/* xnrg_01_hlw8012.ino - HLW8012 (Sonoff Pow) energy sensor support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_HLW8012 /*********************************************************************************************\ * HLW8012, BL0937 or HJL-01 - Energy (Sonoff Pow, HuaFan, KMC70011, BlitzWolf) * * Based on Source: Shenzhen Heli Technology Co., Ltd \*********************************************************************************************/ #define XNRG_01 1 // Energy model type 0 (GPIO_HLW_CF) - HLW8012 based (Sonoff Pow, KMC70011, HuaFan, AplicWDP303075) #define HLW_PREF 10000 // 1000.0W #define HLW_UREF 2200 // 220.0V #define HLW_IREF 4545 // 4.545A // Energy model type 1 (GPIO_HJL_CF) - HJL-01/BL0937 based (BlitzWolf, Homecube, Gosund, Teckin) #define HJL_PREF 1362 #define HJL_UREF 822 #define HJL_IREF 3300 #define HLW_POWER_PROBE_TIME 10 // Number of seconds to probe for power before deciding none used (low power pulse can take up to 10 seconds) #define HLW_SAMPLE_COUNT 10 // Max number of samples per cycle //#define HLW_DEBUG #ifdef HLW_DEBUG unsigned long hlw_debug[HLW_SAMPLE_COUNT]; #endif unsigned long hlw_cf_pulse_length = 0; unsigned long hlw_cf_pulse_last_time = 0; unsigned long hlw_cf_power_pulse_length = 0; unsigned long hlw_cf1_pulse_length = 0; unsigned long hlw_cf1_pulse_last_time = 0; unsigned long hlw_cf1_summed_pulse_length = 0; unsigned long hlw_cf1_pulse_counter = 0; unsigned long hlw_cf1_voltage_pulse_length = 0; unsigned long hlw_cf1_current_pulse_length = 0; unsigned long hlw_energy_period_counter = 0; unsigned long hlw_power_ratio = 0; unsigned long hlw_voltage_ratio = 0; unsigned long hlw_current_ratio = 0; uint8_t hlw_select_ui_flag = 0; uint8_t hlw_ui_flag = 1; uint8_t hlw_model_type = 0; uint8_t hlw_load_off = 1; uint8_t hlw_cf1_timer = 0; uint8_t hlw_power_retry = 0; // Fix core 2.5.x ISR not in IRAM Exception #ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception void HlwCfInterrupt(void) ICACHE_RAM_ATTR; void HlwCf1Interrupt(void) ICACHE_RAM_ATTR; #endif // USE_WS2812_DMA void HlwCfInterrupt(void) // Service Power { unsigned long us = micros(); if (hlw_load_off) { // Restart plen measurement hlw_cf_pulse_last_time = us; hlw_load_off = 0; } else { hlw_cf_pulse_length = us - hlw_cf_pulse_last_time; hlw_cf_pulse_last_time = us; hlw_energy_period_counter++; } energy_data_valid = 0; } void HlwCf1Interrupt(void) // Service Voltage and Current { unsigned long us = micros(); hlw_cf1_pulse_length = us - hlw_cf1_pulse_last_time; hlw_cf1_pulse_last_time = us; if ((hlw_cf1_timer > 2) && (hlw_cf1_timer < 8)) { // Allow for 300 mSec set-up time and measure for up to 1 second hlw_cf1_summed_pulse_length += hlw_cf1_pulse_length; #ifdef HLW_DEBUG hlw_debug[hlw_cf1_pulse_counter] = hlw_cf1_pulse_length; #endif hlw_cf1_pulse_counter++; if (HLW_SAMPLE_COUNT == hlw_cf1_pulse_counter) { hlw_cf1_timer = 8; // We need up to HLW_SAMPLE_COUNT samples within 1 second (low current could take up to 0.3 second) } } energy_data_valid = 0; } /********************************************************************************************/ void HlwEvery200ms(void) { unsigned long cf1_pulse_length = 0; unsigned long hlw_w = 0; unsigned long hlw_u = 0; unsigned long hlw_i = 0; if (micros() - hlw_cf_pulse_last_time > (HLW_POWER_PROBE_TIME * 1000000)) { hlw_cf_pulse_length = 0; // No load for some time hlw_load_off = 1; } hlw_cf_power_pulse_length = hlw_cf_pulse_length; if (hlw_cf_power_pulse_length && energy_power_on && !hlw_load_off) { hlw_w = (hlw_power_ratio * Settings.energy_power_calibration) / hlw_cf_power_pulse_length; // W *10 energy_active_power = (float)hlw_w / 10; hlw_power_retry = 1; // Workaround issue #5161 } else { if (hlw_power_retry) { hlw_power_retry--; } else { energy_active_power = 0; } } if (pin[GPIO_NRG_CF1] < 99) { hlw_cf1_timer++; if (hlw_cf1_timer >= 8) { hlw_cf1_timer = 0; hlw_select_ui_flag = (hlw_select_ui_flag) ? 0 : 1; if (pin[GPIO_NRG_SEL] < 99) { digitalWrite(pin[GPIO_NRG_SEL], hlw_select_ui_flag); } if (hlw_cf1_pulse_counter) { cf1_pulse_length = hlw_cf1_summed_pulse_length / hlw_cf1_pulse_counter; } #ifdef HLW_DEBUG // Debugging for calculating mean and median char stemp[100]; stemp[0] = '\0'; for (uint32_t i = 0; i < hlw_cf1_pulse_counter; i++) { snprintf_P(stemp, sizeof(stemp), PSTR("%s %d"), stemp, hlw_debug[i]); } for (uint32_t i = 0; i < hlw_cf1_pulse_counter; i++) { for (uint32_t j = i + 1; j < hlw_cf1_pulse_counter; j++) { if (hlw_debug[i] > hlw_debug[j]) { // Sort ascending std::swap(hlw_debug[i], hlw_debug[j]); } } } unsigned long median = hlw_debug[(hlw_cf1_pulse_counter +1) / 2]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: power %d, ui %d, cnt %d, smpl%s, sum %d, mean %d, median %d"), hlw_cf_power_pulse_length, hlw_select_ui_flag, hlw_cf1_pulse_counter, stemp, hlw_cf1_summed_pulse_length, cf1_pulse_length, median); #endif if (hlw_select_ui_flag == hlw_ui_flag) { hlw_cf1_voltage_pulse_length = cf1_pulse_length; if (hlw_cf1_voltage_pulse_length && energy_power_on) { // If powered on always provide voltage hlw_u = (hlw_voltage_ratio * Settings.energy_voltage_calibration) / hlw_cf1_voltage_pulse_length; // V *10 energy_voltage = (float)hlw_u / 10; } else { energy_voltage = 0; } } else { hlw_cf1_current_pulse_length = cf1_pulse_length; if (hlw_cf1_current_pulse_length && energy_active_power) { // No current if no power being consumed hlw_i = (hlw_current_ratio * Settings.energy_current_calibration) / hlw_cf1_current_pulse_length; // mA energy_current = (float)hlw_i / 1000; } else { energy_current = 0; } } hlw_cf1_summed_pulse_length = 0; hlw_cf1_pulse_counter = 0; } } } void HlwEverySecond(void) { if (energy_data_valid > ENERGY_WATCHDOG) { hlw_cf1_voltage_pulse_length = 0; hlw_cf1_current_pulse_length = 0; hlw_cf_power_pulse_length = 0; } else { unsigned long hlw_len; if (hlw_energy_period_counter) { hlw_len = 10000 / hlw_energy_period_counter; hlw_energy_period_counter = 0; if (hlw_len) { energy_kWhtoday_delta += ((hlw_power_ratio * Settings.energy_power_calibration) / hlw_len) / 36; EnergyUpdateToday(); } } } } void HlwSnsInit(void) { if (!Settings.energy_power_calibration || (4975 == Settings.energy_power_calibration)) { Settings.energy_power_calibration = HLW_PREF_PULSE; Settings.energy_voltage_calibration = HLW_UREF_PULSE; Settings.energy_current_calibration = HLW_IREF_PULSE; } if (hlw_model_type) { hlw_power_ratio = HJL_PREF; hlw_voltage_ratio = HJL_UREF; hlw_current_ratio = HJL_IREF; } else { hlw_power_ratio = HLW_PREF; hlw_voltage_ratio = HLW_UREF; hlw_current_ratio = HLW_IREF; } if (pin[GPIO_NRG_SEL] < 99) { pinMode(pin[GPIO_NRG_SEL], OUTPUT); digitalWrite(pin[GPIO_NRG_SEL], hlw_select_ui_flag); } if (pin[GPIO_NRG_CF1] < 99) { pinMode(pin[GPIO_NRG_CF1], INPUT_PULLUP); attachInterrupt(pin[GPIO_NRG_CF1], HlwCf1Interrupt, FALLING); } pinMode(pin[GPIO_HLW_CF], INPUT_PULLUP); attachInterrupt(pin[GPIO_HLW_CF], HlwCfInterrupt, FALLING); } void HlwDrvInit(void) { if (!energy_flg) { hlw_model_type = 0; // HLW8012 if (pin[GPIO_HJL_CF] < 99) { pin[GPIO_HLW_CF] = pin[GPIO_HJL_CF]; pin[GPIO_HJL_CF] = 99; hlw_model_type = 1; // HJL-01/BL0937 } if (pin[GPIO_HLW_CF] < 99) { // HLW8012 or HJL-01 based device Power monitor hlw_ui_flag = 1; // Voltage on high if (pin[GPIO_NRG_SEL_INV] < 99) { pin[GPIO_NRG_SEL] = pin[GPIO_NRG_SEL_INV]; pin[GPIO_NRG_SEL_INV] = 99; hlw_ui_flag = 0; // Voltage on low } if (pin[GPIO_NRG_CF1] < 99) { // Voltage and/or Current monitor if (99 == pin[GPIO_NRG_SEL]) { // Voltage and/or Current selector energy_current_available = false; // Assume Voltage } } else { energy_current_available = false; energy_voltage_available = false; } energy_flg = XNRG_01; } } } bool HlwCommand(void) { bool serviced = true; if ((CMND_POWERCAL == energy_command_code) || (CMND_VOLTAGECAL == energy_command_code) || (CMND_CURRENTCAL == energy_command_code)) { // Service in xdrv_03_energy.ino } else if (CMND_POWERSET == energy_command_code) { if (XdrvMailbox.data_len && hlw_cf_power_pulse_length) { Settings.energy_power_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * hlw_cf_power_pulse_length) / hlw_power_ratio; } } else if (CMND_VOLTAGESET == energy_command_code) { if (XdrvMailbox.data_len && hlw_cf1_voltage_pulse_length) { Settings.energy_voltage_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * hlw_cf1_voltage_pulse_length) / hlw_voltage_ratio; } } else if (CMND_CURRENTSET == energy_command_code) { if (XdrvMailbox.data_len && hlw_cf1_current_pulse_length) { Settings.energy_current_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data)) * hlw_cf1_current_pulse_length) / hlw_current_ratio; } } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ int Xnrg01(uint8_t function) { int result = 0; if (FUNC_PRE_INIT == function) { HlwDrvInit(); } else if (XNRG_01 == energy_flg) { switch (function) { case FUNC_INIT: HlwSnsInit(); break; case FUNC_ENERGY_EVERY_SECOND: HlwEverySecond(); break; case FUNC_EVERY_200_MSECOND: HlwEvery200ms(); break; case FUNC_COMMAND: result = HlwCommand(); break; } } return result; } #endif // USE_HLW8012 #endif // USE_ENERGY_SENSOR