/*
  xdrv_11_knx.ino - KNX IP Protocol support for Tasmota

  Copyright (C) 2021  Adrian Scillato  (https://github.com/ascillato)

  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifdef USE_KNX
/*********************************************************************************************\
 * KNX support
 *
 * Using libraries:
 *   ESP KNX IP library (https://github.com/envy/esp-knx-ip)

Constants in tasmota.h
-----------------------

#define MAX_KNX_GA             10            Max number of KNX Group Addresses to read that can be set
#define MAX_KNX_CB             10            Max number of KNX Group Addresses to write that can be set
                                             If you change MAX_KNX_CB you also have to change on the esp-knx-ip.h file the following:
                                                       #define MAX_CALLBACK_ASSIGNMENTS  10
                                                       #define MAX_CALLBACKS             10
                                             Both to MAX_KNX_CB

Variables in settings.h
-----------------------

bool          Settings->flag.knx_enabled             Enable/Disable KNX Protocol
uint16_t      Settings->knx_physsical_addr           Physical KNX address of this device
uint8_t       Settings->knx_GA_registered            Number of group address to read
uint8_t       Settings->knx_CB_registered            Number of group address to write
uint16_t      Settings->knx_GA_addr[MAX_KNX_GA]      Group address to read
uint16_t      Settings->knx_CB_addr[MAX_KNX_CB]      Group address to write
uint8_t       Settings->knx_GA_param[MAX_KNX_GA]     Type of Input (relay changed, button pressed, sensor read)
uint8_t       Settings->knx_CB_param[MAX_KNX_CB]     Type of Output (set relay, toggle relay, reply sensor value)

\*********************************************************************************************/

#define XDRV_11  11

#include <esp-knx-ip.h>         // KNX Library

bool knx_started = false;

address_t KNX_physs_addr;  // Physical KNX address of this device
address_t KNX_addr;        // KNX Address converter variable

#define KNX_Empty 255

#define TOGGLE_INHIBIT_TIME 15 // 15*50mseg = 750mseg (inhibit time for not toggling again relays by a KNX toggle command)

float last_temp;
float last_hum;
uint8_t toggle_inhibit;

typedef struct __device_parameters
{
  uint8_t type;        // PARAMETER_ID. Used as type of GA = relay, button, sensor, etc, (INPUTS)
                       // used when an action on device triggers a MSG to send on KNX
                       // Needed because this is the value that the ESP_KNX_IP library will pass as parameter
                       // to identify the action to perform when a MSG is received

  bool show;           // HARDWARE related. to identify if the parameter exists on the device.

  bool last_state;     // LAST_STATE of relays

  callback_id_t CB_id; // ACTION_ID. To store the ID value of Registered_CB to the library.
                       // The ESP_KNX_IP requires to register the callbacks, and then, to assign an address to the registered callback
                       // So CB_id is needed to store the ID of the callback to then, assign multiple addresses to the same ID (callback)
                       // It is used as type of CB = set relay, toggle relay, reply sensor, etc, (OUTPUTS)
                       // used when a MSG receive  KNX triggers an action on the device
                       // - Multiples address to the same callback (i.e. Set Relay 1 Status) are used on scenes for example
} device_parameters_t;

uint8_t knx_slot_xref[] = {
  KNX_SLOT1,
  KNX_SLOT2,
  KNX_SLOT3,
  KNX_SLOT4,
  KNX_SLOT5,
  KNX_SLOT6,
  KNX_SLOT7,
  KNX_SLOT8,
  KNX_SLOT9
};

// device parameters (information that can be sent)
device_parameters_t device_param[] = {
  {  1, false, false, KNX_Empty }, // device_param[ 0] = Relay 1
  {  2, false, false, KNX_Empty }, // device_param[ 1] = Relay 2
  {  3, false, false, KNX_Empty }, // device_param[ 2] = Relay 3
  {  4, false, false, KNX_Empty }, // device_param[ 3] = Relay 4
  {  5, false, false, KNX_Empty }, // device_param[ 4] = Relay 5
  {  6, false, false, KNX_Empty }, // device_param[ 5] = Relay 6
  {  7, false, false, KNX_Empty }, // device_param[ 6] = Relay 7
  {  8, false, false, KNX_Empty }, // device_param[ 7] = Relay 8
  {  9, false, false, KNX_Empty }, // device_param[ 8] = Button 1
  { 10, false, false, KNX_Empty }, // device_param[ 9] = Button 2
  { 11, false, false, KNX_Empty }, // device_param[10] = Button 3
  { 12, false, false, KNX_Empty }, // device_param[11] = Button 4
  { 13, false, false, KNX_Empty }, // device_param[12] = Button 5
  { 14, false, false, KNX_Empty }, // device_param[13] = Button 6
  { 15, false, false, KNX_Empty }, // device_param[14] = Button 7
  { 16, false, false, KNX_Empty }, // device_param[15] = Button 8
  { KNX_TEMPERATURE, false, false, KNX_Empty }, // device_param[16] = Temperature
  { KNX_HUMIDITY   , false, false, KNX_Empty }, // device_param[17] = humidity
  { KNX_ENERGY_VOLTAGE   , false, false, KNX_Empty },
  { KNX_ENERGY_CURRENT   , false, false, KNX_Empty },
  { KNX_ENERGY_POWER   , false, false, KNX_Empty },
  { KNX_ENERGY_POWERFACTOR   , false, false, KNX_Empty },
  { KNX_ENERGY_DAILY   , false, false, KNX_Empty },
  { KNX_ENERGY_YESTERDAY   , false, false, KNX_Empty },
  { KNX_ENERGY_TOTAL   , false, false, KNX_Empty },
  { KNX_SLOT1 , false, false, KNX_Empty },
  { KNX_SLOT2 , false, false, KNX_Empty },
  { KNX_SLOT3 , false, false, KNX_Empty },
  { KNX_SLOT4 , false, false, KNX_Empty },
  { KNX_SLOT5 , false, false, KNX_Empty },
  { KNX_SCENE , false, false, KNX_Empty },
  { KNX_DIMMER , false, false, KNX_Empty },
  { KNX_COLOUR , false, false, KNX_Empty },
  { KNX_SLOT6 , false, false, KNX_Empty },
  { KNX_SLOT7 , false, false, KNX_Empty },
  { KNX_SLOT8 , false, false, KNX_Empty },
  { KNX_SLOT9 , false, false, KNX_Empty },
  { KNX_Empty, false, false, KNX_Empty}
};

// device parameters (information that can be sent)
const char * device_param_ga[] = {
  D_TIMER_OUTPUT  " 1",   // Relay 1
  D_TIMER_OUTPUT  " 2",   // Relay 2
  D_TIMER_OUTPUT  " 3",   // Relay 3
  D_TIMER_OUTPUT  " 4",   // Relay 4
  D_TIMER_OUTPUT  " 5",   // Relay 5
  D_TIMER_OUTPUT  " 6",   // Relay 6
  D_TIMER_OUTPUT  " 7",   // Relay 7
  D_TIMER_OUTPUT  " 8",   // Relay 8
  D_SENSOR_BUTTON " 1",   // Button 1
  D_SENSOR_BUTTON " 2",   // Button 2
  D_SENSOR_BUTTON " 3",   // Button 3
  D_SENSOR_BUTTON " 4",   // Button 4
  D_SENSOR_BUTTON " 5",   // Button 5
  D_SENSOR_BUTTON " 6",   // Button 6
  D_SENSOR_BUTTON " 7",   // Button 7
  D_SENSOR_BUTTON " 8",   // Button 8
  D_TEMPERATURE       ,   // Temperature
  D_HUMIDITY          ,   // Humidity
  D_VOLTAGE           ,
  D_CURRENT           ,
  D_POWERUSAGE        ,
  D_POWER_FACTOR      ,
  D_ENERGY_TODAY      ,
  D_ENERGY_YESTERDAY  ,
  D_ENERGY_TOTAL      ,
  D_KNX_TX_SLOT   " 1",
  D_KNX_TX_SLOT   " 2",
  D_KNX_TX_SLOT   " 3",
  D_KNX_TX_SLOT   " 4",
  D_KNX_TX_SLOT   " 5",
  D_KNX_TX_SCENE      ,
  D_BRIGHTLIGHT       ,
  D_COLOR             ,
  D_KNX_TX_SLOT   " 6",
  D_KNX_TX_SLOT   " 7",
  D_KNX_TX_SLOT   " 8",
  D_KNX_TX_SLOT   " 9",
  nullptr
};

// device actions (posible actions to be performed on the device)
const char *device_param_cb[] = {
  D_TIMER_OUTPUT " 1", // Set Relay 1 (1-On or 0-OFF)
  D_TIMER_OUTPUT " 2",
  D_TIMER_OUTPUT " 3",
  D_TIMER_OUTPUT " 4",
  D_TIMER_OUTPUT " 5",
  D_TIMER_OUTPUT " 6",
  D_TIMER_OUTPUT " 7",
  D_TIMER_OUTPUT " 8",
  D_TIMER_OUTPUT " 1 " D_BUTTON_TOGGLE, // Relay 1 Toggle (1 or 0 will toggle)
  D_TIMER_OUTPUT " 2 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 3 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 4 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 5 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 6 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 7 " D_BUTTON_TOGGLE,
  D_TIMER_OUTPUT " 8 " D_BUTTON_TOGGLE,
  D_REPLY " " D_TEMPERATURE, // Reply Temperature
  D_REPLY " " D_HUMIDITY,    // Reply Humidity
  D_REPLY " " D_VOLTAGE           ,
  D_REPLY " " D_CURRENT           ,
  D_REPLY " " D_POWERUSAGE        ,
  D_REPLY " " D_POWER_FACTOR      ,
  D_REPLY " " D_ENERGY_TODAY      ,
  D_REPLY " " D_ENERGY_YESTERDAY  ,
  D_REPLY " " D_ENERGY_TOTAL      ,
  D_KNX_RX_SLOT   " 1",
  D_KNX_RX_SLOT   " 2",
  D_KNX_RX_SLOT   " 3",
  D_KNX_RX_SLOT   " 4",
  D_KNX_RX_SLOT   " 5",
  D_KNX_RX_SCENE      ,
  D_BRIGHTLIGHT       ,
  D_COLOR             ,
  D_KNX_RX_SLOT   " 6",
  D_KNX_RX_SLOT   " 7",
  D_KNX_RX_SLOT   " 8",
  D_KNX_RX_SLOT   " 9",
  nullptr
};

// Commands
#define D_PRFX_KNX "Knx"
#define D_CMND_KNXTXCMND "Tx_Cmnd"
#define D_CMND_KNXTXVAL "Tx_Val"
#define D_CMND_KNX_ENABLED "_Enabled"
#define D_CMND_KNX_ENHANCED "_Enhanced"
#define D_CMND_KNX_PA "_PA"
#define D_CMND_KNX_GA "_GA"
#define D_CMND_KNX_CB "_CB"
#define D_CMND_KNXTXSCENE "Tx_Scene"
#define D_CMND_KNXTXFLOAT "Tx_Float"    // 2 bytes float (DPT9)
#define D_CMND_KNXTXDOUBLE "Tx_Double"  // 4 bytes float (DPT14)
#define D_CMND_KNXTXBYTE "Tx_Byte"      // 1 byte unsigned (DPT5)


const char kKnxCommands[] PROGMEM = D_PRFX_KNX "|"  // Prefix
  D_CMND_KNXTXCMND "|" D_CMND_KNXTXVAL "|" D_CMND_KNX_ENABLED "|" D_CMND_KNX_ENHANCED "|" D_CMND_KNX_PA "|" D_CMND_KNX_GA "|" D_CMND_KNX_CB "|" D_CMND_KNXTXSCENE "|"
  D_CMND_KNXTXFLOAT "|"  D_CMND_KNXTXDOUBLE "|"  D_CMND_KNXTXBYTE;

void (* const KnxCommand[])(void) PROGMEM = {
  &CmndKnxTxCmnd, &CmndKnxTxVal, &CmndKnxEnabled, &CmndKnxEnhanced, &CmndKnxPa, &CmndKnxGa, &CmndKnxCb, &CmndKnxTxScene,
  &CmndKnxTxFloat, &CmndKnxTxVal, &CmndKnxTxByte};

#ifndef KNX_ENHANCEMENT_REPEAT
#define KNX_ENHANCEMENT_REPEAT 3
#endif


void KNX_Send_1bit(address_t const &receiver, uint8_t value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_1bit(receiver, ct, value);
}
#define KNX_WRITE_1BIT(r,v) KNX_Send_1bit((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_1BIT(r,v) KNX_Send_1bit((r),(v),KNX_CT_ANSWER)

void KNX_Send_1byte_uint(address_t const &receiver, uint8_t value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_1byte_uint(receiver, ct, value);
}
#define KNX_WRITE_1BYTE_UINT(r,v) KNX_Send_1byte_uint((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_1BYTE_UINT(r,v) KNX_Send_1byte_uint((r),(v),KNX_CT_ANSWER)

void KNX_Send_2byte_float(address_t const &receiver, float value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_2byte_float(receiver, ct, value);
}
#define KNX_WRITE_2BYTE_FLOAT(r,v) KNX_Send_2byte_float((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_2BYTE_FLOAT(r,v) KNX_Send_2byte_float((r),(v),KNX_CT_ANSWER)

void KNX_Send_4byte_float(address_t const &receiver, float value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_4byte_float(receiver, ct, value);
}
#define KNX_WRITE_4BYTE_FLOAT(r,v) KNX_Send_4byte_float((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_4BYTE_FLOAT(r,v) KNX_Send_4byte_float((r),(v),KNX_CT_ANSWER)

void KNX_Send_4byte_int(address_t const &receiver, int32_t value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_4byte_int(receiver, ct, value);
}
#define KNX_WRITE_4BYTE_INT(r,v) KNX_Send_4byte_int((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_4BYTE_INT(r,v) KNX_Send_4byte_int((r),(v),KNX_CT_ANSWER)

void KNX_Send_4byte_uint(address_t const &receiver, uint32_t value, knx_command_type_t ct) 
{
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send_4byte_uint(receiver, ct, value);
}
#define KNX_WRITE_4BYTE_UINT(r,v) KNX_Send_4byte_uint((r),(v),KNX_CT_WRITE)
#define KNX_ANSWER_4BYTE_UINT(r,v) KNX_Send_4byte_uint((r),(v),KNX_CT_ANSWER)

void KNX_Send_3byte_color(address_t const &receiver, uint8_t* color, knx_command_type_t ct) 
{
  uint8_t buf[] = {0x00, color[0], color[1], color[2]};
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send(receiver, ct, 4, buf);
}
#define KNX_WRITE_3BYTE_COLOR(r,rgb) KNX_Send_3byte_color((r),(rgb),KNX_CT_WRITE)
#define KNX_ANSWER_3BYTE_COLOR(r,rgb) KNX_Send_3byte_color((r),(rgb),KNX_CT_ANSWER)

void KNX_Send_6byte_color(address_t const &receiver, uint8_t* color, knx_command_type_t ct) 
{
  uint8_t buf[] = {0x00, color[0], color[1], color[2], color[3], 0x00, 0x0F};
  uint8_t repeat = Settings->flag.knx_enable_enhancement ? KNX_ENHANCEMENT_REPEAT : 1;
  while ( repeat-- )
    knx.send(receiver, ct, 7, buf);
}
#define KNX_WRITE_6BYTE_COLOR(r,rgbw) KNX_Send_6byte_color((r),(rgbw),KNX_CT_WRITE)
#define KNX_ANSWER_6BYTE_COLOR(r,rgbw) KNX_Send_6byte_color((r),(rgbw),KNX_CT_ANSWER)


uint8_t KNX_GA_Search( uint8_t param, uint8_t start = 0 )
{
  for (uint32_t i = start; i < Settings->knx_GA_registered; ++i)
  {
    if ( Settings->knx_GA_param[i] == param )
    {
      if ( Settings->knx_GA_addr[i] != 0 ) // Relay has group address set? GA=0/0/0 can not be used as KNX address, so it is used here as a: not set value
      {
         if ( i >= start ) { return i; }
      }
    }
  }
  return KNX_Empty;
}


uint8_t KNX_CB_Search( uint8_t param, uint8_t start = 0 )
{
  for (uint32_t i = start; i < Settings->knx_CB_registered; ++i)
  {
    if ( Settings->knx_CB_param[i] == param )
    {
      if ( Settings->knx_CB_addr[i] != 0 )
      {
         if ( i >= start ) { return i; }
      }
    }
  }
  return KNX_Empty;
}


void KNX_ADD_GA( uint8_t GAop, uint8_t GA_FNUM, uint8_t GA_AREA, uint8_t GA_FDEF )
{
  // Check if all GA were assigned. If yes-> return
  if ( Settings->knx_GA_registered >= MAX_KNX_GA ) { return; }
  if ( GA_FNUM == 0 && GA_AREA == 0 && GA_FDEF == 0 ) { return; }

  // Assign a GA to that address
  Settings->knx_GA_param[Settings->knx_GA_registered] = GAop;
  KNX_addr.ga.area = GA_FNUM;
  KNX_addr.ga.line = GA_AREA;
  KNX_addr.ga.member = GA_FDEF;
  Settings->knx_GA_addr[Settings->knx_GA_registered] = KNX_addr.value;

  Settings->knx_GA_registered++;

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_ADD " GA #%d: %s " D_TO " %d/%d/%d"),
   Settings->knx_GA_registered,
   device_param_ga[GAop-1],
   GA_FNUM, GA_AREA, GA_FDEF );
}


void KNX_DEL_GA( uint8_t GAnum )
{

  uint8_t dest_offset = 0;
  uint8_t src_offset = 0;
  uint8_t len = 0;

  // Delete GA
  Settings->knx_GA_param[GAnum-1] = 0;

  if (GAnum == 1)
  {
    // start of array, so delete first entry
    src_offset = 1;
    // Settings->knx_GA_registered will be 1 in case of only one entry
    // Settings->knx_GA_registered will be 2 in case of two entries, etc..
    // so only copy anything, if there is it at least more then one element
    len = (Settings->knx_GA_registered - 1);
  }
  else if (GAnum == Settings->knx_GA_registered)
  {
    // last element, don't do anything, simply decrement counter
  }
  else
  {
    // somewhere in the middle
    // need to calc offsets

    // skip all prev elements
    dest_offset = GAnum -1 ; // GAnum -1 is equal to how many element are in front of it
    src_offset = dest_offset + 1; // start after the current element
    len = (Settings->knx_GA_registered - GAnum);
  }

  if (len > 0)
  {
    memmove(Settings->knx_GA_param + dest_offset, Settings->knx_GA_param + src_offset, len * sizeof(uint8_t));
    memmove(Settings->knx_GA_addr + dest_offset, Settings->knx_GA_addr + src_offset, len * sizeof(uint16_t));
  }

  Settings->knx_GA_registered--;

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_DELETE " GA #%d"),
    GAnum );
}


void KNX_ADD_CB( uint8_t CBop, uint8_t CB_FNUM, uint8_t CB_AREA, uint8_t CB_FDEF )
{
  // Check if all callbacks were assigned. If yes-> return
  if ( Settings->knx_CB_registered >= MAX_KNX_CB ) { return; }
  if ( CB_FNUM == 0 && CB_AREA == 0 && CB_FDEF == 0 ) { return; }

  // Check if a CB for CBop was registered on the ESP-KNX-IP Library
  if ( device_param[CBop-1].CB_id == KNX_Empty )
  {
    // if no, register the CB for CBop
    device_param[CBop-1].CB_id = knx.callback_register("", KNX_CB_Action, &device_param[CBop-1]);
      // KNX IP Library requires a parameter
      // to identify which action was requested on the KNX network
      // to be performed on this device (set relay, etc.)
      // Is going to be used device_param[j].type that stores the type number (1: relay 1, etc)
  }
  // Assign a callback to CB address
  Settings->knx_CB_param[Settings->knx_CB_registered] = CBop;
  KNX_addr.ga.area = CB_FNUM;
  KNX_addr.ga.line = CB_AREA;
  KNX_addr.ga.member = CB_FDEF;
  Settings->knx_CB_addr[Settings->knx_CB_registered] = KNX_addr.value;

  knx.callback_assign( device_param[CBop-1].CB_id, KNX_addr );

  Settings->knx_CB_registered++;

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_ADD " CB #%d: %d/%d/%d " D_TO " %s"),
   Settings->knx_CB_registered,
   CB_FNUM, CB_AREA, CB_FDEF,
   device_param_cb[CBop-1] );
}


void KNX_DEL_CB( uint8_t CBnum )
{
  uint8_t oldparam = Settings->knx_CB_param[CBnum-1];
  uint8_t dest_offset = 0;
  uint8_t src_offset = 0;
  uint8_t len = 0;

  // Delete assigment
  knx.callback_unassign(CBnum-1);
  Settings->knx_CB_param[CBnum-1] = 0;

  if (CBnum == 1)
  {
    // start of array, so delete first entry
    src_offset = 1;
    // Settings->knx_CB_registered will be 1 in case of only one entry
    // Settings->knx_CB_registered will be 2 in case of two entries, etc..
    // so only copy anything, if there is it at least more then one element
    len = (Settings->knx_CB_registered - 1);
  }
  else if (CBnum == Settings->knx_CB_registered)
  {
    // last element, don't do anything, simply decrement counter
  }
  else
  {
    // somewhere in the middle
    // need to calc offsets

    // skip all prev elements
    dest_offset = CBnum -1 ; // GAnum -1 is equal to how many element are in front of it
    src_offset = dest_offset + 1; // start after the current element
    len = (Settings->knx_CB_registered - CBnum);
  }

  if (len > 0)
  {
    memmove(Settings->knx_CB_param + dest_offset, Settings->knx_CB_param + src_offset, len * sizeof(uint8_t));
    memmove(Settings->knx_CB_addr + dest_offset, Settings->knx_CB_addr + src_offset, len * sizeof(uint16_t));
  }

  Settings->knx_CB_registered--;

  // Check if there is no other assigment to that callback. If there is not. delete that callback register
  if ( KNX_CB_Search( oldparam ) == KNX_Empty ) {
    knx.callback_deregister( device_param[oldparam-1].CB_id );
    device_param[oldparam-1].CB_id =  KNX_Empty;
  }

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_DELETE " CB #%d"), CBnum );
}


bool KNX_CONFIG_NOT_MATCH(void)
{
  // Check for configured parameters that the device does not have (module changed)
  for (uint32_t i = 0; i < KNX_MAX_device_param; ++i)
  {
    if ( !device_param[i].show ) { // device has this parameter ?
      // if not, search for all registered group address to this parameter for deletion

      // Checks all GA
      if ( KNX_GA_Search(i+1) != KNX_Empty ) { return true; }
      // Check all CB
      if ( i < 8 ) // check relays (i from 8 to 15 are toggle relays parameters)
      {
        if ( KNX_CB_Search(i+1) != KNX_Empty ) { return true; }
        if ( KNX_CB_Search(i+9) != KNX_Empty ) { return true; }
      }
      // check sensors and others
      if ( i > 15 )
      {
        if ( KNX_CB_Search(i+1) != KNX_Empty ) { return true; }
      }
    }
  }

  // Check for invalid or erroneous configuration (tasmota flashed without clearing the memory)
  for (uint32_t i = 0; i < Settings->knx_GA_registered; ++i)
  {
    if ( Settings->knx_GA_param[i] != 0 ) // the GA[i] have a parameter defined?
    {
      if ( Settings->knx_GA_addr[i] == 0 ) // the GA[i] with parameter have the 0/0/0 as address?
      {
         return true; // So, it is invalid. Reset KNX configuration
      }
    }
  }
  for (uint32_t i = 0; i < Settings->knx_CB_registered; ++i)
  {
    if ( Settings->knx_CB_param[i] != 0 ) // the CB[i] have a parameter defined?
    {
      if ( Settings->knx_CB_addr[i] == 0 ) // the CB[i] with parameter have the 0/0/0 as address?
      {
         return true; // So, it is invalid. Reset KNX configuration
      }
    }
  }

  return false;
}


void KNXStart(void)
{
  knx.start(nullptr);
  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_START));
}


void KNX_INIT(void)
{
  // Check for incompatible config
  if (Settings->knx_GA_registered > MAX_KNX_GA) { Settings->knx_GA_registered = MAX_KNX_GA; }
  if (Settings->knx_CB_registered > MAX_KNX_CB) { Settings->knx_CB_registered = MAX_KNX_CB; }

  // Set Physical KNX Address of the device
  KNX_physs_addr.value = Settings->knx_physsical_addr;
  knx.physical_address_set( KNX_physs_addr );

  // Read Configuration
  //   Check which relays, buttons and sensors where configured for this device
  //   and activate options according to the hardware
  /*
  for (uint32_t i = 0; i < 8; i++) {
    if (PinUsed(GPIO_REL1, i)) {
      device_param[i].show = true;
    }
  }
  */
  for (uint32_t i = 0; i < (TasmotaGlobal.devices_present <= 8 ? TasmotaGlobal.devices_present : 8); ++i) {
    device_param[i].show = true;
  }
  for (uint32_t i = 0; i < 4; i++) {
    if (PinUsed(GPIO_KEY1, i)) {
      device_param[8 + i].show = true;
    }
  }
  for (uint32_t i = 0; i < 8; i++) {
    if (PinUsed(GPIO_SWT1, i)) {
      device_param[8 + i].show = true;
    }
  }

  if (PinUsed(GPIO_DHT11) || PinUsed(GPIO_DHT22) || PinUsed(GPIO_SI7021)) {
    device_param[KNX_TEMPERATURE-1].show = true;
    device_param[KNX_HUMIDITY-1].show = true;
  }
  for (uint32_t i = 0; i < MAX_ADCS; i++) {
    if (PinUsed(GPIO_ADC_TEMP, i)) {
      device_param[KNX_TEMPERATURE-1].show = true;
    }
  }
#ifdef USE_DS18x20
  if (PinUsed(GPIO_DSB, GPIO_ANY)) {
    device_param[KNX_TEMPERATURE-1].show = true;
  }
#endif

#if defined(USE_ENERGY_SENSOR)
  // Any device with a Power Monitoring
  if ( TasmotaGlobal.energy_driver != ENERGY_NONE ) {
    device_param[KNX_ENERGY_POWER-1].show = true;
    device_param[KNX_ENERGY_DAILY-1].show = true;
    device_param[KNX_ENERGY_YESTERDAY-1].show = true;
    device_param[KNX_ENERGY_TOTAL-1].show = true;
    device_param[KNX_ENERGY_VOLTAGE-1].show = true;
    device_param[KNX_ENERGY_CURRENT-1].show = true;
    device_param[KNX_ENERGY_POWERFACTOR-1].show = true;
  }
#endif // USE_ENERGY_SENSOR

#if defined(USE_RULES) || defined(USE_SCRIPT)
  device_param[KNX_SLOT1-1].show = true;
  device_param[KNX_SLOT2-1].show = true;
  device_param[KNX_SLOT3-1].show = true;
  device_param[KNX_SLOT4-1].show = true;
  device_param[KNX_SLOT5-1].show = true;
  device_param[KNX_SLOT6-1].show = true;
  device_param[KNX_SLOT7-1].show = true;
  device_param[KNX_SLOT8-1].show = true;
  device_param[KNX_SLOT9-1].show = true;
  device_param[KNX_SCENE-1].show = true;
#endif // USE_RULES

#ifdef USE_LIGHT
  if (Light.subtype > LST_NONE) {
    device_param[KNX_DIMMER-1].show = true;
    if ((LST_RGB == Light.subtype) || (LST_RGBW == Light.subtype))
      device_param[KNX_COLOUR-1].show = true;
  }
#endif // USE_LIGHT

  // Delete from KNX settings all configuration is not anymore related to this device
  if (KNX_CONFIG_NOT_MATCH()) {
    Settings->knx_GA_registered = 0;
    Settings->knx_CB_registered = 0;
    AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_DELETE " " D_KNX_PARAMETERS));
  }

  // Register Group Addresses to listen to
  //     Search on the settings if there is a group address set for receive KNX messages for the type: device_param[j].type
  //     If there is, register the group address on the KNX_IP Library to Receive data for Executing Callbacks
  uint8_t j;
  for (uint32_t i = 0; i < Settings->knx_CB_registered; ++i)
  {
    j = Settings->knx_CB_param[i];
    if ( j > 0 )
    {
      device_param[j-1].CB_id = knx.callback_register("", KNX_CB_Action, &device_param[j-1]); // KNX IP Library requires a parameter
                                                                                              // to identify which action was requested on the KNX network
                                                                                              // to be performed on this device (set relay, etc.)
                                                                                              // Is going to be used device_param[j].type that stores the type number (1: relay 1, etc)
      KNX_addr.value = Settings->knx_CB_addr[i];
      knx.callback_assign( device_param[j-1].CB_id, KNX_addr );
    }
  }
}


void KNX_CB_Action(message_t const &msg, void *arg)
{
  device_parameters_t *chan = (device_parameters_t *)arg;
  if (!(Settings->flag.knx_enabled)) { return; }

  char tempchar[33];

  if (msg.data_len == 1) {
    // COMMAND
    sprintf(tempchar,"%d",msg.data[0]);
  } else if (chan->type == KNX_SCENE) {
    // VALUE
    uint8_t tempvar = knx.data_to_1byte_uint(msg.data);
    dtostrfd(tempvar,0,tempchar);
#ifdef USE_LIGHT
  } else if (chan->type == KNX_DIMMER) {
    // VALUE
    uint8_t tempvar = changeUIntScale(knx.data_to_1byte_uint(msg.data),0, 255, 0, 100);
    dtostrfd(tempvar,0,tempchar);
  } else if (chan->type == KNX_COLOUR) {
    // VALUE
    snprintf_P(tempchar, sizeof(tempchar), (Light.subtype == LST_RGB) ? PSTR("%02X%02X%02X"):PSTR("%02X%02X%02X%02X"), msg.data[1], msg.data[2], msg.data[3]);
#endif // USE_LIGHT
  } else {
    // VALUE
    float tempvar = knx.data_to_4byte_float(msg.data);
    dtostrfd(tempvar,2,tempchar);
  }
  AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX D_RECEIVED_FROM " %d/%d/%d " D_COMMAND " %s: %s " D_TO " %s"),
   msg.received_on.ga.area, msg.received_on.ga.line, msg.received_on.ga.member,
   (msg.ct == KNX_CT_WRITE) ? D_KNX_COMMAND_WRITE : (msg.ct == KNX_CT_READ) ? D_KNX_COMMAND_READ : D_KNX_COMMAND_OTHER,
   tempchar,
   device_param_cb[(chan->type)-1]);

  switch (msg.ct)
  {
    case KNX_CT_WRITE:
      if (chan->type < 9) // Set Relays
      {
        ExecuteCommandPower(chan->type, msg.data[0], SRC_KNX);
      }
      else if (chan->type < 17) // Toggle Relays
      {
        if (!toggle_inhibit) {
          ExecuteCommandPower((chan->type) -8, POWER_TOGGLE, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }

#if defined(USE_RULES) || defined(USE_SCRIPT)
      else if (((chan->type >= KNX_SLOT1) && (chan->type <= KNX_SLOT5)) ||
               ((chan->type >= KNX_SLOT6) && (chan->type <= KNX_SLOT9))) // KNX RX SLOTs (write command)
      {
        if (!toggle_inhibit) {
          uint32_t slot_offset = KNX_SLOT1;
          if (chan->type >= KNX_SLOT6) {
            slot_offset = KNX_SLOT6;
          }
          char command[35]; //4294967295.00  13chars + 17
          if (msg.data_len == 1) {
            // Command received
            snprintf_P(command, sizeof(command), PSTR("event KNXRX_CMND%d=%d"), ((chan->type) - slot_offset + 1 ), msg.data[0]);
          } else {
            // Value received
            snprintf_P(command, sizeof(command), PSTR("event KNXRX_VAL%d=%s"), ((chan->type) - slot_offset + 1 ), tempchar);
          }
          ExecuteCommand(command, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }
      else if (chan->type == KNX_SCENE)  // KNX RX SCENE SLOT (write command)
      {
        if (!toggle_inhibit) {
          char command[25];
          // Value received
          snprintf_P(command, sizeof(command), PSTR("event KNX_SCENE=%s"), tempchar);
          ExecuteCommand(command, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }
#endif // USE_RULES
#ifdef USE_LIGHT
      else if (chan->type == KNX_DIMMER)  // KNX RX DIMMER SLOT (write command)
      {
        if (!toggle_inhibit) {
          char command[25];
          // Value received
          snprintf_P(command, sizeof(command), PSTR("Dimmer %s"), tempchar);
          ExecuteCommand(command, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }
      else if (chan->type == KNX_COLOUR)  // KNX RX COLOUR_RGB/RGBW SLOT (write command)
      {
        if (!toggle_inhibit) {
          char command[25];
          // Value received
          snprintf_P(command, sizeof(command), PSTR("Color #%s"), tempchar);
          ExecuteCommand(command, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }
#endif // USE_LIGHT
      break;

    case KNX_CT_READ:
      if (chan->type < 9) // reply Relays status
        KNX_Send_1bit(msg.received_on, chan->last_state, KNX_CT_ANSWER);
      else if (chan->type == KNX_TEMPERATURE) // Reply Temperature
      {
        #ifdef KNX_USE_DPT9
        KNX_ANSWER_2BYTE_FLOAT(msg.received_on, last_temp);
        #else
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, last_temp);
        #endif // KNX_USE_DPT9
      }
      else if (chan->type == KNX_HUMIDITY) // Reply Humidity
      {
        #ifdef KNX_USE_DPT9
        KNX_ANSWER_2BYTE_FLOAT(msg.received_on, last_hum);
        #else
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, last_hum);
        #endif // KNX_USE_DPT9
      }
#if defined(USE_ENERGY_SENSOR)      
      else if (chan->type == KNX_ENERGY_VOLTAGE) // Reply KNX_ENERGY_VOLTAGE
      {
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, Energy->voltage[0]);
      }
      else if (chan->type == KNX_ENERGY_CURRENT) // Reply KNX_ENERGY_CURRENT
      {
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, Energy->current[0]);
      }
      else if (chan->type == KNX_ENERGY_POWER) // Reply KNX_ENERGY_POWER
      {
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, Energy->active_power[0]);
      }
      else if (chan->type == KNX_ENERGY_POWERFACTOR) // Reply KNX_ENERGY_POWERFACTOR
      {
        KNX_ANSWER_4BYTE_FLOAT(msg.received_on, Energy->power_factor[0]);
      }
      else if (chan->type == KNX_ENERGY_YESTERDAY) // Reply KNX_ENERGY_YESTERDAY
      {
        KNX_ANSWER_4BYTE_INT(msg.received_on, round(1000.0 * Energy->yesterday_sum));
      }
      else if (chan->type == KNX_ENERGY_DAILY) // Reply KNX_ENERGY_DAILY
      {
        KNX_ANSWER_4BYTE_INT(msg.received_on, round(1000.0 * Energy->daily_sum));
      }
      else if (chan->type == KNX_ENERGY_TOTAL) // Reply KNX_ENERGY_TOTAL
      {
        KNX_ANSWER_4BYTE_INT(msg.received_on, round(1000.0 * Energy->total_sum));
      }
#endif // USE_ENERGY_SENSOR

#if defined(USE_RULES) || defined(USE_SCRIPT)

      else if (((chan->type >= KNX_SLOT1) && (chan->type <= KNX_SLOT5)) ||
               ((chan->type >= KNX_SLOT6) && (chan->type <= KNX_SLOT9))) // KNX RX SLOTs (read command)
      {
        if (!toggle_inhibit) {
          uint32_t slot_offset = KNX_SLOT1;
          if (chan->type >= KNX_SLOT6) {
            slot_offset = KNX_SLOT6;
          }
          char command[25];
          snprintf_P(command, sizeof(command), PSTR("event KNXRX_REQ%d"), ((chan->type) - slot_offset + 1 ) );
          ExecuteCommand(command, SRC_KNX);
          if (Settings->flag.knx_enable_enhancement) {
            toggle_inhibit = TOGGLE_INHIBIT_TIME;
          }
        }
      }
#endif // USE_RULES
#ifdef USE_LIGHT
      else if (chan->type == KNX_DIMMER) // Reply KNX_DIMMER
      {
        uint8_t dimmer = changeUIntScale(light_state.getDimmer(), 0, 100, 0, 255);
        KNX_ANSWER_1BYTE_UINT(msg.received_on, dimmer);
      }
      else if (chan->type == KNX_COLOUR) // Reply KNX_COLOUR
      {
        if ( Light.subtype == LST_RGB) {
          KNX_ANSWER_3BYTE_COLOR(msg.received_on, Light.current_color);
        } else if ( Light.subtype == LST_RGBW) {
          KNX_ANSWER_6BYTE_COLOR(msg.received_on, Light.current_color);
        }
      }
#endif // USE_LIGHT
      break;
  }
}


void KnxUpdatePowerState(uint8_t device, power_t state)
{
  if (!(Settings->flag.knx_enabled)) { return; }

  device_param[device -1].last_state = bitRead(state, device -1); // power state (on/off)

  // Search all the registered GA that has that output (variable: device) as parameter
  uint8_t i = KNX_GA_Search(device);
  while ( i != KNX_Empty ) {
    KNX_addr.value = Settings->knx_GA_addr[i];
    KNX_WRITE_1BIT(KNX_addr, device_param[device -1].last_state);

    AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %d " D_SENT_TO " %d/%d/%d"),
     device_param_ga[device -1], device_param[device -1].last_state,
     KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

    i = KNX_GA_Search(device, i + 1);
  }
}


#ifdef USE_LIGHT
void KnxUpdateLight()
{
  if (!(Settings->flag.knx_enabled)) { return; }

  uint8_t dimmer = light_state.getDimmer();
  uint8_t dim_knx = changeUIntScale(dimmer, 0, 100, 0, 255);

  for (uint32_t i = 0; i < Settings->knx_GA_registered; ++i)
  {
    KNX_addr.value = Settings->knx_GA_addr[i];
    if ( KNX_addr.value != 0 ) {
      switch(Settings->knx_GA_param[i]) {
        case KNX_DIMMER:
          KNX_WRITE_1BYTE_UINT(KNX_addr, dim_knx);
          AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s %d " D_SENT_TO " %d/%d/%d"),
            device_param_ga[KNX_DIMMER -1],
            dimmer,
            KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);
          break;
        case KNX_COLOUR:
          if ( Light.subtype == LST_RGB) {
            KNX_WRITE_3BYTE_COLOR(KNX_addr, Light.current_color);
          } else if ( Light.subtype == LST_RGBW) {
            KNX_WRITE_6BYTE_COLOR(KNX_addr, Light.current_color);
          }
          AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s %d,%d,%d,%d " D_SENT_TO " %d/%d/%d"),
            device_param_ga[KNX_COLOUR -1],
            Light.current_color[0], Light.current_color[1], Light.current_color[2], Light.current_color[3],
            KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);
          break;
      }
    }
  }
}
#endif // USE_LIGHT

void KnxSendButtonPower(void)
{
  if (!(Settings->flag.knx_enabled)) { return; }

  uint32_t key = (XdrvMailbox.payload >> 16) & 0xFF;
  uint32_t device = XdrvMailbox.payload & 0xFF;
  uint32_t state = (XdrvMailbox.payload >> 8) & 0xFF;
// key 0 = button_topic
// key 1 = switch_topic
// state 0 = off
// state 1 = on
// state 2 = toggle
// state 3 = hold
// state 9 = clear retain flag

// Search all the registered GA that has that output (variable: device) as parameter
  uint8_t i = KNX_GA_Search(device + 8);
  while ( i != KNX_Empty ) {
    KNX_addr.value = Settings->knx_GA_addr[i];
    KNX_WRITE_1BIT(KNX_addr, !(state == 0));

    AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %d " D_SENT_TO " %d/%d/%d"),
     device_param_ga[device + 7], !(state == 0),
     KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

    i = KNX_GA_Search(device + 8, i + 1);
  }
//  }
}


void KnxSensor(uint8_t sensor_type, float value)
{
  if (sensor_type == KNX_TEMPERATURE)
  {
    last_temp = value;
  } else if (sensor_type == KNX_HUMIDITY)
  {
    last_hum = value;
  }

  if (!(Settings->flag.knx_enabled)) { return; }

  uint8_t i = KNX_GA_Search(sensor_type);
  while ( i != KNX_Empty ) {
    KNX_addr.value = Settings->knx_GA_addr[i];
    switch(sensor_type) {
      case KNX_ENERGY_DAILY:
      case KNX_ENERGY_YESTERDAY:
      case KNX_ENERGY_TOTAL:
        KNX_WRITE_4BYTE_INT(KNX_addr, round(1000.0 * value));
        break;
      case KNX_TEMPERATURE:
      case KNX_HUMIDITY:
        #ifdef KNX_USE_DPT9
        KNX_WRITE_2BYTE_FLOAT(KNX_addr, value);
        #else
        KNX_WRITE_4BYTE_FLOAT(KNX_addr, value);
        #endif 
      default:
        KNX_WRITE_4BYTE_FLOAT(KNX_addr, value);
    }

    AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s " D_SENT_TO " %d/%d/%d"),
     device_param_ga[sensor_type -1],
     KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

    i = KNX_GA_Search(sensor_type, i+1);
  }
}


/*********************************************************************************************\
 * Presentation
\*********************************************************************************************/

#ifdef USE_WEBSERVER
#ifdef USE_KNX_WEB_MENU
const char HTTP_BTN_MENU_KNX[] PROGMEM =
  "<p><form action='kn' method='get'><button>" D_CONFIGURE_KNX "</button></form></p>";

const char HTTP_FORM_KNX[] PROGMEM =
  "<fieldset style='min-width:530px;'>"
  "<legend style='text-align:left;'><b>&nbsp;" D_KNX_PARAMETERS "&nbsp;</b></legend>"
  "<form method='post' action='kn'>"
  "<br><center>"
  "<b>" D_KNX_PHYSICAL_ADDRESS " </b>"
  "<input style='width:12%%;' type='number' name='area' min='0' max='15' value='%d'> . "
  "<input style='width:12%%;' type='number' name='line' min='0' max='15' value='%d'> . "
  "<input style='width:12%%;' type='number' name='member' min='0' max='255' value='%d'>"
  "<br><br>" D_KNX_PHYSICAL_ADDRESS_NOTE "<br><br>"
  "<label><input id='b1' type='checkbox'";

const char HTTP_FORM_KNX1[] PROGMEM =
  "><b>" D_KNX_ENABLE "</b></label>&emsp;<label><input id='b2' type='checkbox'";

const char HTTP_FORM_KNX2[] PROGMEM =
  "><b>" D_KNX_ENHANCEMENT "</b></label><br></center><br>"

  "<fieldset><center>"
  "<b>" D_KNX_GROUP_ADDRESS_TO_WRITE "</b><hr>"

  "<select name='GAop' style='width:25%%;'>";

const char HTTP_FORM_KNX_OPT[] PROGMEM =
  "<option value='%d'>%s</option>";

const char HTTP_FORM_KNX_GA[] PROGMEM =
  "<input style='width:12%%;' type='number' id='%s' min='0' max='31' value='0'> / "
  "<input style='width:12%%;' type='number' id='%s' min='0' max='7' value='0'> / "
  "<input style='width:12%%;' type='number' id='%s' min='0' max='255' value='0'> ";

const char HTTP_FORM_KNX_ADD_BTN[] PROGMEM =
  "<button type='submit' onclick='%s()' %s name='btn_add' value='%d' style='width:18%%;'>" D_ADD "</button><br><br>"
  "<table style='width:80%%; font-size: 14px;'><col width='250'><col width='30'>";

const char HTTP_FORM_KNX_ADD_TABLE_ROW[] PROGMEM =
  "<tr><td><b>%s -> %d / %d / %d </b></td>"
  "<td><button type='submit' name='btn_del_ga' value='%d' class='button bred'> " D_DELETE " </button></td></tr>";

const char HTTP_FORM_KNX3[] PROGMEM =
  "</table></center></fieldset><br>"
  "<fieldset><form method='post' action='kn'><center>"
  "<b>" D_KNX_GROUP_ADDRESS_TO_READ "</b><hr>";

const char HTTP_FORM_KNX4[] PROGMEM =
  "-> <select name='CBop' style='width:25%%;'>";

const char HTTP_FORM_KNX_ADD_TABLE_ROW2[] PROGMEM =
  "<tr><td><b>%d / %d / %d -> %s</b></td>"
  "<td><button type='submit' name='btn_del_cb' value='%d' class='button bred'> " D_DELETE " </button></td></tr>";

void HandleKNXConfiguration(void)
{
  if (!HttpCheckPriviledgedAccess()) { return; }

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_HTTP D_CONFIGURE_KNX));

  char tmp[100];
  String stmp;

  if ( Webserver->hasArg("save") ) {
    KNX_Save_Settings();
    HandleConfiguration();
  }
  else
  {
    if ( Webserver->hasArg("btn_add") ) {
      if ( Webserver->arg("btn_add") == "1" ) {

        stmp = Webserver->arg("GAop"); //option selected
        uint8_t GAop = stmp.toInt();
        stmp = Webserver->arg("GA_FNUM");
        uint8_t GA_FNUM = stmp.toInt();
        stmp = Webserver->arg("GA_AREA");
        uint8_t GA_AREA = stmp.toInt();
        stmp = Webserver->arg("GA_FDEF");
        uint8_t GA_FDEF = stmp.toInt();

        if (GAop) {
          KNX_ADD_GA( GAop, GA_FNUM, GA_AREA, GA_FDEF );
        }
      }
      else
      {

        stmp = Webserver->arg("CBop"); //option selected
        uint8_t CBop = stmp.toInt();
        stmp = Webserver->arg("CB_FNUM");
        uint8_t CB_FNUM = stmp.toInt();
        stmp = Webserver->arg("CB_AREA");
        uint8_t CB_AREA = stmp.toInt();
        stmp = Webserver->arg("CB_FDEF");
        uint8_t CB_FDEF = stmp.toInt();

        if (CBop) {
          KNX_ADD_CB( CBop, CB_FNUM, CB_AREA, CB_FDEF );
        }
      }
    }
    else if ( Webserver->hasArg("btn_del_ga") )
    {

      stmp = Webserver->arg("btn_del_ga");
      uint8_t GA_NUM = stmp.toInt();

      KNX_DEL_GA(GA_NUM);

    }
    else if ( Webserver->hasArg("btn_del_cb") )
    {

      stmp = Webserver->arg("btn_del_cb");
      uint8_t CB_NUM = stmp.toInt();

      KNX_DEL_CB(CB_NUM);

    }

    WSContentStart_P(PSTR(D_CONFIGURE_KNX));
    WSContentSend_P(
      PSTR("function GAwarning()"
          "{"
            "var GA_FNUM=eb('GA_FNUM');"
            "var GA_AREA=eb('GA_AREA');"
            "var GA_FDEF=eb('GA_FDEF');"
            "if(GA_FNUM!=null&&GA_FNUM.value=='0'&&GA_AREA.value=='0'&&GA_FDEF.value=='0'){"
              "alert(\"" D_KNX_WARNING "\");"
            "}"
          "}"
          "function CBwarning()"
          "{"
            "var CB_FNUM=eb('CB_FNUM');"
            "var CB_AREA=eb('CB_AREA');"
            "var CB_FDEF=eb('CB_FDEF');"
            "if(CB_FNUM!=null&&CB_FNUM.value=='0'&&CB_AREA.value=='0'&&CB_FDEF.value=='0'){"
              "alert(\"" D_KNX_WARNING "\");"
            "}"
          "}"));
    WSContentSendStyle();
    KNX_physs_addr.value = Settings->knx_physsical_addr;
    WSContentSend_P(HTTP_FORM_KNX, KNX_physs_addr.pa.area, KNX_physs_addr.pa.line, KNX_physs_addr.pa.member);
    if ( Settings->flag.knx_enabled ) { WSContentSend_P(PSTR(" checked")); }
    WSContentSend_P(HTTP_FORM_KNX1);
    if ( Settings->flag.knx_enable_enhancement ) { WSContentSend_P(PSTR(" checked")); }

    WSContentSend_P(HTTP_FORM_KNX2);
    for (uint32_t i = 0; i < KNX_MAX_device_param ; i++)
    {
      if ( device_param[i].show )
      {
        WSContentSend_P(HTTP_FORM_KNX_OPT, device_param[i].type, device_param_ga[i]);
      }
    }
    WSContentSend_P(PSTR("</select> -> "));
    WSContentSend_P(HTTP_FORM_KNX_GA, "GA_FNUM", "GA_AREA", "GA_FDEF");
    WSContentSend_P(HTTP_FORM_KNX_ADD_BTN, "GAwarning", (Settings->knx_GA_registered < MAX_KNX_GA) ? "" : "disabled", 1);
    for (uint32_t i = 0; i < Settings->knx_GA_registered ; ++i)
    {
      if ( Settings->knx_GA_param[i] )
      {
        KNX_addr.value = Settings->knx_GA_addr[i];
        WSContentSend_P(HTTP_FORM_KNX_ADD_TABLE_ROW, device_param_ga[Settings->knx_GA_param[i]-1], KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member, i +1);
      }
    }

    WSContentSend_P(HTTP_FORM_KNX3);
    WSContentSend_P(HTTP_FORM_KNX_GA, "CB_FNUM", "CB_AREA", "CB_FDEF");
    WSContentSend_P(HTTP_FORM_KNX4);

    uint8_t j;
    for (uint32_t i = 0; i < KNX_MAX_device_param ; i++)
    {
      // Check How many Relays are available and add: RelayX and TogleRelayX
      if ( (i > 8) && (i < 16) ) { j=i-8; } else { j=i; }
      if ( i == 8 ) { j = 0; }
      if ( device_param[j].show )
      {
        WSContentSend_P(HTTP_FORM_KNX_OPT, device_param[i].type, device_param_cb[i]);
      }
    }
    WSContentSend_P(PSTR("</select> "));
    WSContentSend_P(HTTP_FORM_KNX_ADD_BTN, "CBwarning", (Settings->knx_CB_registered < MAX_KNX_CB) ? "" : "disabled", 2);

    for (uint32_t i = 0; i < Settings->knx_CB_registered ; ++i)
    {
      if ( Settings->knx_CB_param[i] )
      {
        KNX_addr.value = Settings->knx_CB_addr[i];
        WSContentSend_P(HTTP_FORM_KNX_ADD_TABLE_ROW2, KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member, device_param_cb[Settings->knx_CB_param[i]-1], i +1);
      }
    }
    WSContentSend_P(PSTR("</table></center></fieldset>"));
    WSContentSend_P(HTTP_FORM_END);
    WSContentSpaceButton(BUTTON_CONFIGURATION);
    WSContentStop();
  }

}


void KNX_Save_Settings(void)
{
  String stmp;
  address_t KNX_addr;

  Settings->flag.knx_enabled = Webserver->hasArg("b1");
  Settings->flag.knx_enable_enhancement = Webserver->hasArg("b2");
  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_ENABLED ": %d, " D_KNX_ENHANCEMENT ": %d"),
   Settings->flag.knx_enabled, Settings->flag.knx_enable_enhancement );

  stmp = Webserver->arg("area");
  KNX_addr.pa.area = stmp.toInt();
  stmp = Webserver->arg("line");
  KNX_addr.pa.line = stmp.toInt();
  stmp = Webserver->arg("member");
  KNX_addr.pa.member = stmp.toInt();
  Settings->knx_physsical_addr = KNX_addr.value;
  knx.physical_address_set( KNX_addr ); // Set Physical KNX Address of the device
  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX D_KNX_PHYSICAL_ADDRESS ": %d.%d.%d"),
   KNX_addr.pa.area, KNX_addr.pa.line, KNX_addr.pa.member );

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX "GA: %d"),
   Settings->knx_GA_registered );
  for (uint32_t i = 0; i < Settings->knx_GA_registered ; ++i)
  {
    KNX_addr.value = Settings->knx_GA_addr[i];
    AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX "GA #%d: %s " D_TO " %d/%d/%d"),
     i+1, device_param_ga[Settings->knx_GA_param[i]-1],
     KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member );

  }

  AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX "CB: %d"),
   Settings->knx_CB_registered );
  for (uint32_t i = 0; i < Settings->knx_CB_registered ; ++i)
  {
    KNX_addr.value = Settings->knx_CB_addr[i];
    AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_KNX "CB #%d: %d/%d/%d " D_TO " %s"),
     i+1,
     KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member,
     device_param_cb[Settings->knx_CB_param[i]-1] );
  }
}

#endif  // USE_KNX_WEB_MENU
#endif  // USE_WEBSERVER

/*********************************************************************************************\
 * Commands
\*********************************************************************************************/

void CmndKnxTxCmnd(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNXTX_CMNDS) && (XdrvMailbox.data_len > 0) && Settings->flag.knx_enabled) {
    // XdrvMailbox.index <- KNX SLOT to use
    // XdrvMailbox.payload <- data to send
    // Search all the registered GA that has that output (variable: KNX SLOTx) as parameter
    uint8_t i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1]);
    while ( i != KNX_Empty ) {
      KNX_addr.value = Settings->knx_GA_addr[i];
      KNX_WRITE_1BIT(KNX_addr, !(XdrvMailbox.payload == 0));

      AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %d " D_SENT_TO " %d/%d/%d"),
       device_param_ga[knx_slot_xref[XdrvMailbox.index -1] -1], !(XdrvMailbox.payload == 0),
       KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

      i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1], i + 1);
    }
    ResponseCmndIdxChar (XdrvMailbox.data );
  }
}

void CmndKnxTxVal(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNXTX_CMNDS) && (XdrvMailbox.data_len > 0) && Settings->flag.knx_enabled) {
    // XdrvMailbox.index <- KNX SLOT to use
    // XdrvMailbox.payload <- data to send
    // Search all the registered GA that has that output (variable: KNX SLOTx) as parameter
    uint8_t i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1]);
    while ( i != KNX_Empty ) {
      KNX_addr.value = Settings->knx_GA_addr[i];

      float tempvar = CharToFloat(XdrvMailbox.data);
      dtostrfd(tempvar,2,XdrvMailbox.data);

      KNX_WRITE_4BYTE_FLOAT(KNX_addr, tempvar);

      AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %s " D_SENT_TO " %d/%d/%d"),
       device_param_ga[knx_slot_xref[XdrvMailbox.index -1] -1], XdrvMailbox.data,
       KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

      i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1], i + 1);
    }
    ResponseCmndIdxChar (XdrvMailbox.data );
  }
}


void CmndKnxTxFloat(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNXTX_CMNDS) && (XdrvMailbox.data_len > 0) && Settings->flag.knx_enabled) {
    // XdrvMailbox.index <- KNX SLOT to use
    // XdrvMailbox.payload <- data to send
    // Search all the registered GA that has that output (variable: KNX SLOTx) as parameter
    uint8_t i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1]);
    while ( i != KNX_Empty ) {
      KNX_addr.value = Settings->knx_GA_addr[i];

      float tempvar = CharToFloat(XdrvMailbox.data);
      dtostrfd(tempvar,2,XdrvMailbox.data);

      KNX_WRITE_2BYTE_FLOAT(KNX_addr, tempvar);

      AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %s " D_SENT_TO " %d/%d/%d (2 bytes float)"),
       device_param_ga[knx_slot_xref[XdrvMailbox.index -1] -1], XdrvMailbox.data,
       KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

      i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1], i + 1);
    }
    ResponseCmndIdxChar (XdrvMailbox.data );
  }
}

void CmndKnxTxByte(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNXTX_CMNDS) && (XdrvMailbox.data_len > 0) && Settings->flag.knx_enabled) {
    // XdrvMailbox.index <- KNX SLOT to use
    // XdrvMailbox.payload <- data to send
    // Search all the registered GA that has that output (variable: KNX SLOTx) as parameter
    uint8_t i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1]);
    while ( i != KNX_Empty ) {
      KNX_addr.value = Settings->knx_GA_addr[i];

      uint8_t tempvar = TextToInt(XdrvMailbox.data);
      dtostrfd(tempvar,0,XdrvMailbox.data);

      KNX_WRITE_1BYTE_UINT(KNX_addr, tempvar);

      AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %s " D_SENT_TO " %d/%d/%d (1 byte unsigned)"),
       device_param_ga[knx_slot_xref[XdrvMailbox.index -1] -1], XdrvMailbox.data,
       KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);

      i = KNX_GA_Search(knx_slot_xref[XdrvMailbox.index -1], i + 1);
    }
    ResponseCmndIdxChar (XdrvMailbox.data );
  }
}

void CmndKnxTxScene(void)
{
  if ( (XdrvMailbox.data_len > 0) && Settings->flag.knx_enabled ) {
    // XdrvMailbox.payload <- scene number to send
    uint8_t i = KNX_GA_Search(KNX_SCENE);
    if ( i != KNX_Empty ) {
      KNX_addr.value = Settings->knx_GA_addr[i];

      uint8_t tempvar = TextToInt(XdrvMailbox.data);
      dtostrfd(tempvar,0,XdrvMailbox.data);

      KNX_WRITE_1BYTE_UINT(KNX_addr, tempvar);

      AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_KNX "%s = %s " D_SENT_TO " %d/%d/%d"),
       device_param_ga[KNX_SCENE-1], XdrvMailbox.data,
       KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member);
      ResponseCmndIdxChar (XdrvMailbox.data);
    }
  }
}

void CmndKnxEnabled(void)
{
  if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
    Settings->flag.knx_enabled = XdrvMailbox.payload;
  }
  ResponseCmndChar (GetStateText(Settings->flag.knx_enabled) );
}

void CmndKnxEnhanced(void)
{
  if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
    Settings->flag.knx_enable_enhancement = XdrvMailbox.payload;
  }
  ResponseCmndChar (GetStateText(Settings->flag.knx_enable_enhancement) );
}

void CmndKnxPa(void)
{
  if (XdrvMailbox.data_len) {
    if (strchr(XdrvMailbox.data, '.') != nullptr) {  // Process parameter entry
      char sub_string[XdrvMailbox.data_len];

      int pa_area = atoi(subStr(sub_string, XdrvMailbox.data, ".", 1));
      int pa_line = atoi(subStr(sub_string, XdrvMailbox.data, ".", 2));
      int pa_member = atoi(subStr(sub_string, XdrvMailbox.data, ".", 3));

      if ( ((pa_area == 0) && (pa_line == 0) && (pa_member == 0))
            || (pa_area > 15) || (pa_line > 15) || (pa_member > 255) ) {
              return;  // Command Error
      }  // Invalid command

      KNX_addr.pa.area = pa_area;
      KNX_addr.pa.line = pa_line;
      KNX_addr.pa.member = pa_member;
      Settings->knx_physsical_addr = KNX_addr.value;
    }
  }
  KNX_addr.value = Settings->knx_physsical_addr;
  Response_P (PSTR("{\"%s\":\"%d.%d.%d\"}"),
    XdrvMailbox.command, KNX_addr.pa.area, KNX_addr.pa.line, KNX_addr.pa.member );
}

void CmndKnxGa(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNX_GA)) {
    if (XdrvMailbox.data_len) {
      if (ArgC() > 1) {  // Process parameter entry
        char argument[XdrvMailbox.data_len];

        int ga_option = atoi(ArgV(argument, 1));
        int ga_area = atoi(ArgV(argument, 2));
        int ga_line = atoi(ArgV(argument, 3));
        int ga_member = atoi(ArgV(argument, 4));

        if ( ((ga_area == 0) && (ga_line == 0) && (ga_member == 0))
          || (ga_area > 31) || (ga_line > 7) || (ga_member > 255)
          || (ga_option < 0) || ((ga_option > KNX_MAX_device_param ) && (ga_option != KNX_Empty))
          || (!device_param[ga_option-1].show) ) {
               return;  // Command Error
        }  // Invalid command

        KNX_addr.ga.area = ga_area;
        KNX_addr.ga.line = ga_line;
        KNX_addr.ga.member = ga_member;

        if ( XdrvMailbox.index > Settings->knx_GA_registered ) {
          Settings->knx_GA_registered ++;
          XdrvMailbox.index = Settings->knx_GA_registered;
        }

        Settings->knx_GA_addr[XdrvMailbox.index -1] = KNX_addr.value;
        Settings->knx_GA_param[XdrvMailbox.index -1] = ga_option;
      } else {
        if ( (XdrvMailbox.payload <= Settings->knx_GA_registered) && (XdrvMailbox.payload > 0) ) {
          XdrvMailbox.index = XdrvMailbox.payload;
        } else {
          return;  // Command Error
        }
      }
      if ( XdrvMailbox.index <= Settings->knx_GA_registered ) {
        KNX_addr.value = Settings->knx_GA_addr[XdrvMailbox.index -1];
        Response_P (PSTR("{\"%s%d\":\"%s, %d/%d/%d\"}"),
          XdrvMailbox.command, XdrvMailbox.index, device_param_ga[Settings->knx_GA_param[XdrvMailbox.index-1]-1],
          KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member );
      }
    } else {
      ResponseCmndIdxNumber (Settings->knx_GA_registered );
    }
  }
}

void CmndKnxCb(void)
{
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_KNX_CB)) {
    if (XdrvMailbox.data_len) {
      if (ArgC() > 1) {  // Process parameter entry
        char argument[XdrvMailbox.data_len];

        int cb_option = atoi(ArgV(argument, 1));
        int cb_area = atoi(ArgV(argument, 2));
        int cb_line = atoi(ArgV(argument, 3));
        int cb_member = atoi(ArgV(argument, 4));

        if ( ((cb_area == 0) && (cb_line == 0) && (cb_member == 0))
          || (cb_area > 31) || (cb_line > 7) || (cb_member > 255)
          || (cb_option < 0) || ((cb_option > KNX_MAX_device_param ) && (cb_option != KNX_Empty))
          || (!device_param[cb_option-1].show) ) {
               return;  // Command Error
        }  // Invalid command

        KNX_addr.ga.area = cb_area;
        KNX_addr.ga.line = cb_line;
        KNX_addr.ga.member = cb_member;

        if ( XdrvMailbox.index > Settings->knx_CB_registered ) {
          Settings->knx_CB_registered ++;
          XdrvMailbox.index = Settings->knx_CB_registered;
        }

        Settings->knx_CB_addr[XdrvMailbox.index -1] = KNX_addr.value;
        Settings->knx_CB_param[XdrvMailbox.index -1] = cb_option;
      } else {
        if ( (XdrvMailbox.payload <= Settings->knx_CB_registered) && (XdrvMailbox.payload > 0) ) {
          XdrvMailbox.index = XdrvMailbox.payload;
        } else {
          return;  // Command Error
        }
      }
      if ( XdrvMailbox.index <= Settings->knx_CB_registered ) {
        KNX_addr.value = Settings->knx_CB_addr[XdrvMailbox.index -1];
        Response_P (PSTR("{\"%s%d\":\"%s, %d/%d/%d\"}"),
          XdrvMailbox.command, XdrvMailbox.index, device_param_cb[Settings->knx_CB_param[XdrvMailbox.index-1]-1],
          KNX_addr.ga.area, KNX_addr.ga.line, KNX_addr.ga.member );
      }
    } else {
      ResponseCmndIdxNumber (Settings->knx_CB_registered );
    }
  }
}

/*********************************************************************************************\
 * Interface
\*********************************************************************************************/

bool Xdrv11(uint32_t function)
{
  bool result = false;
    switch (function) {
      case FUNC_LOOP:
        if (!TasmotaGlobal.global_state.network_down) { knx.loop(); }  // Process knx events
        break;
      case FUNC_EVERY_50_MSECOND:
        if (toggle_inhibit) {
          toggle_inhibit--;
        }
        break;
      case FUNC_ANY_KEY:
        KnxSendButtonPower();
        break;
#ifdef USE_WEBSERVER
#ifdef USE_KNX_WEB_MENU
      case FUNC_WEB_ADD_BUTTON:
        WSContentSend_P(HTTP_BTN_MENU_KNX);
        break;
      case FUNC_WEB_ADD_HANDLER:
        WebServer_on(PSTR("/kn"), HandleKNXConfiguration);
        break;
#endif // USE_KNX_WEB_MENU
#endif  // USE_WEBSERVER
      case FUNC_COMMAND:
        result = DecodeCommand(kKnxCommands, KnxCommand);
        break;
      case FUNC_PRE_INIT:
        KNX_INIT();
        break;
      case FUNC_NETWORK_UP:
        if (!knx_started && Settings->flag.knx_enabled) {  // CMND_KNX_ENABLED
          KNXStart();
          knx_started = true;
        }
        break;
      case FUNC_NETWORK_DOWN:
        knx_started = false;
        break;
//      case FUNC_SET_POWER:
//        break;
      case FUNC_ACTIVE:
        result = true;
        break;
    }
  return result;
}

#endif  // USE_KNX