/* xsns_09_bmp.ino - BMP pressure, temperature, humidity and gas sensor support for Sonoff-Tasmota Copyright (C) 2018 Heiko Krupp and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_BMP /*********************************************************************************************\ * BMP085, BMP180, BMP280, BME280, BME680 - Pressure, Temperature, Humidity (BME280/BME680) and gas (BME680) * * Source: Heiko Krupp and Adafruit Industries * * I2C Address: 0x76 or 0x77 \*********************************************************************************************/ #define BMP_ADDR1 0x77 #define BMP_ADDR2 0x76 #define BMP180_CHIPID 0x55 #define BMP280_CHIPID 0x58 #define BME280_CHIPID 0x60 #define BME680_CHIPID 0x61 #define BMP_REGISTER_CHIPID 0xD0 const char kBmpTypes[] PROGMEM = "BMP180|BMP280|BME280|BME680"; uint8_t bmp_address; uint8_t bmp_addresses[] = { BMP_ADDR1, BMP_ADDR2 }; uint8_t bmp_type = 0; uint8_t bmp_model = 0; char bmp_name[7]; /*********************************************************************************************\ * BMP085 and BME180 \*********************************************************************************************/ #define BMP180_REG_CONTROL 0xF4 #define BMP180_REG_RESULT 0xF6 #define BMP180_TEMPERATURE 0x2E #define BMP180_PRESSURE3 0xF4 // Max. oversampling -> OSS = 3 #define BMP180_AC1 0xAA #define BMP180_AC2 0xAC #define BMP180_AC3 0xAE #define BMP180_AC4 0xB0 #define BMP180_AC5 0xB2 #define BMP180_AC6 0xB4 #define BMP180_VB1 0xB6 #define BMP180_VB2 0xB8 #define BMP180_MB 0xBA #define BMP180_MC 0xBC #define BMP180_MD 0xBE #define BMP180_OSS 3 int16_t cal_ac1; int16_t cal_ac2; int16_t cal_ac3; int16_t cal_b1; int16_t cal_b2; int16_t cal_mc; int16_t cal_md; uint16_t cal_ac4; uint16_t cal_ac5; uint16_t cal_ac6; int32_t bmp180_b5 = 0; boolean Bmp180Calibration() { cal_ac1 = I2cRead16(bmp_address, BMP180_AC1); cal_ac2 = I2cRead16(bmp_address, BMP180_AC2); cal_ac3 = I2cRead16(bmp_address, BMP180_AC3); cal_ac4 = I2cRead16(bmp_address, BMP180_AC4); cal_ac5 = I2cRead16(bmp_address, BMP180_AC5); cal_ac6 = I2cRead16(bmp_address, BMP180_AC6); cal_b1 = I2cRead16(bmp_address, BMP180_VB1); cal_b2 = I2cRead16(bmp_address, BMP180_VB2); cal_mc = I2cRead16(bmp_address, BMP180_MC); cal_md = I2cRead16(bmp_address, BMP180_MD); // Check for Errors in calibration data. Value never is 0x0000 or 0xFFFF if (!cal_ac1 | !cal_ac2 | !cal_ac3 | !cal_ac4 | !cal_ac5 | !cal_ac6 | !cal_b1 | !cal_b2 | !cal_mc | !cal_md) { return false; } if ((cal_ac1 == (int16_t)0xFFFF) | (cal_ac2 == (int16_t)0xFFFF) | (cal_ac3 == (int16_t)0xFFFF) | (cal_ac4 == 0xFFFF) | (cal_ac5 == 0xFFFF) | (cal_ac6 == 0xFFFF) | (cal_b1 == (int16_t)0xFFFF) | (cal_b2 == (int16_t)0xFFFF) | (cal_mc == (int16_t)0xFFFF) | (cal_md == (int16_t)0xFFFF)) { return false; } return true; } double Bmp180ReadTemperature() { I2cWrite8(bmp_address, BMP180_REG_CONTROL, BMP180_TEMPERATURE); delay(5); // 5ms conversion time int ut = I2cRead16(bmp_address, BMP180_REG_RESULT); int32_t x1 = (ut - (int32_t)cal_ac6) * ((int32_t)cal_ac5) >> 15; int32_t x2 = ((int32_t)cal_mc << 11) / (x1 + (int32_t)cal_md); bmp180_b5 = x1 + x2; return ((bmp180_b5 + 8) >> 4) / 10.0; } double Bmp180ReadPressure() { int32_t p; I2cWrite8(bmp_address, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution delay(2 + (4 << BMP180_OSS)); // 26ms conversion time at ultra high resolution uint32_t up = I2cRead24(bmp_address, BMP180_REG_RESULT); up >>= (8 - BMP180_OSS); int32_t b6 = bmp180_b5 - 4000; int32_t x1 = ((int32_t)cal_b2 * ((b6 * b6) >> 12)) >> 11; int32_t x2 = ((int32_t)cal_ac2 * b6) >> 11; int32_t x3 = x1 + x2; int32_t b3 = ((((int32_t)cal_ac1 * 4 + x3) << BMP180_OSS) + 2) >> 2; x1 = ((int32_t)cal_ac3 * b6) >> 13; x2 = ((int32_t)cal_b1 * ((b6 * b6) >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; uint32_t b4 = ((uint32_t)cal_ac4 * (uint32_t)(x3 + 32768)) >> 15; uint32_t b7 = ((uint32_t)up - b3) * (uint32_t)(50000UL >> BMP180_OSS); if (b7 < 0x80000000) { p = (b7 * 2) / b4; } else { p = (b7 / b4) * 2; } x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; p += ((x1 + x2 + (int32_t)3791) >> 4); return p / 100.0; // convert to mbar } /*********************************************************************************************\ * BMP280 and BME280 * * Programmer : BMP280/BME280 Datasheet and Adafruit with changes by Theo Arends \*********************************************************************************************/ #define BME280_REGISTER_CONTROLHUMID 0xF2 #define BME280_REGISTER_CONTROL 0xF4 #define BME280_REGISTER_CONFIG 0xF5 #define BME280_REGISTER_PRESSUREDATA 0xF7 #define BME280_REGISTER_TEMPDATA 0xFA #define BME280_REGISTER_HUMIDDATA 0xFD #define BME280_REGISTER_DIG_T1 0x88 #define BME280_REGISTER_DIG_T2 0x8A #define BME280_REGISTER_DIG_T3 0x8C #define BME280_REGISTER_DIG_P1 0x8E #define BME280_REGISTER_DIG_P2 0x90 #define BME280_REGISTER_DIG_P3 0x92 #define BME280_REGISTER_DIG_P4 0x94 #define BME280_REGISTER_DIG_P5 0x96 #define BME280_REGISTER_DIG_P6 0x98 #define BME280_REGISTER_DIG_P7 0x9A #define BME280_REGISTER_DIG_P8 0x9C #define BME280_REGISTER_DIG_P9 0x9E #define BME280_REGISTER_DIG_H1 0xA1 #define BME280_REGISTER_DIG_H2 0xE1 #define BME280_REGISTER_DIG_H3 0xE3 #define BME280_REGISTER_DIG_H4 0xE4 #define BME280_REGISTER_DIG_H5 0xE5 #define BME280_REGISTER_DIG_H6 0xE7 struct BME280CALIBDATA { uint16_t dig_T1; int16_t dig_T2; int16_t dig_T3; uint16_t dig_P1; int16_t dig_P2; int16_t dig_P3; int16_t dig_P4; int16_t dig_P5; int16_t dig_P6; int16_t dig_P7; int16_t dig_P8; int16_t dig_P9; uint8_t dig_H1; int16_t dig_H2; uint8_t dig_H3; int16_t dig_H4; int16_t dig_H5; int8_t dig_H6; } Bme280CalibrationData; int32_t t_fine; boolean Bmx280Calibrate() { // if (I2cRead8(bmp_address, BMP_REGISTER_CHIPID) != BME280_CHIPID) return false; Bme280CalibrationData.dig_T1 = I2cRead16LE(bmp_address, BME280_REGISTER_DIG_T1); Bme280CalibrationData.dig_T2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_T2); Bme280CalibrationData.dig_T3 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_T3); Bme280CalibrationData.dig_P1 = I2cRead16LE(bmp_address, BME280_REGISTER_DIG_P1); Bme280CalibrationData.dig_P2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P2); Bme280CalibrationData.dig_P3 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P3); Bme280CalibrationData.dig_P4 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P4); Bme280CalibrationData.dig_P5 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P5); Bme280CalibrationData.dig_P6 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P6); Bme280CalibrationData.dig_P7 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P7); Bme280CalibrationData.dig_P8 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P8); Bme280CalibrationData.dig_P9 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P9); /* if (BME280_CHIPID == bmp_type) { Bme280CalibrationData.dig_H1 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H1); Bme280CalibrationData.dig_H2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_H2); Bme280CalibrationData.dig_H3 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H3); Bme280CalibrationData.dig_H4 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF); Bme280CalibrationData.dig_H5 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5) >> 4); Bme280CalibrationData.dig_H6 = (int8_t)I2cRead8(bmp_address, BME280_REGISTER_DIG_H6); // Set before CONTROL_meas (DS 5.4.3) I2cWrite8(bmp_address, BME280_REGISTER_CONTROLHUMID, 0x05); // 16x oversampling (Adafruit) } I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit) */ if (BME280_CHIPID == bmp_type) { // #1051 Bme280CalibrationData.dig_H1 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H1); Bme280CalibrationData.dig_H2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_H2); Bme280CalibrationData.dig_H3 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H3); Bme280CalibrationData.dig_H4 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF); Bme280CalibrationData.dig_H5 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5) >> 4); Bme280CalibrationData.dig_H6 = (int8_t)I2cRead8(bmp_address, BME280_REGISTER_DIG_H6); I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0x00); // sleep mode since writes to config can be ignored in normal mode (Datasheet 5.4.5/6 page 27) // Set before CONTROL_meas (DS 5.4.3) I2cWrite8(bmp_address, BME280_REGISTER_CONTROLHUMID, 0x01); // 1x oversampling I2cWrite8(bmp_address, BME280_REGISTER_CONFIG, 0xA0); // 1sec standby between measurements (to limit self heating), IIR filter off I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0x27); // 1x oversampling, normal mode } else { I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit) } return true; } double Bme280ReadTemperature(void) { int32_t var1; int32_t var2; int32_t adc_T = I2cRead24(bmp_address, BME280_REGISTER_TEMPDATA); adc_T >>= 4; var1 = ((((adc_T >> 3) - ((int32_t)Bme280CalibrationData.dig_T1 << 1))) * ((int32_t)Bme280CalibrationData.dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((int32_t)Bme280CalibrationData.dig_T1)) * ((adc_T >> 4) - ((int32_t)Bme280CalibrationData.dig_T1))) >> 12) * ((int32_t)Bme280CalibrationData.dig_T3)) >> 14; t_fine = var1 + var2; double T = (t_fine * 5 + 128) >> 8; return T / 100.0; } double Bme280ReadPressure(void) { int64_t var1; int64_t var2; int64_t p; // Must be done first to get the t_fine variable set up // Bme280ReadTemperature(); int32_t adc_P = I2cRead24(bmp_address, BME280_REGISTER_PRESSUREDATA); adc_P >>= 4; var1 = ((int64_t)t_fine) - 128000; var2 = var1 * var1 * (int64_t)Bme280CalibrationData.dig_P6; var2 = var2 + ((var1 * (int64_t)Bme280CalibrationData.dig_P5) << 17); var2 = var2 + (((int64_t)Bme280CalibrationData.dig_P4) << 35); var1 = ((var1 * var1 * (int64_t)Bme280CalibrationData.dig_P3) >> 8) + ((var1 * (int64_t)Bme280CalibrationData.dig_P2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)Bme280CalibrationData.dig_P1) >> 33; if (0 == var1) { return 0; // avoid exception caused by division by zero } p = 1048576 - adc_P; p = (((p << 31) - var2) * 3125) / var1; var1 = (((int64_t)Bme280CalibrationData.dig_P9) * (p >> 13) * (p >> 13)) >> 25; var2 = (((int64_t)Bme280CalibrationData.dig_P8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)Bme280CalibrationData.dig_P7) << 4); return (double)p / 25600.0; } double Bme280ReadHumidity(void) { int32_t v_x1_u32r; // Must be done first to get the t_fine variable set up // Bme280ReadTemperature(); int32_t adc_H = I2cRead16(bmp_address, BME280_REGISTER_HUMIDDATA); v_x1_u32r = (t_fine - ((int32_t)76800)); v_x1_u32r = (((((adc_H << 14) - (((int32_t)Bme280CalibrationData.dig_H4) << 20) - (((int32_t)Bme280CalibrationData.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)Bme280CalibrationData.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)Bme280CalibrationData.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)Bme280CalibrationData.dig_H2) + 8192) >> 14)); v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)Bme280CalibrationData.dig_H1)) >> 4)); v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r; v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r; double h = (v_x1_u32r >> 12); return h / 1024.0; } #ifdef USE_BME680 /*********************************************************************************************\ * BME680 \*********************************************************************************************/ #include Adafruit_BME680 bme680; void Bme680PerformReading() { if (BME680_CHIPID == bmp_type) { bme680.performReading(); } } #endif // USE_BME680 /********************************************************************************************/ void BmpDetect() { if (bmp_type) { return; } for (byte i = 0; i < sizeof(bmp_addresses); i++) { bmp_address = bmp_addresses[i]; bmp_type = I2cRead8(bmp_address, BMP_REGISTER_CHIPID); if (bmp_type) { break; } } if (bmp_type) { boolean success = false; switch (bmp_type) { case BMP180_CHIPID: success = Bmp180Calibration(); break; case BMP280_CHIPID: bmp_model = 1; // 1 success = Bmx280Calibrate(); break; case BME280_CHIPID: bmp_model = 2; // 2 success = Bmx280Calibrate(); break; #ifdef USE_BME680 case BME680_CHIPID: bmp_model = 3; // 2 success = bme680.begin(bmp_address); break; #endif // USE_BME680 } if (success) { GetTextIndexed(bmp_name, sizeof(bmp_name), bmp_model, kBmpTypes); snprintf_P(log_data, sizeof(log_data), S_LOG_I2C_FOUND_AT, bmp_name, bmp_address); AddLog(LOG_LEVEL_DEBUG); } else { bmp_type = 0; } } } void BmpShow(boolean json) { if (bmp_type) { float t = 0.0; float p = 0.0; float h = 0.0; float g = 0.0; float bmp_sealevel = 0.0; switch (bmp_type) { case BMP180_CHIPID: t = Bmp180ReadTemperature(); p = Bmp180ReadPressure(); break; case BME280_CHIPID: h = Bme280ReadHumidity(); case BMP280_CHIPID: t = Bme280ReadTemperature(); p = Bme280ReadPressure(); break; #ifdef USE_BME680 case BME680_CHIPID: t = bme680.temperature; p = bme680.pressure / 100.0; h = bme680.humidity; g = bme680.gas_resistance / 1000.0; break; #endif // USE_BME680 } if (t != 0.0) { t = ConvertTemp(t); } if (p != 0.0) { // bmp_sealevel = p / pow(1.0 - ((float)Settings.altitude / 44330.0), 5.255); // pow adds 8k to the code bmp_sealevel = (p / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0), 5.255)) - 21.6; } char temperature[10]; dtostrfd(t, Settings.flag2.temperature_resolution, temperature); char pressure[10]; dtostrfd(p, Settings.flag2.pressure_resolution, pressure); char sea_pressure[10]; dtostrfd(bmp_sealevel, Settings.flag2.pressure_resolution, sea_pressure); char humidity[10]; dtostrfd(h, Settings.flag2.humidity_resolution, humidity); #ifdef USE_BME680 char gas_resistance[10]; dtostrfd(g, 2, gas_resistance); #endif // USE_BME680 if (json) { char json_humidity[40]; snprintf_P(json_humidity, sizeof(json_humidity), PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity); char json_sealevel[40]; snprintf_P(json_sealevel, sizeof(json_sealevel), PSTR(",\"" D_JSON_PRESSUREATSEALEVEL "\":%s"), sea_pressure); #ifdef USE_BME680 char json_gas[40]; snprintf_P(json_gas, sizeof(json_gas), PSTR(",\"" D_JSON_GAS "\":%s"), gas_resistance); snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s%s}"), mqtt_data, bmp_name, temperature, (bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "", (bmp_model >= 3) ? json_gas : ""); #else snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s}"), mqtt_data, bmp_name, temperature, (bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : ""); #endif // USE_BME680 #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzTempHumPressureSensor(temperature, humidity, pressure); #ifdef USE_BME680 if (bmp_model >= 3) { DomoticzSensor(DZ_AIRQUALITY, (uint32_t)g); } #endif // USE_BME680 } #endif // USE_DOMOTICZ #ifdef USE_KNX if (0 == tele_period) { KnxSensor(KNX_TEMPERATURE, t); KnxSensor(KNX_HUMIDITY, h); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, bmp_name, temperature, TempUnit()); if (bmp_model >= 2) { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, bmp_name, humidity); } snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_PRESSURE, mqtt_data, bmp_name, pressure); if (Settings.altitude != 0) { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SEAPRESSURE, mqtt_data, bmp_name, sea_pressure); } #ifdef USE_BME680 if (bmp_model >= 3) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{s}%s " D_GAS "{m}%s " D_UNIT_KILOOHM "{e}"), mqtt_data, bmp_name, gas_resistance); } #endif // USE_BME680 #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ #define XSNS_09 boolean Xsns09(byte function) { boolean result = false; if (i2c_flg) { switch (function) { case FUNC_PREP_BEFORE_TELEPERIOD: BmpDetect(); break; case FUNC_EVERY_SECOND: #ifdef USE_BME680 if ((Settings.tele_period - tele_period) < 300) { // 5 minute stabilization time if (tele_period &1) { Bme680PerformReading(); // Keep BME680 busy every two seconds } } #endif // USE_BME680 break; case FUNC_JSON_APPEND: BmpShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: BmpShow(0); #ifdef USE_BME680 Bme680PerformReading(); #endif // USE_BME680 break; #endif // USE_WEBSERVER } } return result; } #endif // USE_BMP #endif // USE_I2C