++) { // Map leds to power bool tstate = (power & mask); SetLedPowerIdx(i, tstate); mask <<= 1; } } } void SetLedPowerAll(uint8_t state) { for (uint32_t i = 0; i < leds_present; i++) { SetLedPowerIdx(i, state); } } void SetLedLink(uint8_t state) { uint8_t led_pin = pin[GPIO_LEDLNK]; uint8_t led_inv = ledlnk_inverted; if (99 == led_pin) { // Legacy - LED1 is status led_pin = pin[GPIO_LED1]; led_inv = bitRead(led_inverted, 0); } if (led_pin < 99) { if (state) { state = 1; } digitalWrite(led_pin, (led_inv) ? !state : state); } } uint8_t GetFanspeed(void) { uint8_t fanspeed = 0; // if (SONOFF_IFAN02 == my_module_type) { /* Fanspeed is controlled by relay 2, 3 and 4 as in Sonoff 4CH. 000x = 0 001x = 1 011x = 2 101x = 3 */ fanspeed = (uint8_t)(power &0xF) >> 1; if (fanspeed) { fanspeed = (fanspeed >> 1) +1; } // } return fanspeed; } void SetFanspeed(uint8_t fanspeed) { for (uint32_t i = 0; i < MAX_FAN_SPEED -1; i++) { uint8_t state = kIFan02Speed[fanspeed][i]; // uint8_t state = pgm_read_byte(kIFan02Speed +(speed *3) +i); ExecuteCommandPower(i +2, state, SRC_IGNORE); // Use relay 2, 3 and 4 } #ifdef USE_DOMOTICZ DomoticzUpdateFanState(); // Command FanSpeed feedback #endif // USE_DOMOTICZ } void SetPulseTimer(uint8_t index, uint16_t time) { pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L; } uint16_t GetPulseTimer(uint8_t index) { uint16_t result = 0; long time = TimePassedSince(pulse_timer[index]); if (time < 0) { time *= -1; result = (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0; } return result; } /********************************************************************************************/ void MqttDataHandler(char* topic, uint8_t* data, unsigned int data_len) { if (data_len > MQTT_MAX_PACKET_SIZE) { return; } // Do not allow more data than would be feasable within stack space char *str; if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1])) { str = strstr(topic,Settings.mqtt_prefix[0]); if ((str == topic) && mqtt_cmnd_publish) { if (mqtt_cmnd_publish > 3) { mqtt_cmnd_publish -= 3; } else { mqtt_cmnd_publish = 0; } return; } } char topicBuf[TOPSZ]; char dataBuf[data_len+1]; char command [CMDSZ]; char stemp1[TOPSZ]; char *p; char *type = nullptr; uint8_t lines = 1; bool jsflg = false; bool grpflg = false; // bool user_append_index = false; uint32_t i = 0; uint32_t index; uint32_t address; #ifdef USE_DEBUG_DRIVER ShowFreeMem(PSTR("MqttDataHandler")); #endif strlcpy(topicBuf, topic, sizeof(topicBuf)); for (i = 0; i < data_len; i++) { if (!isspace(data[i])) { break; } } data_len -= i; memcpy(dataBuf, data +i, sizeof(dataBuf)); dataBuf[sizeof(dataBuf)-1] = 0; if (topicBuf[0] != '/') { ShowSource(SRC_MQTT); } AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_RESULT D_RECEIVED_TOPIC " %s, " D_DATA_SIZE " %d, " D_DATA " %s"), topicBuf, data_len, dataBuf); // if (LOG_LEVEL_DEBUG_MORE <= seriallog_level) { Serial.println(dataBuf); } if (XdrvMqttData(topicBuf, sizeof(topicBuf), dataBuf, sizeof(dataBuf))) { return; } grpflg = (strstr(topicBuf, Settings.mqtt_grptopic) != nullptr); GetFallbackTopic_P(stemp1, CMND, ""); // Full Fallback topic = cmnd/DVES_xxxxxxxx_fb/ fallback_topic_flag = (!strncmp(topicBuf, stemp1, strlen(stemp1))); type = strrchr(topicBuf, '/'); // Last part of received topic is always the command (type) index = 1; if (type != nullptr) { type++; for (i = 0; i < strlen(type); i++) { type[i] = toupper(type[i]); } while (isdigit(type[i-1])) { i--; } if (i < strlen(type)) { index = atoi(type +i); // user_append_index = true; } type[i] = '\0'; } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_RESULT D_GROUP " %d, " D_INDEX " %d, " D_COMMAND " %s, " D_DATA " %s"), grpflg, index, type, dataBuf); if (type != nullptr) { Response_P(PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_ERROR "\"}")); if (Settings.ledstate &0x02) { blinks++; } if (!strcmp(dataBuf,"?")) { data_len = 0; } int16_t payload = -99; // No payload uint16_t payload16 = 0; long payload32 = strtol(dataBuf, &p, 0); // decimal, octal (0) or hex (0x) if (p != dataBuf) { payload = (int16_t) payload32; // -32766 - 32767 payload16 = (uint16_t) payload32; // 0 - 65535 } else { payload32 = 0; } backlog_delay = millis() + (100 * MIN_BACKLOG_DELAY); int temp_payload = GetStateNumber(dataBuf); if (temp_payload > -1) { payload = temp_payload; } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_RESULT "Payload %d, Payload16 %d, payload32 %u"), payload, payload16, payload32); int command_code = GetCommandCode(command, sizeof(command), type, kTasmotaCommands); if (-1 == command_code) { // XdrvMailbox.valid = 1; XdrvMailbox.index = index; XdrvMailbox.data_len = data_len; XdrvMailbox.payload16 = payload16; XdrvMailbox.payload = payload; XdrvMailbox.grpflg = grpflg; XdrvMailbox.topic = type; XdrvMailbox.data = dataBuf; if (!XdrvCall(FUNC_COMMAND)) { if (!XsnsCall(FUNC_COMMAND)) { type = nullptr; // Unknown command } } } else if (CMND_BACKLOG == command_code) { if (data_len) { uint8_t bl_pointer = (!backlog_pointer) ? MAX_BACKLOG -1 : backlog_pointer; bl_pointer--; char *blcommand = strtok(dataBuf, ";"); while ((blcommand != nullptr) && (backlog_index != bl_pointer)) { while(true) { blcommand = Trim(blcommand); if (!strncasecmp_P(blcommand, PSTR(D_CMND_BACKLOG), strlen(D_CMND_BACKLOG))) { blcommand += strlen(D_CMND_BACKLOG); // Skip unnecessary command Backlog } else { break; } } if (*blcommand != '\0') { backlog[backlog_index] = String(blcommand); backlog_index++; if (backlog_index >= MAX_BACKLOG) backlog_index = 0; } blcommand = strtok(nullptr, ";"); } // Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_APPENDED); mqtt_data[0] = '\0'; } else { uint8_t blflag = (backlog_pointer == backlog_index); backlog_pointer = backlog_index; Response_P(S_JSON_COMMAND_SVALUE, command, blflag ? D_JSON_EMPTY : D_JSON_ABORTED); } } else if (CMND_DELAY == command_code) { if ((payload >= MIN_BACKLOG_DELAY) && (payload <= 3600)) { backlog_delay = millis() + (100 * payload); } uint16_t bl_delay = 0; long bl_delta = TimePassedSince(backlog_delay); if (bl_delta < 0) { bl_delay = (bl_delta *-1) / 100; } Response_P(S_JSON_COMMAND_NVALUE, command, bl_delay); } else if ((CMND_POWER == command_code) && (index > 0) && (index <= devices_present)) { if ((payload < 0) || (payload > 4)) { payload = 9; } // Settings.flag.device_index_enable = user_append_index; ExecuteCommandPower(index, payload, SRC_IGNORE); fallback_topic_flag = false; return; } else if ((CMND_FANSPEED == command_code) && (SONOFF_IFAN02 == my_module_type)) { if (data_len > 0) { if ('-' == dataBuf[0]) { payload = (int16_t)GetFanspeed() -1; if (payload < 0) { payload = MAX_FAN_SPEED -1; } } else if ('+' == dataBuf[0]) { payload = GetFanspeed() +1; if (payload > MAX_FAN_SPEED -1) { payload = 0; } } } if ((payload >= 0) && (payload < MAX_FAN_SPEED) && (payload != GetFanspeed())) { SetFanspeed(payload); } Response_P(S_JSON_COMMAND_NVALUE, command, GetFanspeed()); } else if (CMND_STATUS == command_code) { if ((payload < 0) || (payload > MAX_STATUS)) payload = 99; PublishStatus(payload); fallback_topic_flag = false; return; } else if (CMND_STATE == command_code) { mqtt_data[0] = '\0'; MqttShowState(); if (Settings.flag3.hass_tele_on_power) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN); } #ifdef USE_HOME_ASSISTANT if (Settings.flag.hass_discovery) { HAssPublishStatus(); } #endif // USE_HOME_ASSISTANT } else if (CMND_SLEEP == command_code) { if ((payload >= 0) && (payload < 251)) { Settings.sleep = payload; sleep = payload; WiFiSetSleepMode(); } Response_P(S_JSON_COMMAND_NVALUE_UNIT_NVALUE_UNIT, command, sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : "", Settings.sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : ""); } else if ((CMND_UPGRADE == command_code) || (CMND_UPLOAD == command_code)) { // Check if the payload is numerically 1, and had no trailing chars. // e.g. "1foo" or "1.2.3" could fool us. // Check if the version we have been asked to upgrade to is higher than our current version. // We also need at least 3 chars to make a valid version number string. if (((1 == data_len) && (1 == payload)) || ((data_len >= 3) && NewerVersion(dataBuf))) { ota_state_flag = 3; Response_P(PSTR("{\"%s\":\"" D_JSON_VERSION " %s " D_JSON_FROM " %s\"}"), command, my_version, GetOtaUrl(stemp1, sizeof(stemp1))); } else { Response_P(PSTR("{\"%s\":\"" D_JSON_ONE_OR_GT "\"}"), command, my_version); } } else if (CMND_OTAURL == command_code) { if ((data_len > 0) && (data_len < sizeof(Settings.ota_url))) { strlcpy(Settings.ota_url, (SC_DEFAULT == Shortcut(dataBuf)) ? OTA_URL : dataBuf, sizeof(Settings.ota_url)); } Response_P(S_JSON_COMMAND_SVALUE, command, Settings.ota_url); } else if (CMND_SERIALLOG == command_code) { if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) { Settings.flag.mqtt_serial = 0; SetSeriallog(payload); } Response_P(S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.seriallog_level, seriallog_level); } else if (CMND_RESTART == command_code) { switch (payload) { case 1: restart_flag = 2; Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_RESTARTING); break; case 99: AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING)); EspRestart(); break; default: Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESTART); } } else if ((CMND_POWERONSTATE == command_code) && (my_module_type != MOTOR)) { /* 0 = Keep relays off after power on * 1 = Turn relays on after power on, if PulseTime set wait for PulseTime seconds, and turn relays off * 2 = Toggle relays after power on * 3 = Set relays to last saved state after power on * 4 = Turn relays on and disable any relay control (used for Sonoff Pow to always measure power) * 5 = Keep relays off after power on, if PulseTime set wait for PulseTime seconds, and turn relays on */ if ((payload >= POWER_ALL_OFF) && (payload <= POWER_ALL_OFF_PULSETIME_ON)) { Settings.poweronstate = payload; if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { for (uint32_t i = 1; i <= devices_present; i++) { ExecuteCommandPower(i, POWER_ON, SRC_IGNORE); } } } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.poweronstate); } else if ((CMND_PULSETIME == command_code) && (index > 0) && (index <= MAX_PULSETIMERS)) { if (data_len > 0) { Settings.pulse_timer[index -1] = payload16; // 0 - 65535 SetPulseTimer(index -1, payload16); } Response_P(S_JSON_COMMAND_INDEX_NVALUE_ACTIVE_NVALUE, command, index, Settings.pulse_timer[index -1], GetPulseTimer(index -1)); } else if (CMND_BLINKTIME == command_code) { if ((payload > 1) && (payload <= 3600)) { Settings.blinktime = payload; if (blink_timer > 0) { blink_timer = millis() + (100 * payload); } } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.blinktime); } else if (CMND_BLINKCOUNT == command_code) { if (data_len > 0) { Settings.blinkcount = payload16; // 0 - 65535 if (blink_counter) blink_counter = Settings.blinkcount *2; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.blinkcount); } else if (CMND_SAVEDATA == command_code) { if ((payload >= 0) && (payload <= 3600)) { Settings.save_data = payload; save_data_counter = Settings.save_data; } SettingsSaveAll(); if (Settings.save_data > 1) { snprintf_P(stemp1, sizeof(stemp1), PSTR(D_JSON_EVERY " %d " D_UNIT_SECOND), Settings.save_data); } Response_P(S_JSON_COMMAND_SVALUE, command, (Settings.save_data > 1) ? stemp1 : GetStateText(Settings.save_data)); } else if ((CMND_SENSOR == command_code) || (CMND_DRIVER == command_code)) { XdrvMailbox.index = index; XdrvMailbox.data_len = data_len; XdrvMailbox.payload16 = payload16; XdrvMailbox.payload = payload; XdrvMailbox.grpflg = grpflg; XdrvMailbox.topic = command; XdrvMailbox.data = dataBuf; if (CMND_SENSOR == command_code) { XsnsCall(FUNC_COMMAND_SENSOR); } else { XdrvCall(FUNC_COMMAND_DRIVER); } } else if ((CMND_SETOPTION == command_code) && (index < 82)) { uint8_t ptype; uint8_t pindex; if (index <= 31) { // SetOption0 .. 31 = Settings.flag ptype = 0; pindex = index; // 0 .. 31 } else if (index <= 49) { // SetOption32 .. 49 = Settings.param ptype = 2; pindex = index -32; // 0 .. 17 (= PARAM8_SIZE -1) } else { // SetOption50 .. 81 = Settings.flag3 ptype = 1; pindex = index -50; // 0 .. 31 } if (payload >= 0) { if (0 == ptype) { // SetOption0 .. 31 if (payload <= 1) { switch (pindex) { case 5: // mqtt_power_retain (CMND_POWERRETAIN) case 6: // mqtt_button_retain (CMND_BUTTONRETAIN) case 7: // mqtt_switch_retain (CMND_SWITCHRETAIN) case 9: // mqtt_sensor_retain (CMND_SENSORRETAIN) case 14: // interlock (CMND_INTERLOCK) case 22: // mqtt_serial (SerialSend and SerialLog) case 23: // mqtt_serial_raw (SerialSend) case 25: // knx_enabled (Web config) case 27: // knx_enable_enhancement (Web config) ptype = 99; // Command Error break; // Ignore command SetOption case 3: // mqtt case 15: // pwm_control restart_flag = 2; default: bitWrite(Settings.flag.data, pindex, payload); } if (12 == pindex) { // stop_flash_rotate stop_flash_rotate = payload; SettingsSave(2); } #ifdef USE_HOME_ASSISTANT if ((19 == pindex) || (30 == pindex)) { HAssDiscover(); // Delayed execution to provide enough resources during hass_discovery or hass_light } #endif // USE_HOME_ASSISTANT } } else if (1 == ptype) { // SetOption50 .. 81 if (payload <= 1) { bitWrite(Settings.flag3.data, pindex, payload); if (5 == pindex) { // SetOption55 if (0 == payload) { restart_flag = 2; // Disable mDNS needs restart } } if (10 == pindex) { // SetOption60 enable or disable traditional sleep WiFiSetSleepMode(); // Update WiFi sleep mode accordingly } } } else { // SetOption32 .. 49 uint8_t param_low = 0; uint8_t param_high = 255; switch (pindex) { case P_HOLD_TIME: case P_MAX_POWER_RETRY: param_low = 1; param_high = 250; break; } if ((payload >= param_low) && (payload <= param_high)) { Settings.param[pindex] = payload; switch (pindex) { #ifdef USE_LIGHT case P_RGB_REMAP: LightUpdateColorMapping(); break; #endif #if defined(USE_IR_REMOTE) && defined(USE_IR_RECEIVE) case P_IR_UNKNOW_THRESHOLD: IrReceiveUpdateThreshold(); break; #endif } } } } if (ptype < 99) { if (2 == ptype) snprintf_P(stemp1, sizeof(stemp1), PSTR("%d"), Settings.param[pindex]); Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, (2 == ptype) ? stemp1 : (1 == ptype) ? GetStateText(bitRead(Settings.flag3.data, pindex)) : GetStateText(bitRead(Settings.flag.data, pindex))); } } else if (CMND_TEMPERATURE_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.temperature_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.temperature_resolution); } else if (CMND_HUMIDITY_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.humidity_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.humidity_resolution); } else if (CMND_PRESSURE_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.pressure_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.pressure_resolution); } else if (CMND_POWER_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.wattage_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.wattage_resolution); } else if (CMND_VOLTAGE_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.voltage_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.voltage_resolution); } else if (CMND_FREQUENCY_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.frequency_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.frequency_resolution); } else if (CMND_CURRENT_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.current_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.current_resolution); } else if (CMND_ENERGY_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 5)) { Settings.flag2.energy_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.energy_resolution); } else if (CMND_WEIGHT_RESOLUTION == command_code) { if ((payload >= 0) && (payload <= 3)) { Settings.flag2.weight_resolution = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.weight_resolution); } else if (CMND_MODULE == command_code) { if ((payload >= 0) && (payload <= MAXMODULE)) { bool present = false; if (0 == payload) { payload = USER_MODULE; present = true; } else { payload--; present = ValidTemplateModule(payload); } if (present) { Settings.last_module = Settings.module; Settings.module = payload; SetModuleType(); if (Settings.last_module != payload) { for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { Settings.my_gp.io[i] = GPIO_NONE; } } restart_flag = 2; } } Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, ModuleNr(), ModuleName().c_str()); } else if (CMND_MODULES == command_code) { uint8_t midx = USER_MODULE; for (uint32_t i = 0; i <= sizeof(kModuleNiceList); i++) { if (i > 0) { midx = pgm_read_byte(kModuleNiceList + i -1); } if (!jsflg) { Response_P(PSTR("{\"" D_CMND_MODULES "%d\":["), lines); } else { ResponseAppend_P(PSTR(",")); } jsflg = true; uint8_t j = i ? midx +1 : 0; if ((ResponseAppend_P(PSTR("\"%d (%s)\""), j, AnyModuleName(midx).c_str()) > (LOGSZ - TOPSZ)) || (i == sizeof(kModuleNiceList))) { ResponseAppend_P(PSTR("]}")); MqttPublishPrefixTopic_P(RESULT_OR_STAT, type); jsflg = false; lines++; } } mqtt_data[0] = '\0'; } #ifndef USE_ADC_VCC else if (CMND_ADC == command_code) { if (ValidAdc() && (payload >= 0) && (payload < ADC0_END)) { Settings.my_adc0 = payload; restart_flag = 2; } Response_P(PSTR("{\"" D_CMND_ADC "0\":\"%d (%s)\"}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names)); } else if (CMND_ADCS == command_code) { Response_P(PSTR("{\"" D_CMND_ADCS "\":[")); for (uint32_t i = 0; i < ADC0_END; i++) { if (jsflg) { ResponseAppend_P(PSTR(",")); } jsflg = true; ResponseAppend_P(PSTR("\"%d (%s)\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names)); } ResponseAppend_P(PSTR("]}")); } #endif // USE_ADC_VCC else if ((CMND_GPIO == command_code) && (index < sizeof(Settings.my_gp))) { myio cmodule; ModuleGpios(&cmodule); if (ValidGPIO(index, cmodule.io[index]) && (payload >= 0) && (payload < GPIO_SENSOR_END)) { bool present = false; for (uint32_t i = 0; i < sizeof(kGpioNiceList); i++) { uint8_t midx = pgm_read_byte(kGpioNiceList + i); if (midx == payload) { present = true; } } if (present) { for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { if (ValidGPIO(i, cmodule.io[i]) && (Settings.my_gp.io[i] == payload)) { Settings.my_gp.io[i] = GPIO_NONE; } } Settings.my_gp.io[index] = payload; restart_flag = 2; } } Response_P(PSTR("{")); for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { if (ValidGPIO(i, cmodule.io[i])) { if (jsflg) { ResponseAppend_P(PSTR(",")); } jsflg = true; ResponseAppend_P(PSTR("\"" D_CMND_GPIO "%d\":\"%d (%s)\""), i, Settings.my_gp.io[i], GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_gp.io[i], kSensorNames)); } } if (jsflg) { ResponseJsonEnd(); } else { Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_NOT_SUPPORTED); } } else if (CMND_GPIOS == command_code) { myio cmodule; ModuleGpios(&cmodule); uint8_t midx; for (uint32_t i = 0; i < sizeof(kGpioNiceList); i++) { midx = pgm_read_byte(kGpioNiceList + i); if (!GetUsedInModule(midx, cmodule.io)) { if (!jsflg) { Response_P(PSTR("{\"" D_CMND_GPIOS "%d\":["), lines); } else { ResponseAppend_P(PSTR(",")); } jsflg = true; if ((ResponseAppend_P(PSTR("\"%d (%s)\""), midx, GetTextIndexed(stemp1, sizeof(stemp1), midx, kSensorNames)) > (LOGSZ - TOPSZ)) || (i == sizeof(kGpioNiceList) -1)) { ResponseAppend_P(PSTR("]}")); MqttPublishPrefixTopic_P(RESULT_OR_STAT, type); jsflg = false; lines++; } } } mqtt_data[0] = '\0'; } else if (CMND_TEMPLATE == command_code) { // {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255} bool error = false; if (strstr(dataBuf, "{") == nullptr) { // If no JSON it must be parameter if ((payload > 0) && (payload <= MAXMODULE)) { payload--; if (ValidTemplateModule(payload)) { ModuleDefault(payload); // Copy template module if (USER_MODULE == Settings.module) { restart_flag = 2; } } } else if (0 == payload) { // Copy current template to user template if (Settings.module != USER_MODULE) { ModuleDefault(Settings.module); } } else if (255 == payload) { // Copy current module with user configured GPIO if (Settings.module != USER_MODULE) { ModuleDefault(Settings.module); } snprintf_P(Settings.user_template.name, sizeof(Settings.user_template.name), PSTR("Merged")); uint8_t j = 0; for (uint32_t i = 0; i < sizeof(mycfgio); i++) { if (6 == i) { j = 9; } if (8 == i) { j = 12; } if (my_module.io[j] > GPIO_NONE) { Settings.user_template.gp.io[i] = my_module.io[j]; } j++; } } } else { if (JsonTemplate(dataBuf)) { // Free 336 bytes StaticJsonBuffer stack space by moving code to function if (USER_MODULE == Settings.module) { restart_flag = 2; } } else { Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_INVALID_JSON); error = true; } } if (!error) { TemplateJson(); } } else if ((CMND_PWM == command_code) && pwm_present && (index > 0) && (index <= MAX_PWMS)) { if ((payload >= 0) && (payload <= Settings.pwm_range) && (pin[GPIO_PWM1 + index -1] < 99)) { Settings.pwm_value[index -1] = payload; analogWrite(pin[GPIO_PWM1 + index -1], bitRead(pwm_inverted, index -1) ? Settings.pwm_range - payload : payload); } Response_P(PSTR("{")); MqttShowPWMState(); // Render the PWM status to MQTT ResponseJsonEnd(); } else if (CMND_PWMFREQUENCY == command_code) { if ((1 == payload) || ((payload >= PWM_MIN) && (payload <= PWM_MAX))) { Settings.pwm_frequency = (1 == payload) ? PWM_FREQ : payload; analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c) } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pwm_frequency); } else if (CMND_PWMRANGE == command_code) { if ((1 == payload) || ((payload > 254) && (payload < 1024))) { Settings.pwm_range = (1 == payload) ? PWM_RANGE : payload; for (uint32_t i = 0; i < MAX_PWMS; i++) { if (Settings.pwm_value[i] > Settings.pwm_range) { Settings.pwm_value[i] = Settings.pwm_range; } } analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h) } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pwm_range); } else if ((CMND_COUNTER == command_code) && (index > 0) && (index <= MAX_COUNTERS)) { if ((data_len > 0) && (pin[GPIO_CNTR1 + index -1] < 99)) { if ((dataBuf[0] == '-') || (dataBuf[0] == '+')) { RtcSettings.pulse_counter[index -1] += payload32; Settings.pulse_counter[index -1] += payload32; } else { RtcSettings.pulse_counter[index -1] = payload32; Settings.pulse_counter[index -1] = payload32; } } Response_P(S_JSON_COMMAND_INDEX_LVALUE, command, index, RtcSettings.pulse_counter[index -1]); } else if ((CMND_COUNTERTYPE == command_code) && (index > 0) && (index <= MAX_COUNTERS)) { if ((payload >= 0) && (payload <= 1) && (pin[GPIO_CNTR1 + index -1] < 99)) { bitWrite(Settings.pulse_counter_type, index -1, payload &1); RtcSettings.pulse_counter[index -1] = 0; Settings.pulse_counter[index -1] = 0; } Response_P(S_JSON_COMMAND_INDEX_NVALUE, command, index, bitRead(Settings.pulse_counter_type, index -1)); } else if (CMND_COUNTERDEBOUNCE == command_code) { if ((data_len > 0) && (payload16 < 32001)) { Settings.pulse_counter_debounce = payload16; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pulse_counter_debounce); } else if (CMND_BUTTONDEBOUNCE == command_code) { if ((payload > 39) && (payload < 1001)) { Settings.button_debounce = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.button_debounce); } else if (CMND_SWITCHDEBOUNCE == command_code) { if ((payload > 39) && (payload < 1001)) { Settings.switch_debounce = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.switch_debounce); } else if (CMND_BAUDRATE == command_code) { if (payload32 > 1200) { payload32 /= 1200; // Make it a valid baudrate baudrate = (1 == payload) ? APP_BAUDRATE : payload32 * 1200; SetSerialBaudrate(baudrate); } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.baudrate * 1200); } else if ((CMND_SERIALSEND == command_code) && (index > 0) && (index <= 5)) { SetSeriallog(LOG_LEVEL_NONE); Settings.flag.mqtt_serial = 1; Settings.flag.mqtt_serial_raw = (index > 3) ? 1 : 0; if (data_len > 0) { if (1 == index) { Serial.printf("%s\n", dataBuf); // "Hello Tiger\n" } else if (2 == index || 4 == index) { for (uint32_t i = 0; i < data_len; i++) { Serial.write(dataBuf[i]); // "Hello Tiger" or "A0" } } else if (3 == index) { uint16_t dat_len = data_len; Serial.printf("%s", Unescape(dataBuf, &dat_len)); // "Hello\f" } else if (5 == index) { SerialSendRaw(RemoveSpace(dataBuf)); // "AA004566" as hex values } Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_DONE); } } else if (CMND_SERIALDELIMITER == command_code) { if ((data_len > 0) && (payload < 256)) { if (payload > 0) { Settings.serial_delimiter = payload; } else { uint16_t dat_len = data_len; Unescape(dataBuf, &dat_len); Settings.serial_delimiter = dataBuf[0]; } } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.serial_delimiter); } else if (CMND_SYSLOG == command_code) { if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) { SetSyslog(payload); } Response_P(S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.syslog_level, syslog_level); } else if (CMND_LOGHOST == command_code) { if ((data_len > 0) && (data_len < sizeof(Settings.syslog_host))) { strlcpy(Settings.syslog_host, (SC_DEFAULT == Shortcut(dataBuf)) ? SYS_LOG_HOST : dataBuf, sizeof(Settings.syslog_host)); } Response_P(S_JSON_COMMAND_SVALUE, command, Settings.syslog_host); } else if (CMND_LOGPORT == command_code) { if (payload16 > 0) { Settings.syslog_port = (1 == payload16) ? SYS_LOG_PORT : payload16; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.syslog_port); } else if ((CMND_IPADDRESS == command_code) && (index > 0) && (index <= 4)) { if (ParseIp(&address, dataBuf)) { Settings.ip_address[index -1] = address; // restart_flag = 2; } snprintf_P(stemp1, sizeof(stemp1), PSTR(" (%s)"), WiFi.localIP().toString().c_str()); Response_P(S_JSON_COMMAND_INDEX_SVALUE_SVALUE, command, index, IPAddress(Settings.ip_address[index -1]).toString().c_str(), (1 == index) ? stemp1:""); } else if ((CMND_NTPSERVER == command_code) && (index > 0) && (index <= 3)) { if ((data_len > 0) && (data_len < sizeof(Settings.ntp_server[0]))) { strlcpy(Settings.ntp_server[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1==index)?NTP_SERVER1:(2==index)?NTP_SERVER2:NTP_SERVER3 : dataBuf, sizeof(Settings.ntp_server[0])); for (i = 0; i < strlen(Settings.ntp_server[index -1]); i++) { if (Settings.ntp_server[index -1][i] == ',') Settings.ntp_server[index -1][i] = '.'; } // restart_flag = 2; // Issue #3890 ntp_force_sync = true; } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.ntp_server[index -1]); } else if (CMND_AP == command_code) { if ((payload >= 0) && (payload <= 2)) { switch (payload) { case 0: // Toggle Settings.sta_active ^= 1; break; case 1: // AP1 case 2: // AP2 Settings.sta_active = payload -1; } restart_flag = 2; } Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active]); } else if ((CMND_SSID == command_code) && (index > 0) && (index <= 2)) { if ((data_len > 0) && (data_len < sizeof(Settings.sta_ssid[0]))) { strlcpy(Settings.sta_ssid[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_SSID1 : STA_SSID2 : dataBuf, sizeof(Settings.sta_ssid[0])); Settings.sta_active = index -1; restart_flag = 2; } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_ssid[index -1]); } else if ((CMND_PASSWORD == command_code) && (index > 0) && (index <= 2)) { if ((data_len > 4 || SC_CLEAR == Shortcut(dataBuf) || SC_DEFAULT == Shortcut(dataBuf)) && (data_len < sizeof(Settings.sta_pwd[0]))) { strlcpy(Settings.sta_pwd[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_PASS1 : STA_PASS2 : dataBuf, sizeof(Settings.sta_pwd[0])); Settings.sta_active = index -1; restart_flag = 2; Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_pwd[index -1]); } else { Response_P(S_JSON_COMMAND_INDEX_ASTERISK, command, index); } } else if (CMND_HOSTNAME == command_code) { if (!grpflg && (data_len > 0) && (data_len < sizeof(Settings.hostname))) { strlcpy(Settings.hostname, (SC_DEFAULT == Shortcut(dataBuf)) ? WIFI_HOSTNAME : dataBuf, sizeof(Settings.hostname)); if (strstr(Settings.hostname, "%") != nullptr) { strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname)); } restart_flag = 2; } Response_P(S_JSON_COMMAND_SVALUE, command, Settings.hostname); } else if (CMND_WIFICONFIG == command_code) { if ((payload >= WIFI_RESTART) && (payload < MAX_WIFI_OPTION)) { Settings.sta_config = payload; wifi_state_flag = Settings.sta_config; snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]); Response_P(PSTR("{\"" D_CMND_WIFICONFIG "\":\"%s " D_JSON_SELECTED "\"}"), stemp1); if (WifiState() > WIFI_RESTART) { // ResponseAppend_P(PSTR(" after restart")); restart_flag = 2; } } else { snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]); Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_config, stemp1); } } else if ((CMND_FRIENDLYNAME == command_code) && (index > 0) && (index <= MAX_FRIENDLYNAMES)) { if ((data_len > 0) && (data_len < sizeof(Settings.friendlyname[0]))) { if (1 == index) { snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME)); } else { snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME "%d"), index); } strlcpy(Settings.friendlyname[index -1], (SC_DEFAULT == Shortcut(dataBuf)) ? stemp1 : dataBuf, sizeof(Settings.friendlyname[index -1])); } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.friendlyname[index -1]); } else if ((CMND_SWITCHMODE == command_code) && (index > 0) && (index <= MAX_SWITCHES)) { if ((payload >= 0) && (payload < MAX_SWITCH_OPTION)) { Settings.switchmode[index -1] = payload; } Response_P(S_JSON_COMMAND_INDEX_NVALUE, command, index, Settings.switchmode[index-1]); } else if (CMND_INTERLOCK == command_code) { // Interlock 0 - Off, Interlock 1 - On, Interlock 1,2 3,4 5,6,7 uint8_t max_relays = devices_present; if (light_type) { max_relays--; } if (max_relays > sizeof(Settings.interlock[0]) * 8) { max_relays = sizeof(Settings.interlock[0]) * 8; } if (max_relays > 1) { // Only interlock with more than 1 relay if (data_len > 0) { if (strstr(dataBuf, ",") != nullptr) { // Interlock entry for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { Settings.interlock[i] = 0; } // Reset current interlocks char *group; char *q; uint8_t group_index = 0; power_t relay_mask = 0; for (group = strtok_r(dataBuf, " ", &q); group && group_index < MAX_INTERLOCKS; group = strtok_r(nullptr, " ", &q)) { char *str; for (str = strtok_r(group, ",", &p); str; str = strtok_r(nullptr, ",", &p)) { int pbit = atoi(str); if ((pbit > 0) && (pbit <= max_relays)) { // Only valid relays pbit--; if (!bitRead(relay_mask, pbit)) { // Only relay once bitSet(relay_mask, pbit); bitSet(Settings.interlock[group_index], pbit); } } } group_index++; } for (uint32_t i = 0; i < group_index; i++) { uint8_t minimal_bits = 0; for (uint32_t j = 0; j < max_relays; j++) { if (bitRead(Settings.interlock[i], j)) { minimal_bits++; } } if (minimal_bits < 2) { Settings.interlock[i] = 0; } // Discard single relay as interlock } } else { Settings.flag.interlock = payload &1; // Enable/disable interlock if (Settings.flag.interlock) { SetDevicePower(power, SRC_IGNORE); // Remove multiple relays if set } } } Response_P(PSTR("{\"" D_CMND_INTERLOCK "\":\"%s\",\"" D_JSON_GROUPS "\":\""), GetStateText(Settings.flag.interlock)); uint8_t anygroup = 0; for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { if (Settings.interlock[i]) { anygroup++; ResponseAppend_P(PSTR("%s"), (anygroup > 1) ? " " : ""); uint8_t anybit = 0; power_t mask = 1; for (uint32_t j = 0; j < max_relays; j++) { if (Settings.interlock[i] & mask) { anybit++; ResponseAppend_P(PSTR("%s%d"), (anybit > 1) ? "," : "", j +1); } mask <<= 1; } } } if (!anygroup) { for (uint32_t j = 1; j <= max_relays; j++) { ResponseAppend_P(PSTR("%s%d"), (j > 1) ? "," : "", j); } } ResponseAppend_P(PSTR("\"}")); } else { Settings.flag.interlock = 0; Response_P(S_JSON_COMMAND_SVALUE, command, GetStateText(Settings.flag.interlock)); } } else if (CMND_TELEPERIOD == command_code) { if ((payload >= 0) && (payload < 3601)) { Settings.tele_period = (1 == payload) ? TELE_PERIOD : payload; if ((Settings.tele_period > 0) && (Settings.tele_period < 10)) Settings.tele_period = 10; // Do not allow periods < 10 seconds tele_period = Settings.tele_period; } Response_P(S_JSON_COMMAND_NVALUE_UNIT, command, Settings.tele_period, (Settings.flag.value_units) ? " " D_UNIT_SECOND : ""); } else if (CMND_RESET == command_code) { switch (payload) { case 1: restart_flag = 211; Response_P(S_JSON_COMMAND_SVALUE, command , D_JSON_RESET_AND_RESTARTING); break; case 2 ... 6: restart_flag = 210 + payload; Response_P(PSTR("{\"" D_CMND_RESET "\":\"" D_JSON_ERASE ", " D_JSON_RESET_AND_RESTARTING "\"}")); break; default: Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESET); } } else if (CMND_TIMEZONE == command_code) { if ((data_len > 0) && (payload >= -13)) { Settings.timezone = payload; Settings.timezone_minutes = 0; if (payload < 15) { p = strtok (dataBuf, ":"); if (p) { p = strtok (nullptr, ":"); if (p) { Settings.timezone_minutes = strtol(p, nullptr, 10); if (Settings.timezone_minutes > 59) { Settings.timezone_minutes = 59; } } } } else { Settings.timezone = 99; } ntp_force_sync = true; } if (99 == Settings.timezone) { Response_P(S_JSON_COMMAND_NVALUE, command, Settings.timezone); } else { snprintf_P(stemp1, sizeof(stemp1), PSTR("%+03d:%02d"), Settings.timezone, Settings.timezone_minutes); Response_P(S_JSON_COMMAND_SVALUE, command, stemp1); } } else if ((CMND_TIMESTD == command_code) || (CMND_TIMEDST == command_code)) { // TimeStd 0/1, 0/1/2/3/4, 1..12, 1..7, 0..23, +/-780 uint8_t ts = 0; if (CMND_TIMEDST == command_code) { ts = 1; } if (data_len > 0) { if (strstr(dataBuf, ",") != nullptr) { // Process parameter entry uint8_t tpos = 0; // Parameter index int value = 0; p = dataBuf; // Parameters like "1, 2,3 , 4 ,5, -120" or ",,,,,+240" char *q = p; // Value entered flag while (p && (tpos < 7)) { if (p > q) { // Any value entered if (1 == tpos) { Settings.tflag[ts].hemis = value &1; } if (2 == tpos) { Settings.tflag[ts].week = (value < 0) ? 0 : (value > 4) ? 4 : value; } if (3 == tpos) { Settings.tflag[ts].month = (value < 1) ? 1 : (value > 12) ? 12 : value; } if (4 == tpos) { Settings.tflag[ts].dow = (value < 1) ? 1 : (value > 7) ? 7 : value; } if (5 == tpos) { Settings.tflag[ts].hour = (value < 0) ? 0 : (value > 23) ? 23 : value; } if (6 == tpos) { Settings.toffset[ts] = (value < -900) ? -900 : (value > 900) ? 900 : value; } } p = Trim(p); // Skip spaces if (tpos && (*p == ',')) { p++; } // Skip separator p = Trim(p); // Skip spaces q = p; // Reset any value entered flag value = strtol(p, &p, 10); tpos++; // Next parameter } ntp_force_sync = true; } else { if (0 == payload) { if (0 == ts) { SettingsResetStd(); } else { SettingsResetDst(); } } ntp_force_sync = true; } } Response_P(PSTR("{\"%s\":{\"Hemisphere\":%d,\"Week\":%d,\"Month\":%d,\"Day\":%d,\"Hour\":%d,\"Offset\":%d}}"), command, Settings.tflag[ts].hemis, Settings.tflag[ts].week, Settings.tflag[ts].month, Settings.tflag[ts].dow, Settings.tflag[ts].hour, Settings.toffset[ts]); } else if (CMND_ALTITUDE == command_code) { if ((data_len > 0) && ((payload >= -30000) && (payload <= 30000))) { Settings.altitude = payload; } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.altitude); } else if ((CMND_LEDPOWER == command_code) && (index > 0) && (index <= MAX_LEDS)) { /* if ((payload >= 0) && (payload <= 2)) { Settings.ledstate &= 8; switch (payload) { case 0: // Off case 1: // On Settings.ledstate = payload << 3; break; case 2: // Toggle Settings.ledstate ^= 8; break; } blinks = 0; SetLedPowerIdx(index -1, Settings.ledstate &8); } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(bitRead(Settings.ledstate, 3))); */ /* if (99 == pin[GPIO_LEDLNK]) { if ((payload >= 0) && (payload <= 2)) { Settings.ledstate &= 8; switch (payload) { case 0: // Off case 1: // On Settings.ledstate = payload << 3; break; case 2: // Toggle Settings.ledstate ^= 8; break; } blinks = 0; SetLedPower(Settings.ledstate &8); } Response_P(S_JSON_COMMAND_SVALUE, command, GetStateText(bitRead(Settings.ledstate, 3))); } else { if ((payload >= 0) && (payload <= 2)) { Settings.ledstate &= 8; // Disable power control uint8_t mask = 1 << (index -1); // Led to control switch (payload) { case 0: // Off led_power &= (0xFF ^ mask); case 1: // On led_power |= mask; break; case 2: // Toggle led_power ^= mask; break; } blinks = 0; SetLedPowerIdx(index -1, (led_power & mask)); } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(bitRead(led_power, index -1))); } */ if (99 == pin[GPIO_LEDLNK]) { index = 1; } if ((payload >= 0) && (payload <= 2)) { Settings.ledstate &= 8; // Disable power control uint8_t mask = 1 << (index -1); // Led to control switch (payload) { case 0: // Off led_power &= (0xFF ^ mask); Settings.ledstate = 0; break; case 1: // On led_power |= mask; Settings.ledstate = 8; break; case 2: // Toggle led_power ^= mask; Settings.ledstate ^= 8; break; } blinks = 0; if (99 == pin[GPIO_LEDLNK]) { SetLedPower(Settings.ledstate &8); } else { SetLedPowerIdx(index -1, (led_power & mask)); } } uint8_t state = bitRead(led_power, index -1); if (99 == pin[GPIO_LEDLNK]) { state = bitRead(Settings.ledstate, 3); } Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(state)); } else if (CMND_LEDSTATE == command_code) { if ((payload >= 0) && (payload < MAX_LED_OPTION)) { Settings.ledstate = payload; if (!Settings.ledstate) { SetLedPowerAll(0); SetLedLink(0); } } Response_P(S_JSON_COMMAND_NVALUE, command, Settings.ledstate); } else if (CMND_LEDMASK == command_code) { if (data_len > 0) { Settings.ledmask = payload16; } snprintf_P(stemp1, sizeof(stemp1), PSTR("%d (0x%04X)"), Settings.ledmask, Settings.ledmask); Response_P(S_JSON_COMMAND_SVALUE, command, stemp1); } #ifdef USE_I2C else if ((CMND_I2CSCAN == command_code) && i2c_flg) { I2cScan(mqtt_data, sizeof(mqtt_data)); } #endif // USE_I2C else type = nullptr; // Unknown command } if (type == nullptr) { blinks = 201; snprintf_P(topicBuf, sizeof(topicBuf), PSTR(D_JSON_COMMAND)); Response_P(PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_UNKNOWN "\"}")); type = (char*)topicBuf; } if (mqtt_data[0] != '\0') { MqttPublishPrefixTopic_P(RESULT_OR_STAT, type); #ifdef USE_SCRIPT XdrvRulesProcess(); #endif } fallback_topic_flag = false; } /********************************************************************************************/ bool SendKey(uint8_t key, uint8_t device, uint8_t state) { // key 0 = button_topic // key 1 = switch_topic // state 0 = off // state 1 = on // state 2 = toggle // state 3 = hold // state 9 = clear retain flag char stopic[TOPSZ]; char scommand[CMDSZ]; char key_topic[sizeof(Settings.button_topic)]; bool result = false; char *tmp = (key) ? Settings.switch_topic : Settings.button_topic; Format(key_topic, tmp, sizeof(key_topic)); if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) { if (!key && (device > devices_present)) { device = 1; } // Only allow number of buttons up to number of devices GetTopic_P(stopic, CMND, key_topic, GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings.flag.device_index_enable))); // cmnd/switchtopic/POWERx if (9 == state) { mqtt_data[0] = '\0'; } else { if ((Settings.flag3.button_switch_force_local || !strcmp(mqtt_topic, key_topic) || !strcmp(Settings.mqtt_grptopic, key_topic)) && (2 == state)) { state = ~(power >> (device -1)) &1; } snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state)); } #ifdef USE_DOMOTICZ if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) { MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != 3 || !Settings.flag3.no_hold_retain)); } #else MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != 3 || !Settings.flag3.no_hold_retain)); #endif // USE_DOMOTICZ result = !Settings.flag3.button_switch_force_local; } else { Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state); result = XdrvRulesProcess(); } #ifdef USE_KNX KnxSendButtonPower(key, device, state); #endif // USE_KNX return result; } void ExecuteCommandPower(uint8_t device, uint8_t state, int source) { // device = Relay number 1 and up // state 0 = Relay Off // state 1 = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled) // state 2 = Toggle relay // state 3 = Blink relay // state 4 = Stop blinking relay // state 6 = Relay Off and no publishPowerState // state 7 = Relay On and no publishPowerState // state 9 = Show power state // ShowSource(source); if (SONOFF_IFAN02 == my_module_type) { blink_mask &= 1; // No blinking on the fan relays Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays Settings.pulse_timer[2] = 0; Settings.pulse_timer[3] = 0; } uint8_t publish_power = 1; if ((POWER_OFF_NO_STATE == state) || (POWER_ON_NO_STATE == state)) { state &= 1; publish_power = 0; } if ((device < 1) || (device > devices_present)) device = 1; active_device = device; if (device <= MAX_PULSETIMERS) { SetPulseTimer(device -1, 0); } power_t mask = 1 << (device -1); // Device to control if (state <= POWER_TOGGLE) { if ((blink_mask & mask)) { blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); } if (Settings.flag.interlock && !interlock_mutex) { // Clear all but masked relay in interlock group interlock_mutex = true; for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { if (Settings.interlock[i] & mask) { // Find interlock group for (uint32_t j = 0; j < devices_present; j++) { power_t imask = 1 << j; if ((Settings.interlock[i] & imask) && (power & imask) && (mask != imask)) { ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE); delay(50); // Add some delay to make sure never have more than one relay on } } break; // An interlocked relay is only present in one group so quit } } interlock_mutex = false; } switch (state) { case POWER_OFF: { power &= (POWER_MASK ^ mask); break; } case POWER_ON: power |= mask; break; case POWER_TOGGLE: power ^= mask; } SetDevicePower(power, source); #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(device); #endif // USE_DOMOTICZ #ifdef USE_KNX KnxUpdatePowerState(device, power); #endif // USE_KNX if (publish_power && Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); } if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0); } } else if (POWER_BLINK == state) { if (!(blink_mask & mask)) { blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state blink_power = (power >> (device -1))&1; // Prep to Toggle } blink_timer = millis() + 100; blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1; blink_mask |= mask; // Set device mask MqttPublishPowerBlinkState(device); return; } else if (POWER_BLINK_STOP == state) { uint8_t flag = (blink_mask & mask); blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); if (flag) ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state return; } if (publish_power) MqttPublishPowerState(device); } void StopAllPowerBlink(void) { power_t mask; for (uint32_t i = 1; i <= devices_present; i++) { mask = 1 << (i -1); if (blink_mask & mask) { blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(i); ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state } } } void SetAllPower(uint8_t state, int source) { if ((POWER_ALL_OFF == state) || (POWER_ALL_ON == state)) { power = 0; if (POWER_ALL_ON == state) { power = (1 << devices_present) -1; } SetDevicePower(power, source); MqttPublishAllPowerState(); } } void ExecuteCommand(char *cmnd, int source) { char *start; char *token; #ifdef USE_DEBUG_DRIVER ShowFreeMem(PSTR("ExecuteCommand")); #endif ShowSource(source); token = strtok(cmnd, " "); if (token != nullptr) { start = strrchr(token, '/'); // Skip possible cmnd/sonoff/ preamble if (start) { token = start +1; } } uint16_t size = (token != nullptr) ? strlen(token) : 0; char stopic[size +2]; // / + \0 snprintf_P(stopic, sizeof(stopic), PSTR("/%s"), (token == nullptr) ? "" : token); token = strtok(nullptr, ""); size = (token != nullptr) ? strlen(token) : 0; char svalue[size +1]; strlcpy(svalue, (token == nullptr) ? "" : token, sizeof(svalue)); // Fixed 5.8.0b MqttDataHandler(stopic, (uint8_t*)svalue, strlen(svalue)); } void PublishStatus(uint8_t payload) { uint8_t option = STAT; char stemp[MAX_FRIENDLYNAMES * (sizeof(Settings.friendlyname[0]) +MAX_FRIENDLYNAMES)]; char stemp2[64]; // Workaround MQTT - TCP/IP stack queueing when SUB_PREFIX = PUB_PREFIX if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1]) && (!payload)) { option++; } // TELE if ((!Settings.flag.mqtt_enabled) && (6 == payload)) { payload = 99; } if (!energy_flg && (9 == payload)) { payload = 99; } if ((0 == payload) || (99 == payload)) { uint8_t maxfn = (devices_present > MAX_FRIENDLYNAMES) ? MAX_FRIENDLYNAMES : (!devices_present) ? 1 : devices_present; if (SONOFF_IFAN02 == my_module_type) { maxfn = 1; } stemp[0] = '\0'; for (uint32_t i = 0; i < maxfn; i++) { snprintf_P(stemp, sizeof(stemp), PSTR("%s%s\"%s\"" ), stemp, (i > 0 ? "," : ""), Settings.friendlyname[i]); } stemp2[0] = '\0'; for (uint32_t i = 0; i < MAX_SWITCHES; i++) { snprintf_P(stemp2, sizeof(stemp2), PSTR("%s%s%d" ), stemp2, (i > 0 ? "," : ""), Settings.switchmode[i]); } Response_P(PSTR("{\"" D_CMND_STATUS "\":{\"" D_CMND_MODULE "\":%d,\"" D_CMND_FRIENDLYNAME "\":[%s],\"" D_CMND_TOPIC "\":\"%s\",\"" D_CMND_BUTTONTOPIC "\":\"%s\",\"" D_CMND_POWER "\":%d,\"" D_CMND_POWERONSTATE "\":%d,\"" D_CMND_LEDSTATE "\":%d,\"" D_CMND_LEDMASK "\":\"%04X\",\"" D_CMND_SAVEDATA "\":%d,\"" D_JSON_SAVESTATE "\":%d,\"" D_CMND_SWITCHTOPIC "\":\"%s\",\"" D_CMND_SWITCHMODE "\":[%s],\"" D_CMND_BUTTONRETAIN "\":%d,\"" D_CMND_SWITCHRETAIN "\":%d,\"" D_CMND_SENSORRETAIN "\":%d,\"" D_CMND_POWERRETAIN "\":%d}}"), ModuleNr(), stemp, mqtt_topic, Settings.button_topic, power, Settings.poweronstate, Settings.ledstate, Settings.ledmask, Settings.save_data, Settings.flag.save_state, Settings.switch_topic, stemp2, Settings.flag.mqtt_button_retain, Settings.flag.mqtt_switch_retain, Settings.flag.mqtt_sensor_retain, Settings.flag.mqtt_power_retain); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS)); } if ((0 == payload) || (1 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS1_PARAMETER "\":{\"" D_JSON_BAUDRATE "\":%d,\"" D_CMND_GROUPTOPIC "\":\"%s\",\"" D_CMND_OTAURL "\":\"%s\",\"" D_JSON_RESTARTREASON "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\",\"" D_JSON_STARTUPUTC "\":\"%s\",\"" D_CMND_SLEEP "\":%d,\"" D_JSON_CONFIG_HOLDER "\":%d,\"" D_JSON_BOOTCOUNT "\":%d,\"" D_JSON_SAVECOUNT "\":%d,\"" D_JSON_SAVEADDRESS "\":\"%X\"}}"), baudrate, Settings.mqtt_grptopic, Settings.ota_url, GetResetReason().c_str(), GetUptime().c_str(), GetDateAndTime(DT_RESTART).c_str(), Settings.sleep, Settings.cfg_holder, Settings.bootcount, Settings.save_flag, GetSettingsAddress()); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "1")); } if ((0 == payload) || (2 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS2_FIRMWARE "\":{\"" D_JSON_VERSION "\":\"%s%s\",\"" D_JSON_BUILDDATETIME "\":\"%s\",\"" D_JSON_BOOTVERSION "\":%d,\"" D_JSON_COREVERSION "\":\"" ARDUINO_ESP8266_RELEASE "\",\"" D_JSON_SDKVERSION "\":\"%s\"}}"), my_version, my_image, GetBuildDateAndTime().c_str(), ESP.getBootVersion(), ESP.getSdkVersion()); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "2")); } if ((0 == payload) || (3 == payload)) { stemp2[0] = '\0'; for (uint32_t i = 0; i < PARAM8_SIZE; i++) { snprintf_P(stemp2, sizeof(stemp2), PSTR("%s%02X"), stemp2, Settings.param[i]); } Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS3_LOGGING "\":{\"" D_CMND_SERIALLOG "\":%d,\"" D_CMND_WEBLOG "\":%d,\"" D_CMND_SYSLOG "\":%d,\"" D_CMND_LOGHOST "\":\"%s\",\"" D_CMND_LOGPORT "\":%d,\"" D_CMND_SSID "\":[\"%s\",\"%s\"],\"" D_CMND_TELEPERIOD "\":%d,\"" D_JSON_RESOLUTION "\":\"%08X\",\"" D_CMND_SETOPTION "\":[\"%08X\",\"%s\",\"%08X\"]}}"), Settings.seriallog_level, Settings.weblog_level, Settings.syslog_level, Settings.syslog_host, Settings.syslog_port, Settings.sta_ssid[0], Settings.sta_ssid[1], Settings.tele_period, Settings.flag2.data, Settings.flag.data, stemp2, Settings.flag3.data); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "3")); } if ((0 == payload) || (4 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS4_MEMORY "\":{\"" D_JSON_PROGRAMSIZE "\":%d,\"" D_JSON_FREEMEMORY "\":%d,\"" D_JSON_HEAPSIZE "\":%d,\"" D_JSON_PROGRAMFLASHSIZE "\":%d,\"" D_JSON_FLASHSIZE "\":%d,\"" D_JSON_FLASHCHIPID "\":\"%06X\",\"" D_JSON_FLASHMODE "\":%d,\"" D_JSON_FEATURES "\":[\"%08X\",\"%08X\",\"%08X\",\"%08X\",\"%08X\"]}}"), ESP.getSketchSize()/1024, ESP.getFreeSketchSpace()/1024, ESP.getFreeHeap()/1024, ESP.getFlashChipSize()/1024, ESP.getFlashChipRealSize()/1024, ESP.getFlashChipId(), ESP.getFlashChipMode(), LANGUAGE_LCID, feature_drv1, feature_drv2, feature_sns1, feature_sns2); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "4")); } if ((0 == payload) || (5 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS5_NETWORK "\":{\"" D_CMND_HOSTNAME "\":\"%s\",\"" D_CMND_IPADDRESS "\":\"%s\",\"" D_JSON_GATEWAY "\":\"%s\",\"" D_JSON_SUBNETMASK "\":\"%s\",\"" D_JSON_DNSSERVER "\":\"%s\",\"" D_JSON_MAC "\":\"%s\",\"" D_CMND_WEBSERVER "\":%d,\"" D_CMND_WIFICONFIG "\":%d}}"), my_hostname, WiFi.localIP().toString().c_str(), IPAddress(Settings.ip_address[1]).toString().c_str(), IPAddress(Settings.ip_address[2]).toString().c_str(), IPAddress(Settings.ip_address[3]).toString().c_str(), WiFi.macAddress().c_str(), Settings.webserver, Settings.sta_config); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "5")); } if (((0 == payload) || (6 == payload)) && Settings.flag.mqtt_enabled) { #ifdef USE_MQTT_AWS_IOT Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS6_MQTT "\":{\"" D_CMND_MQTTHOST "\":\"%s%s\",\"" D_CMND_MQTTPORT "\":%d,\"" D_CMND_MQTTCLIENT D_JSON_MASK "\":\"%s\",\"" D_CMND_MQTTCLIENT "\":\"%s\",\"" D_JSON_MQTT_COUNT "\":%d,\"MAX_PACKET_SIZE\":%d,\"KEEPALIVE\":%d}}"), Settings.mqtt_user, Settings.mqtt_host, Settings.mqtt_port, Settings.mqtt_client, mqtt_client, MqttConnectCount(), MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE); #else Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS6_MQTT "\":{\"" D_CMND_MQTTHOST "\":\"%s\",\"" D_CMND_MQTTPORT "\":%d,\"" D_CMND_MQTTCLIENT D_JSON_MASK "\":\"%s\",\"" D_CMND_MQTTCLIENT "\":\"%s\",\"" D_CMND_MQTTUSER "\":\"%s\",\"" D_JSON_MQTT_COUNT "\":%d,\"MAX_PACKET_SIZE\":%d,\"KEEPALIVE\":%d}}"), Settings.mqtt_host, Settings.mqtt_port, Settings.mqtt_client, mqtt_client, Settings.mqtt_user, MqttConnectCount(), MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE); #endif MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "6")); } if ((0 == payload) || (7 == payload)) { if (99 == Settings.timezone) { snprintf_P(stemp, sizeof(stemp), PSTR("%d" ), Settings.timezone); } else { snprintf_P(stemp, sizeof(stemp), PSTR("\"%s\"" ), GetTimeZone().c_str()); } #if defined(USE_TIMERS) && defined(USE_SUNRISE) Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s,\"" D_JSON_SUNRISE "\":\"%s\",\"" D_JSON_SUNSET "\":\"%s\"}}"), GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp, GetSun(0).c_str(), GetSun(1).c_str()); #else Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s}}"), GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp); #endif // USE_TIMERS and USE_SUNRISE MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "7")); } if (energy_flg) { if ((0 == payload) || (9 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":%d,\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\"" D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\"" D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d}}"), Settings.energy_power_delta, Settings.energy_min_power, Settings.energy_max_power, Settings.energy_min_voltage, Settings.energy_max_voltage, Settings.energy_min_current, Settings.energy_max_current); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "9")); } } if ((0 == payload) || (8 == payload) || (10 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS10_SENSOR "\":")); MqttShowSensor(); ResponseJsonEnd(); if (8 == payload) { MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "8")); } else { MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "10")); } } if ((0 == payload) || (11 == payload)) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS11_STATUS "\":")); MqttShowState(); ResponseJsonEnd(); MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "11")); } } void MqttShowPWMState(void) { ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{")); bool first = true; for (uint32_t i = 0; i < MAX_PWMS; i++) { if (pin[GPIO_PWM1 + i] < 99) { ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings.pwm_value[i]); first = false; } } ResponseJsonEnd(); } void MqttShowState(void) { char stemp1[33]; ResponseAppend_P(PSTR("{\"" D_JSON_TIME "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str(), GetUptime().c_str()); #ifdef USE_ADC_VCC dtostrfd((double)ESP.getVcc()/1000, 3, stemp1); ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1); #endif ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u"), ESP.getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), sleep, loop_load_avg); for (uint32_t i = 0; i < devices_present; i++) { #ifdef USE_LIGHT if (i == light_device -1) { LightState(1); } else { #endif ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i +1, sizeof(stemp1), Settings.flag.device_index_enable), GetStateText(bitRead(power, i))); if (SONOFF_IFAN02 == my_module_type) { ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed()); break; } #ifdef USE_LIGHT } #endif } if (pwm_present) { ResponseAppend_P(PSTR(",")); MqttShowPWMState(); } ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}}"), Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], WiFi.BSSIDstr().c_str(), WiFi.channel(), WifiGetRssiAsQuality(WiFi.RSSI()), WifiLinkCount(), WifiDowntime().c_str()); } void MqttPublishTeleState(void) { mqtt_data[0] = '\0'; MqttShowState(); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN); #ifdef USE_SCRIPT RulesTeleperiod(); // Allow rule based HA messages #endif // USE_SCRIPT } bool MqttShowSensor(void) { ResponseAppend_P(PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str()); int json_data_start = strlen(mqtt_data); for (uint32_t i = 0; i < MAX_SWITCHES; i++) { #ifdef USE_TM1638 if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) { #else if (pin[GPIO_SWT1 +i] < 99) { #endif // USE_TM1638 bool swm = ((FOLLOW_INV == Settings.switchmode[i]) || (PUSHBUTTON_INV == Settings.switchmode[i]) || (PUSHBUTTONHOLD_INV == Settings.switchmode[i])); ResponseAppend_P(PSTR(",\"" D_JSON_SWITCH "%d\":\"%s\""), i +1, GetStateText(swm ^ SwitchLastState(i))); } } XsnsCall(FUNC_JSON_APPEND); bool json_data_available = (strlen(mqtt_data) - json_data_start); if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) { ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str()); } if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE)) != nullptr) { ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit()); } ResponseJsonEnd(); if (json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); } return json_data_available; } /********************************************************************************************/ void PerformEverySecond(void) { uptime++; if (ntp_synced_message) { // Moved here to fix syslog UDP exception 9 during RtcSecond AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "(" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"), GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str()); ntp_synced_message = false; } if (BOOT_LOOP_TIME == uptime) { RtcReboot.fast_reboot_count = 0; RtcRebootSave(); Settings.bootcount++; // Moved to here to stop flash writes during start-up AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount); } if ((4 == uptime) && (SONOFF_IFAN02 == my_module_type)) { // Microcontroller needs 3 seconds before accepting commands SetDevicePower(1, SRC_RETRY); // Sync with default power on state microcontroller being Light ON and Fan OFF SetDevicePower(power, SRC_RETRY); // Set required power on state } if (seriallog_timer) { seriallog_timer--; if (!seriallog_timer) { if (seriallog_level) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED)); } seriallog_level = 0; } } if (syslog_timer) { // Restore syslog level syslog_timer--; if (!syslog_timer) { syslog_level = Settings.syslog_level; if (Settings.syslog_level) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose) } } } ResetGlobalValues(); if (Settings.tele_period) { tele_period++; if (tele_period == Settings.tele_period -1) { XsnsCall(FUNC_PREP_BEFORE_TELEPERIOD); } if (tele_period >= Settings.tele_period) { tele_period = 0; MqttPublishTeleState(); mqtt_data[0] = '\0'; if (MqttShowSensor()) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); #if defined(USE_RULES) || defined(USE_SCRIPT) RulesTeleperiod(); // Allow rule based HA messages #endif // USE_RULES } } } XdrvCall(FUNC_EVERY_SECOND); XsnsCall(FUNC_EVERY_SECOND); if ((2 == RtcTime.minute) && latest_uptime_flag) { latest_uptime_flag = false; Response_P(PSTR("{\"" D_JSON_TIME "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\"}"), GetDateAndTime(DT_LOCAL).c_str(), GetUptime().c_str()); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_UPTIME)); } if ((3 == RtcTime.minute) && !latest_uptime_flag) latest_uptime_flag = true; } /*********************************************************************************************\ * State loops \*********************************************************************************************/ /*-------------------------------------------------------------------------------------------*\ * Every 0.1 second \*-------------------------------------------------------------------------------------------*/ void Every100mSeconds(void) { // As the max amount of sleep = 250 mSec this loop will shift in time... power_t power_now; if (latching_relay_pulse) { latching_relay_pulse--; if (!latching_relay_pulse) SetLatchingRelay(0, 0); } for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) { if (pulse_timer[i] != 0L) { // Timer active? if (TimeReached(pulse_timer[i])) { // Timer finished? pulse_timer[i] = 0L; // Turn off this timer ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER); } } } if (blink_mask) { if (TimeReached(blink_timer)) { SetNextTimeInterval(blink_timer, 100 * Settings.blinktime); blink_counter--; if (!blink_counter) { StopAllPowerBlink(); } else { blink_power ^= 1; power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0); SetDevicePower(power_now, SRC_IGNORE); } } } // Backlog if (TimeReached(backlog_delay)) { if ((backlog_pointer != backlog_index) && !backlog_mutex) { backlog_mutex = true; ExecuteCommand((char*)backlog[backlog_pointer].c_str(), SRC_BACKLOG); backlog_mutex = false; backlog_pointer++; if (backlog_pointer >= MAX_BACKLOG) { backlog_pointer = 0; } } } } /*-------------------------------------------------------------------------------------------*\ * Every 0.25 second \*-------------------------------------------------------------------------------------------*/ void Every250mSeconds(void) { // As the max amount of sleep = 250 mSec this loop should always be taken... uint8_t blinkinterval = 1; state_250mS++; state_250mS &= 0x3; if (mqtt_cmnd_publish) mqtt_cmnd_publish--; // Clean up if (!Settings.flag.global_state) { // Problem blinkyblinky enabled if (global_state.data) { // Any problem if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest) if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow) blinks = 201; // Allow only a single blink in case the problem is solved } } if (blinks || restart_flag || ota_state_flag) { if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit blinkstate = true; // Stay lit } else { blinkspeed--; if (!blinkspeed) { blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds blinkstate ^= 1; // Blink } } if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) { SetLedLink(blinkstate); // Set led on or off } if (!blinkstate) { blinks--; if (200 == blinks) blinks = 0; // Disable blink } } else if (Settings.ledstate &1) { bool tstate = power & Settings.ledmask; if ((SONOFF_TOUCH == my_module_type) || (SONOFF_T11 == my_module_type) || (SONOFF_T12 == my_module_type) || (SONOFF_T13 == my_module_type)) { tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark } SetLedPower(tstate); } /*-------------------------------------------------------------------------------------------*\ * Every second at 0.25 second interval \*-------------------------------------------------------------------------------------------*/ switch (state_250mS) { case 0: // Every x.0 second PerformEverySecond(); if (ota_state_flag && (backlog_pointer == backlog_index)) { ota_state_flag--; if (2 == ota_state_flag) { ota_url = Settings.ota_url; RtcSettings.ota_loader = 0; // Try requested image first ota_retry_counter = OTA_ATTEMPTS; ESPhttpUpdate.rebootOnUpdate(false); SettingsSave(1); // Free flash for OTA update } if (ota_state_flag <= 0) { #ifdef USE_WEBSERVER if (Settings.webserver) StopWebserver(); #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF ota_state_flag = 92; ota_result = 0; ota_retry_counter--; if (ota_retry_counter) { strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data)); #ifndef FIRMWARE_MINIMAL if (RtcSettings.ota_loader) { char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it char *pch = strrchr((bch != nullptr) ? bch : mqtt_data, '-'); // Change from filename-DE.bin into filename-minimal.bin char *ech = strrchr((bch != nullptr) ? bch : mqtt_data, '.'); // Change from filename.bin into filename-minimal.bin if (!pch) { pch = ech; } if (pch) { mqtt_data[pch - mqtt_data] = '\0'; char *ech = strrchr(Settings.ota_url, '.'); // Change from filename.bin into filename-minimal.bin snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ech); // Minimal filename must be filename-minimal } } #endif // FIRMWARE_MINIMAL AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s"), mqtt_data); #if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data)); #else // If using core stage or 2.5.0+ the syntax has changed WiFiClient OTAclient; ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data)); #endif if (!ota_result) { #ifndef FIRMWARE_MINIMAL int ota_error = ESPhttpUpdate.getLastError(); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "Ota error %d"), ota_error); if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) { RtcSettings.ota_loader = 1; // Try minimal image next } #endif // FIRMWARE_MINIMAL ota_state_flag = 2; // Upgrade failed - retry } } } if (90 == ota_state_flag) { // Allow MQTT to reconnect ota_state_flag = 0; if (ota_result) { // SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285 Response_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING)); } else { Response_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str()); } restart_flag = 2; // Restart anyway to keep memory clean webserver MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE)); } } break; case 1: // Every x.25 second if (MidnightNow()) { XsnsCall(FUNC_SAVE_AT_MIDNIGHT); } if (save_data_counter && (backlog_pointer == backlog_index)) { save_data_counter--; if (save_data_counter <= 0) { if (Settings.flag.save_state) { power_t mask = POWER_MASK; for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) { if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds mask &= ~(1 << i); } } if (!((Settings.power &mask) == (power &mask))) { Settings.power = power; } } else { Settings.power = 0; } SettingsSave(0); save_data_counter = Settings.save_data; } } if (restart_flag && (backlog_pointer == backlog_index)) { if ((214 == restart_flag) || (215 == restart_flag) || (216 == restart_flag)) { char storage_wifi[sizeof(Settings.sta_ssid) + sizeof(Settings.sta_pwd)]; char storage_mqtt[sizeof(Settings.mqtt_host) + sizeof(Settings.mqtt_port) + sizeof(Settings.mqtt_client) + sizeof(Settings.mqtt_user) + sizeof(Settings.mqtt_pwd) + sizeof(Settings.mqtt_topic)]; memcpy(storage_wifi, Settings.sta_ssid, sizeof(storage_wifi)); // Backup current SSIDs and Passwords if (216 == restart_flag) { memcpy(storage_mqtt, Settings.mqtt_host, sizeof(storage_mqtt)); // Backup mqtt host, port, client, username and password } if ((215 == restart_flag) || (216 == restart_flag)) { SettingsErase(0); // Erase all flash from program end to end of physical flash } SettingsDefault(); memcpy(Settings.sta_ssid, storage_wifi, sizeof(storage_wifi)); // Restore current SSIDs and Passwords if (216 == restart_flag) { memcpy(Settings.mqtt_host, storage_mqtt, sizeof(storage_mqtt)); // Restore the mqtt host, port, client, username and password strlcpy(Settings.mqtt_client, MQTT_CLIENT_ID, sizeof(Settings.mqtt_client)); // Set client to default } restart_flag = 2; } else if (213 == restart_flag) { SettingsSdkErase(); // Erase flash SDK parameters restart_flag = 2; } else if (212 == restart_flag) { SettingsErase(0); // Erase all flash from program end to end of physical flash restart_flag = 211; } if (211 == restart_flag) { SettingsDefault(); restart_flag = 2; } if (2 == restart_flag) { SettingsSaveAll(); } restart_flag--; if (restart_flag <= 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING)); EspRestart(); } } break; case 2: // Every x.5 second WifiCheck(wifi_state_flag); wifi_state_flag = WIFI_RESTART; break; case 3: // Every x.75 second if (!global_state.wifi_down) { MqttCheck(); } break; } } #ifdef USE_ARDUINO_OTA /*********************************************************************************************\ * Allow updating via the Arduino OTA-protocol. * * - Once started disables current wifi clients and udp * - Perform restart when done to re-init wifi clients \*********************************************************************************************/ bool arduino_ota_triggered = false; uint16_t arduino_ota_progress_dot_count = 0; void ArduinoOTAInit(void) { ArduinoOTA.setPort(8266); ArduinoOTA.setHostname(my_hostname); if (Settings.web_password[0] !=0) { ArduinoOTA.setPassword(Settings.web_password); } ArduinoOTA.onStart([]() { SettingsSave(1); // Free flash for OTA update #ifdef USE_WEBSERVER if (Settings.webserver) { StopWebserver(); } #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF if (Settings.flag.mqtt_enabled) { MqttDisconnect(); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED)); arduino_ota_triggered = true; arduino_ota_progress_dot_count = 0; delay(100); // Allow time for message xfer }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { if ((LOG_LEVEL_DEBUG <= seriallog_level)) { arduino_ota_progress_dot_count++; Serial.printf("."); if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); } } }); ArduinoOTA.onError([](ota_error_t error) { /* From ArduinoOTA.h: typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t; */ char error_str[100]; if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); } switch (error) { case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break; case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break; case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break; default: snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str); EspRestart(); }); ArduinoOTA.onEnd([]() { if ((LOG_LEVEL_DEBUG <= seriallog_level)) { Serial.println(); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING)); EspRestart(); }); ArduinoOTA.begin(); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266")); } #endif // USE_ARDUINO_OTA /********************************************************************************************/ void SerialInput(void) { while (Serial.available()) { // yield(); delay(0); serial_in_byte = Serial.read(); /*-------------------------------------------------------------------------------------------*\ * Sonoff dual and ch4 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) { serial_in_byte = ButtonSerial(serial_in_byte); } /*-------------------------------------------------------------------------------------------*/ if (XdrvCall(FUNC_SERIAL)) { serial_in_byte_counter = 0; Serial.flush(); return; } /*-------------------------------------------------------------------------------------------*/ if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed serial_in_byte_counter = 0; Serial.flush(); return; } if (!Settings.flag.mqtt_serial) { // SerialSend active if (isprint(serial_in_byte)) { // Any char between 32 and 127 if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits serial_in_buffer[serial_in_byte_counter++] = serial_in_byte; } else { serial_in_byte_counter = 0; } } } else { if (serial_in_byte || Settings.flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255) if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ... ((isprint(serial_in_byte) && (128 == Settings.serial_delimiter)) || // Any char between 32 and 127 ((serial_in_byte != Settings.serial_delimiter) && (128 != Settings.serial_delimiter)) || // Any char between 1 and 127 and not being delimiter Settings.flag.mqtt_serial_raw)) { // Any char between 0 and 255 serial_in_buffer[serial_in_byte_counter++] = serial_in_byte; serial_polling_window = millis(); } else { serial_polling_window = 0; // Reception done - send mqtt break; } } } /*-------------------------------------------------------------------------------------------*\ * Sonoff SC 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if (SONOFF_SC == my_module_type) { if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed SonoffScSerialInput(serial_in_buffer); serial_in_byte_counter = 0; Serial.flush(); return; } } /*-------------------------------------------------------------------------------------------*/ else if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) { serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level; AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer); ExecuteCommand(serial_in_buffer, SRC_SERIAL); serial_in_byte_counter = 0; serial_polling_window = 0; Serial.flush(); return; } } if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) { serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed if (!Settings.flag.mqtt_serial_raw) { Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":\"%s\"}"), serial_in_buffer); } else { Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":\"")); for (uint32_t i = 0; i < serial_in_byte_counter; i++) { ResponseAppend_P(PSTR("%02x"), serial_in_buffer[i]); } ResponseAppend_P(PSTR("\"}")); } MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED)); XdrvRulesProcess(); serial_in_byte_counter = 0; } } /********************************************************************************************/ void GpioInit(void) { uint8_t mpin; if (!ValidModule(Settings.module)) { uint8_t module = MODULE; if (!ValidModule(MODULE)) { module = SONOFF_BASIC; } Settings.module = module; Settings.last_module = module; } SetModuleType(); if (Settings.module != Settings.last_module) { baudrate = APP_BAUDRATE; } for (uint32_t i = 0; i < sizeof(Settings.user_template.gp); i++) { if ((Settings.user_template.gp.io[i] >= GPIO_SENSOR_END) && (Settings.user_template.gp.io[i] < GPIO_USER)) { Settings.user_template.gp.io[i] = GPIO_USER; // Fix not supported sensor ids in template } } myio def_gp; ModuleGpios(&def_gp); for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { if ((Settings.my_gp.io[i] >= GPIO_SENSOR_END) && (Settings.my_gp.io[i] < GPIO_USER)) { Settings.my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module } else if (Settings.my_gp.io[i] > GPIO_NONE) { my_module.io[i] = Settings.my_gp.io[i]; // Set User selected Module sensors } if ((def_gp.io[i] > GPIO_NONE) && (def_gp.io[i] < GPIO_USER)) { my_module.io[i] = def_gp.io[i]; // Force Template override } } if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) { Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module } else if (Settings.my_adc0 > ADC0_NONE) { my_adc0 = Settings.my_adc0; // Set User selected Module sensors } my_module_flag = ModuleFlag(); uint8_t template_adc0 = my_module_flag.data &15; if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) { my_adc0 = template_adc0; // Force Template override } for (uint32_t i = 0; i < GPIO_MAX; i++) { pin[i] = 99; } for (uint32_t i = 0; i < sizeof(my_module.io); i++) { mpin = ValidPin(i, my_module.io[i]); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: gpio pin %d, mpin %d"), i, mpin); if (mpin) { if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) { SwitchPullupFlag(mpin - GPIO_SWT1_NP); mpin -= (GPIO_SWT1_NP - GPIO_SWT1); } else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) { ButtonPullupFlag(mpin - GPIO_KEY1_NP); // 0 .. 3 mpin -= (GPIO_KEY1_NP - GPIO_KEY1); } else if ((mpin >= GPIO_KEY1_INV) && (mpin < (GPIO_KEY1_INV + MAX_KEYS))) { ButtonInvertFlag(mpin - GPIO_KEY1_INV); // 0 .. 3 mpin -= (GPIO_KEY1_INV - GPIO_KEY1); } else if ((mpin >= GPIO_KEY1_INV_NP) && (mpin < (GPIO_KEY1_INV_NP + MAX_KEYS))) { ButtonPullupFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3 ButtonInvertFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3 mpin -= (GPIO_KEY1_INV_NP - GPIO_KEY1); } else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) { bitSet(rel_inverted, mpin - GPIO_REL1_INV); mpin -= (GPIO_REL1_INV - GPIO_REL1); } else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) { bitSet(led_inverted, mpin - GPIO_LED1_INV); mpin -= (GPIO_LED1_INV - GPIO_LED1); } else if (mpin == GPIO_LEDLNK_INV) { ledlnk_inverted = 1; mpin -= (GPIO_LEDLNK_INV - GPIO_LEDLNK); } else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) { bitSet(pwm_inverted, mpin - GPIO_PWM1_INV); mpin -= (GPIO_PWM1_INV - GPIO_PWM1); } else if ((mpin >= GPIO_CNTR1_NP) && (mpin < (GPIO_CNTR1_NP + MAX_COUNTERS))) { bitSet(counter_no_pullup, mpin - GPIO_CNTR1_NP); mpin -= (GPIO_CNTR1_NP - GPIO_CNTR1); } #ifdef USE_DHT else if ((mpin >= GPIO_DHT11) && (mpin <= GPIO_SI7021)) { if (DhtSetup(i, mpin)) { dht_flg = true; mpin = GPIO_DHT11; } else { mpin = 0; } } #endif // USE_DHT } if (mpin) pin[mpin] = i; } if ((2 == pin[GPIO_TXD]) || (H801 == my_module_type)) { Serial.set_tx(2); } analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h) analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c) #ifdef USE_SPI spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12))); if (spi_flg) { for (uint32_t i = 0; i < GPIO_MAX; i++) { if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99; } my_module.io[12] = GPIO_SPI_MISO; pin[GPIO_SPI_MISO] = 12; my_module.io[13] = GPIO_SPI_MOSI; pin[GPIO_SPI_MOSI] = 13; my_module.io[14] = GPIO_SPI_CLK; pin[GPIO_SPI_CLK] = 14; } soft_spi_flg = ((pin[GPIO_SSPI_CS] < 99) && (pin[GPIO_SSPI_SCLK] < 99) && ((pin[GPIO_SSPI_MOSI] < 99) || (pin[GPIO_SSPI_MOSI] < 99))); #endif // USE_SPI #ifdef USE_I2C i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99)); if (i2c_flg) { Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]); } #endif // USE_I2C devices_present = 1; light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0 #ifdef USE_LIGHT if (Settings.flag.pwm_control) { for (uint32_t i = 0; i < MAX_PWMS; i++) { if (pin[GPIO_PWM1 +i] < 99) { light_type++; } // Use Dimmer/Color control for all PWM as SetOption15 = 1 } } #endif // USE_LIGHT if (SONOFF_BRIDGE == my_module_type) { Settings.flag.mqtt_serial = 0; baudrate = 19200; } if (XdrvCall(FUNC_MODULE_INIT)) { // Serviced } else if (YTF_IR_BRIDGE == my_module_type) { ClaimSerial(); // Stop serial loopback mode } else if (SONOFF_DUAL == my_module_type) { Settings.flag.mqtt_serial = 0; devices_present = 2; baudrate = 19200; } else if (CH4 == my_module_type) { Settings.flag.mqtt_serial = 0; devices_present = 4; baudrate = 19200; } else if (SONOFF_SC == my_module_type) { Settings.flag.mqtt_serial = 0; devices_present = 0; baudrate = 19200; } #ifdef USE_LIGHT else if (SONOFF_BN == my_module_type) { // PWM Single color led (White) light_type = LT_PWM1; } else if (SONOFF_LED == my_module_type) { // PWM Dual color led (White warm and cold) light_type = LT_PWM2; } else if (AILIGHT == my_module_type) { // RGBW led light_type = LT_RGBW; } else if (SONOFF_B1 == my_module_type) { // RGBWC led light_type = LT_RGBWC; } #endif // USE_LIGHT else { if (!light_type) { devices_present = 0; } for (uint32_t i = 0; i < MAX_RELAYS; i++) { if (pin[GPIO_REL1 +i] < 99) { pinMode(pin[GPIO_REL1 +i], OUTPUT); devices_present++; if (EXS_RELAY == my_module_type) { digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0); if (i &1) { devices_present--; } } } } } for (uint32_t i = 0; i < MAX_LEDS; i++) { if (pin[GPIO_LED1 +i] < 99) { #ifdef USE_ARILUX_RF if ((3 == i) && (leds_present < 2) && (99 == pin[GPIO_ARIRFSEL])) { pin[GPIO_ARIRFSEL] = pin[GPIO_LED4]; // Legacy support where LED4 was Arilux RF enable pin[GPIO_LED4] = 99; } else { #endif pinMode(pin[GPIO_LED1 +i], OUTPUT); leds_present++; digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i)); #ifdef USE_ARILUX_RF } #endif } } if (pin[GPIO_LEDLNK] < 99) { pinMode(pin[GPIO_LEDLNK], OUTPUT); digitalWrite(pin[GPIO_LEDLNK], ledlnk_inverted); } ButtonInit(); SwitchInit(); #ifdef ROTARY_V1 RotaryInit(); #endif #ifdef USE_LIGHT #ifdef USE_WS2812 if (!light_type && (pin[GPIO_WS2812] < 99)) { // RGB led devices_present++; light_type = LT_WS2812; } #endif // USE_WS2812 #ifdef USE_SM16716 if (SM16716_ModuleSelected()) { light_type += 3; light_type |= LT_SM16716; } #endif // USE_SM16716 #endif // USE_LIGHT if (!light_type) { for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only if (pin[GPIO_PWM1 +i] < 99) { pwm_present = true; pinMode(pin[GPIO_PWM1 +i], OUTPUT); analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]); } } } SetLedPower(Settings.ledstate &8); SetLedLink(Settings.ledstate &8); XdrvCall(FUNC_PRE_INIT); } extern "C" { extern struct rst_info resetInfo; } void setup(void) { global_state.data = 3; // Init global state (wifi_down, mqtt_down) to solve possible network issues RtcRebootLoad(); if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; } RtcReboot.fast_reboot_count++; RtcRebootSave(); Serial.begin(baudrate); delay(10); Serial.println(); seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0 if (VERSION & 0xff) { // Development or patched version 6.3.0.10 snprintf_P(my_version, sizeof(my_version), PSTR("%s.%d"), my_version, VERSION & 0xff); } char code_image[20]; snprintf_P(my_image, sizeof(my_image), PSTR("(%s)"), GetTextIndexed(code_image, sizeof(code_image), CODE_IMAGE, kCodeImage)); SettingsLoad(); SettingsDelta(); OsWatchInit(); GetFeatures(); if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well XdrvCall(FUNC_SETTINGS_OVERRIDE); } baudrate = Settings.baudrate * 1200; // mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START]; seriallog_level = Settings.seriallog_level; seriallog_timer = SERIALLOG_TIMER; syslog_level = Settings.syslog_level; stop_flash_rotate = Settings.flag.stop_flash_rotate; save_data_counter = Settings.save_data; sleep = Settings.sleep; #ifndef USE_EMULATION Settings.flag2.emulation = 0; #else #ifndef USE_EMULATION_WEMO if (EMUL_WEMO == Settings.flag2.emulation) { Settings.flag2.emulation = 0; } #endif #ifndef USE_EMULATION_HUE if (EMUL_HUE == Settings.flag2.emulation) { Settings.flag2.emulation = 0; } #endif #endif // USE_EMULATION if (Settings.param[P_BOOT_LOOP_OFFSET]) { // Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts) if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET]) { // Restart twice Settings.flag3.user_esp8285_enable = 0; // Disable ESP8285 Generic GPIOs interfering with flash SPI if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times for (uint32_t i = 0; i < MAX_RULE_SETS; i++) { if (bitRead(Settings.rule_stop, i)) { bitWrite(Settings.rule_enabled, i, 0); // Disable rules causing boot loop } } } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times Settings.rule_enabled = 0; // Disable all rules } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors } Settings.my_adc0 = ADC0_NONE; // Reset user defined ADC0 disabling sensors } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times Settings.module = SONOFF_BASIC; // Reset module to Sonoff Basic // Settings.last_module = SONOFF_BASIC; } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count); } } Format(mqtt_client, Settings.mqtt_client, sizeof(mqtt_client)); Format(mqtt_topic, Settings.mqtt_topic, sizeof(mqtt_topic)); if (strstr(Settings.hostname, "%") != nullptr) { strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname)); snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname, mqtt_topic, ESP.getChipId() & 0x1FFF); } else { snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname); } GpioInit(); SetSerialBaudrate(baudrate); WifiConnect(); if (MOTOR == my_module_type) { Settings.poweronstate = POWER_ALL_ON; } // Needs always on else in limbo! if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { SetDevicePower(1, SRC_RESTART); } else { if ((resetInfo.reason == REASON_DEFAULT_RST) || (resetInfo.reason == REASON_EXT_SYS_RST)) { switch (Settings.poweronstate) { case POWER_ALL_OFF: case POWER_ALL_OFF_PULSETIME_ON: power = 0; SetDevicePower(power, SRC_RESTART); break; case POWER_ALL_ON: // All on power = (1 << devices_present) -1; SetDevicePower(power, SRC_RESTART); break; case POWER_ALL_SAVED_TOGGLE: power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK; if (Settings.flag.save_state) { SetDevicePower(power, SRC_RESTART); } break; case POWER_ALL_SAVED: power = Settings.power & ((1 << devices_present) -1); if (Settings.flag.save_state) { SetDevicePower(power, SRC_RESTART); } break; } } else { power = Settings.power & ((1 << devices_present) -1); if (Settings.flag.save_state) { SetDevicePower(power, SRC_RESTART); } } } // Issue #526 and #909 for (uint32_t i = 0; i < devices_present; i++) { if (!Settings.flag3.no_power_feedback) { // #5594 and #5663 if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) { bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i)); } } if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) { SetPulseTimer(i, Settings.pulse_timer[i]); } } blink_powersave = power; AddLog_P2(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s %s " D_VERSION " %s%s-" ARDUINO_ESP8266_RELEASE), PROJECT, Settings.friendlyname[0], my_version, my_image); #ifdef FIRMWARE_MINIMAL AddLog_P2(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION)); #endif // FIRMWARE_MINIMAL RtcInit(); #ifdef USE_ARDUINO_OTA ArduinoOTAInit(); #endif // USE_ARDUINO_OTA XdrvCall(FUNC_INIT); XsnsCall(FUNC_INIT); } uint32_t _counter = 0; void loop(void) { uint32_t my_sleep = millis(); XdrvCall(FUNC_LOOP); XsnsCall(FUNC_LOOP); OsWatchLoop(); ButtonLoop(); SwitchLoop(); #ifdef ROTARY_V1 RotaryLoop(); #endif if (TimeReached(state_50msecond)) { SetNextTimeInterval(state_50msecond, 50); XdrvCall(FUNC_EVERY_50_MSECOND); XsnsCall(FUNC_EVERY_50_MSECOND); } if (TimeReached(state_100msecond)) { SetNextTimeInterval(state_100msecond, 100); Every100mSeconds(); XdrvCall(FUNC_EVERY_100_MSECOND); XsnsCall(FUNC_EVERY_100_MSECOND); } if (TimeReached(state_250msecond)) { SetNextTimeInterval(state_250msecond, 250); Every250mSeconds(); XdrvCall(FUNC_EVERY_250_MSECOND); XsnsCall(FUNC_EVERY_250_MSECOND); } if (!serial_local) { SerialInput(); } #ifdef USE_ARDUINO_OTA MDNS.update(); ArduinoOTA.handle(); // Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails) while (arduino_ota_triggered) ArduinoOTA.handle(); #endif // USE_ARDUINO_OTA uint32_t my_activity = millis() - my_sleep; if (Settings.flag3.sleep_normal) { // yield(); // yield == delay(0), delay contains yield, auto yield in loop delay(sleep); // https://github.com/esp8266/Arduino/issues/2021 } else { if (my_activity < (uint32_t)sleep) { delay((uint32_t)sleep - my_activity); // Provide time for background tasks like wifi } else { if (global_state.wifi_down) { delay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/3 of my_activity period } } } if (!my_activity) { my_activity++; } // We cannot divide by 0 uint32_t loop_delay = sleep; if (!loop_delay) { loop_delay++; } // We cannot divide by 0 uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second uint32_t this_cycle_ratio = 100 * my_activity / loop_delay; loop_load_avg = loop_load_avg - (loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one }