/* xdrv_27_Shutter[i].ino - Shutter/Blind support for Tasmota Copyright (C) 2021 Stefan Bode This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SHUTTER /*********************************************************************************************\ * Shutter or Blind support using two consecutive relays \*********************************************************************************************/ #define XDRV_27 27 #ifndef SHUTTER_STEPPER #define SHUTTER_STEPPER #endif //#define SHUTTER_UNITTEST #define D_SHUTTER "SHUTTER" const uint16_t MOTOR_STOP_TIME = 500; // in mS const uint16_t RESOLUTION = 1000; // incresed to 1000 in 8.5 to ramp servos const uint8_t STEPS_PER_SECOND = 20; // FUNC_EVERY_50_MSECOND const uint16_t pwm_max = 500; const uint16_t pwm_min = 90; uint8_t calibrate_pos[6] = {0,30,50,70,90,100}; uint16_t messwerte[5] = {30,50,70,90,100}; int32_t velocity_max = 0; int32_t velocity_change_per_step_max = 0; int32_t min_runtime_ms = 0; int32_t current_stop_way = 0; int32_t next_possible_stop_position = 0; int32_t current_real_position = 0; int32_t current_pwm_velocity = 0; const uint8_t MAX_MODES = 7; enum Shutterposition_mode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,}; enum Shutterswitch_mode {SHT_SWITCH, SHT_PULSE,}; enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,}; const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|" D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_TOGGLE "|" D_CMND_SHUTTER_TOGGLEDIR "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|" D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_MODE "|" D_CMND_SHUTTER_PWMRANGE "|" D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_SETOPEN "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|" D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME "|" D_CMND_SHUTTER_INVERTWEBBUTTONS "|" D_CMND_SHUTTER_STOPOPEN "|" D_CMND_SHUTTER_STOPCLOSE "|" D_CMND_SHUTTER_STOPTOGGLE "|" D_CMND_SHUTTER_STOPTOGGLEDIR "|" D_CMND_SHUTTER_STOPPOSITION "|" D_CMND_SHUTTER_INCDEC "|" D_CMND_SHUTTER_UNITTEST "|"; void (* const ShutterCommand[])(void) PROGMEM = { &CmndShutterOpen, &CmndShutterClose, &CmndShutterToggle, &CmndShutterToggleDir, &CmndShutterStop, &CmndShutterPosition, &CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterMode, &CmndShutterPwmRange, &CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterSetOpen, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay, &CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime, &CmndShutterInvertWebButtons, &CmndShutterStopOpen, &CmndShutterStopClose, &CmndShutterStopToggle, &CmndShutterStopToggleDir, &CmndShutterStopPosition, &CmndShutterIncDec, &CmndShutterUnitTest}; const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d,\"Target\":%d}"; const char JSON_SHUTTER_BUTTON[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Button%d\":%d}"; #include Ticker TickerShutter; struct SHUTTER { uint32_t time; // operating time of the shutter in 0.05sec int32_t open_max; // max value on maximum open calculated int32_t target_position; // position to go to int32_t start_position; // position before a movement is started. init at start int32_t real_position; // value between 0 and Shutter[i].open_max uint16_t open_time; // duration to open the Shutter[i]. 112 = 11.2sec uint16_t close_time; // duration to close the Shutter[i]. 112 = 11.2sec uint16_t close_velocity; // in relation to open velocity. higher value = faster int8_t direction; // 1 == UP , 0 == stop; -1 == down int8_t lastdirection; // last direction (1 == UP , -1 == down) uint8_t switch_mode; // how to switch relays: SHT_SWITCH, SHT_PULSE int16_t motordelay; // initial motorstarttime in 0.05sec. Also uses for ramp at steppers and servos int16_t pwm_velocity; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo uint16_t pwm_value; // dutyload of PWM 0..1023 on ESP8266 uint16_t close_velocity_max; // maximum of PWM change during closeing. Defines velocity on opening. Steppers and Servos only int32_t accelerator; // speed of ramp-up, ramp down of shutters with velocity control. Steppers and Servos only } Shutter[MAX_SHUTTERS]; struct SHUTTERGLOBAL { power_t RelayShutterMask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter power_t RelayOldMask = 0; // bitmatrix that contain the last known state of all relays. Required to detemine the manual changed relay. power_t RelayCurrentMask = 0; // bitmatrix that contain the current state of all relays uint8_t position_mode = 0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME uint8_t skip_relay_change; // avoid overrun at endstops uint8_t start_reported = 0; // indicates of the shutter start was reported through MQTT JSON uint16_t open_velocity_max = 1000; // maximum of PWM change during opening. Defines velocity on opening. Steppers and Servos only } ShutterGlobal; #define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B)) void ShutterLogPos(uint32_t i) { char stemp2[10]; dtostrfd((float)Shutter[i].time / STEPS_PER_SECOND, 2, stemp2); AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d, PWM %d"), i+1, Shutter[i].real_position, Shutter[i].start_position, Shutter[i].target_position, Shutter[i].direction, Shutter[i].motordelay, stemp2, Shutter[i].pwm_velocity, Shutter[i].pwm_value); } void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source) { // first implementation for virtual relays. Avoid switching relay numbers that do not exist. if (device <= TasmotaGlobal.devices_present) ExecuteCommandPower(device,state,source); } void ShutterUpdateVelocity(uint8_t i) { // No Logging allowed. Part of RTC Timer // will be calles through RTC every 50ms. // do not allow accellerator to stop movement Shutter[i].pwm_velocity = tmax(velocity_change_per_step_max, Shutter[i].pwm_velocity+Shutter[i].accelerator); Shutter[i].pwm_velocity = tmin(Shutter[i].direction==1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max,Shutter[i].pwm_velocity); // respect hard coded SDK limit of 100Hz on PWM frequency. if (ShutterGlobal.position_mode == SHT_COUNTER) { Shutter[i].pwm_velocity = tmax(100,Shutter[i].pwm_velocity); } } void ShutterRtc50mS(void) { // No Logging allowed. RTC Timer for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) { if (Shutter[i].direction) { // update position data before increasing counter Shutter[i].real_position = ShutterCalculatePosition(i); Shutter[i].time++; ShutterCalculateAccelerator(i); switch (ShutterGlobal.position_mode) { case SHT_PWM_VALUE: ShutterUpdateVelocity(i); Shutter[i].real_position += Shutter[i].direction > 0 ? Shutter[i].pwm_velocity : (Shutter[i].direction < 0 ? -Shutter[i].pwm_velocity : 0); Shutter[i].pwm_value = SHT_DIV_ROUND((Settings.shutter_pwmrange[1][i]-Settings.shutter_pwmrange[0][i]) * Shutter[i].real_position , Shutter[i].open_max)+Settings.shutter_pwmrange[0][i]; analogWrite(Pin(GPIO_PWM1, i), Shutter[i].pwm_value); break; case SHT_COUNTER: if (Shutter[i].accelerator) { //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Accelerator i=%d -> %d"),i, Shutter[i].accelerator); ShutterUpdateVelocity(i); analogWriteFreq(Shutter[i].pwm_velocity); analogWrite(Pin(GPIO_PWM1, i), 50); } break; } } // if (Shutter[i].direction) } } int32_t ShutterPercentToRealPosition(int16_t percent, uint32_t index) { if (Settings.shutter_set50percent[index] != 50) { return (percent <= 5) ? Settings.shuttercoeff[2][index] * percent*10 : (Settings.shuttercoeff[1][index] * percent + (Settings.shuttercoeff[0][index]*10))*10; } else { int64_t realpos; // check against DIV 0 for (uint32_t j = 0; j < 5; j++) { if (0 == Settings.shuttercoeff[j][index]) { AddLog(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0")); for (uint32_t k = 0; k < 5; k++) { Settings.shuttercoeff[k][index] = SHT_DIV_ROUND(calibrate_pos[k+1] * 1000, calibrate_pos[5]); } } } for (uint32_t k = 0; k < 5; k++) { if ((percent * 10) >= Settings.shuttercoeff[k][index]) { realpos = SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[k+1], 100); //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP1: %d, %d %%, coeff %d"), realpos, percent, Settings.shuttercoeff[k][index]); } else { //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max); if (0 == k) { realpos = SHT_DIV_ROUND((int64_t)percent * Shutter[index].open_max * calibrate_pos[k+1], Settings.shuttercoeff[k][index]*10 ); //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP3: %d, %d %%, coeff %d"), realpos, percent, Settings.shuttercoeff[k][index]); } else { //uint32_t addon = ( percent*10 - Settings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]) / (Settings.shuttercoeff[k][index] -Settings.shuttercoeff[k-1][index]) / 100; //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP2: %d, %d %%, coeff %d"), addon, (calibrate_pos[k+1] - calibrate_pos[k]), (Settings.shuttercoeff[k][index] -Settings.shuttercoeff[k-1][index])); realpos += SHT_DIV_ROUND(((int64_t)percent*10 - Settings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]), (Settings.shuttercoeff[k][index] - Settings.shuttercoeff[k-1][index])*100); } break; } } return realpos < 0 ? 0 : realpos; } } uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index) { if (Settings.shutter_set50percent[index] != 50) { return (Settings.shuttercoeff[2][index] * 5 > realpos/10) ? SHT_DIV_ROUND(realpos/10, Settings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos/10-Settings.shuttercoeff[0][index]*10, Settings.shuttercoeff[1][index]); } else { int64_t realpercent; for (uint32_t j = 0; j < 5; j++) { if (realpos >= Shutter[index].open_max * calibrate_pos[j+1] / 100) { realpercent = SHT_DIV_ROUND(Settings.shuttercoeff[j][index], 10); //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP1: %d %%, %d, coeff %d"), realpercent, realpos, Shutter[index].open_max * calibrate_pos[j+1] / 100); } else { //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max); if (0 == j) { realpercent = SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * Settings.shuttercoeff[j][index], calibrate_pos[j+1]/10*Shutter[index].open_max); } else { //uint16_t addon = ( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) * 10 * (Settings.shuttercoeff[j][index] - Settings.shuttercoeff[j-1][index]) / (calibrate_pos[j+1] - calibrate_pos[j])/Shutter[index].open_max; //uint16_t addon = ( realpercent*10 - Settings.shuttercoeff[j-1][index] ) * Shutter[index].open_max * (calibrate_pos[j+1] - calibrate_pos[j]) / (Settings.shuttercoeff[j][index] -Settings.shuttercoeff[j-1][index]) / 100; //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP2: %d %%, delta %d, %d, coeff %d"), addon,( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) , (calibrate_pos[j+1] - calibrate_pos[j])* Shutter[index].open_max/100, (Settings.shuttercoeff[j][index] -Settings.shuttercoeff[j-1][index])); realpercent += SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * (Settings.shuttercoeff[j][index] - Settings.shuttercoeff[j-1][index]), (calibrate_pos[j+1] - calibrate_pos[j])/10*Shutter[index].open_max) ; } break; } } return realpercent < 0 ? 0 : realpercent; } } void ShutterInit(void) { TasmotaGlobal.shutters_present = 0; ShutterGlobal.RelayShutterMask = 0; //Initialize to get relay that changed ShutterGlobal.RelayOldMask = TasmotaGlobal.power; // if shutter 4 is unused if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) { ShutterGlobal.open_velocity_max = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : ShutterGlobal.open_velocity_max; } for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { // set startrelay to 1 on first init, but only to shutter 1. 90% usecase Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]); if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] <= MAX_RELAYS )) { TasmotaGlobal.shutters_present++; // Add the two relays to the mask to knaw they belong to shutters ShutterGlobal.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1) ; // All shutters must have same mode. Switch OR Pulse. N switch (Settings.pulse_timer[i]) { case 0: Shutter[i].switch_mode = SHT_SWITCH; break; default: Shutter[i].switch_mode = SHT_PULSE; break; } if (Settings.shutter_mode == SHT_UNDEF) { bool relay_in_interlock = false; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Mode undef.. calculate...")); for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Interlock state i=%d %d, flag %d, Shuttermask %d, MaskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,ShutterGlobal.RelayShutterMask, Settings.interlock[i]&ShutterGlobal.RelayShutterMask); if (Settings.interlock[j] && (Settings.interlock[j] & ShutterGlobal.RelayShutterMask)) { //AddLog_P(LOG_LEVEL_DEBUG, PSTR("SHT: Relay in Interlock group")); relay_in_interlock = true; } } if (relay_in_interlock) { ShutterGlobal.position_mode = SHT_TIME; } else { ShutterGlobal.position_mode = SHT_TIME_UP_DOWN; if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) { ShutterGlobal.position_mode = SHT_COUNTER; } } } else { ShutterGlobal.position_mode = Settings.shutter_mode; } // main function for stepper and servos to control velocity and acceleration. TickerShutter.attach_ms(50, ShutterRtc50mS ); // default the 50 percent should not have any impact without changing it. set to 60 Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50; // use 10 sec. as default to allow everybody to play without deep initialize Shutter[i].open_time = Settings.shutter_opentime[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100; Shutter[i].close_time = Settings.shutter_closetime[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100; // Update Calculation 20 because time interval is 0.05 sec ans time is in 0.1sec Shutter[i].open_max = STEPS_PER_SECOND * RESOLUTION * Shutter[i].open_time / 10; Shutter[i].close_velocity = Shutter[i].open_max / Shutter[i].close_time / 2 ; // calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part if (Settings.shutter_set50percent[i] != 50) { Settings.shuttercoeff[1][i] = Shutter[i].open_max/10 * (100 - Settings.shutter_set50percent[i] ) / 5000 ; Settings.shuttercoeff[0][i] = Shutter[i].open_max/100 - (Settings.shuttercoeff[1][i] * 10); Settings.shuttercoeff[2][i] = (int32_t)(Settings.shuttercoeff[0][i]*10 + 5 * Settings.shuttercoeff[1][i]) / 5; //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Shutter[i].open_max %d, 50perc:%d, 0:%d, 1:%d 2:%d"), i, Shutter[i].open_max, Settings.shutter_set50percent[i], Settings.shuttercoeff[0][i],Settings.shuttercoeff[1][i],Settings.shuttercoeff[2][i]); } ShutterGlobal.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1); Shutter[i].real_position = ShutterPercentToRealPosition(Settings.shutter_position[i], i); Shutter[i].start_position = Shutter[i].target_position = Shutter[i].real_position; Shutter[i].motordelay = Settings.shutter_motordelay[i]; Shutter[i].lastdirection = (50 < Settings.shutter_position[i]) ? 1 : -1; switch (ShutterGlobal.position_mode) { case SHT_PWM_VALUE: ShutterGlobal.open_velocity_max = RESOLUTION; // Initiate pwm range with defaults if not already set. Settings.shutter_pwmrange[0][i] = Settings.shutter_pwmrange[0][i] > 0 ? Settings.shutter_pwmrange[0][i] : pwm_min; Settings.shutter_pwmrange[1][i] = Settings.shutter_pwmrange[1][i] > 0 ? Settings.shutter_pwmrange[1][i] : pwm_max; break; } Shutter[i].close_velocity_max = ShutterGlobal.open_velocity_max*Shutter[i].open_time / Shutter[i].close_time; //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Openvel %d, Closevel: %d"),i, ShutterGlobal.open_velocity_max, Shutter[i].close_velocity_max); AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init. Pos %d, Inverted %d, Locked %d, End stop time enabled %d, webButtons inverted %d"), i+1, Shutter[i].real_position, (Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0); } else { // terminate loop at first INVALID Shutter[i]. break; } ShutterLimitRealAndTargetPositions(i); Settings.shutter_accuracy = 1; } } void ShutterReportPosition(bool always, uint32_t index) { Response_P(PSTR("{")); TasmotaGlobal.rules_flag.shutter_moving = 0; uint32_t i = 0; uint32_t n = TasmotaGlobal.shutters_present; if( index != MAX_SHUTTERS) { i = index; n = index+1; } for (i; i < n; i++) { //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real Pos %d"), i+1,Shutter[i].real_position); uint32_t position = ShutterRealToPercentPosition(Shutter[i].real_position, i); if (Shutter[i].direction != 0) { TasmotaGlobal.rules_flag.shutter_moving = 1; ShutterLogPos(i); } if (i && index == MAX_SHUTTERS) { ResponseAppend_P(PSTR(",")); } uint32_t target = ShutterRealToPercentPosition(Shutter[i].target_position, i); ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter[i].direction,(Settings.shutter_options[i] & 1) ? 100-target : target ); } ResponseJsonEnd(); if (always || (TasmotaGlobal.rules_flag.shutter_moving)) { MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER)); // RulesProcess() now re-entry protected } //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), TasmotaGlobal.rules_flag.shutter_moving, TasmotaGlobal.rules_flag.shutter_moved); } void ShutterLimitRealAndTargetPositions(uint32_t i) { if (Shutter[i].real_position<0) Shutter[i].real_position = 0; if (Shutter[i].real_position>Shutter[i].open_max) Shutter[i].real_position = Shutter[i].open_max; if (Shutter[i].target_position<0) Shutter[i].target_position = 0; if (Shutter[i].target_position>Shutter[i].open_max) Shutter[i].target_position = Shutter[i].open_max; } void ShutterCalculateAccelerator(uint8_t i) { // No Logging allowed. Part of RTC Timer if (Shutter[i].direction != 0) { switch (ShutterGlobal.position_mode) { case SHT_COUNTER: case SHT_PWM_VALUE: current_real_position = Shutter[i].real_position; current_pwm_velocity = Shutter[i].pwm_velocity; // calculate max velocity allowed in this direction velocity_max = Shutter[i].direction == 1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max; // calculate max change of velocyty based on the defined motordelay in steps velocity_change_per_step_max = velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1); // minimumtime required from current velocity to stop min_runtime_ms = current_pwm_velocity * 1000 / STEPS_PER_SECOND / velocity_change_per_step_max; // decellaration way from current velocity current_stop_way = min_runtime_ms * STEPS_PER_SECOND * (current_pwm_velocity + velocity_change_per_step_max) * Shutter[i].direction / 2 / ShutterGlobal.open_velocity_max - (Shutter[i].accelerator<0?Shutter[i].direction*1000*current_pwm_velocity/ShutterGlobal.open_velocity_max:0); next_possible_stop_position = current_real_position + current_stop_way ; // ensure that the accelerotor kicks in at the first overrun of the target position if ( Shutter[i].accelerator < 0 || next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction ) { // if startet to early because of 0.05sec maximum accuracy and final position is to far away (200) accelerate a bit less if (next_possible_stop_position * Shutter[i].direction+200 < Shutter[i].target_position * Shutter[i].direction) { Shutter[i].accelerator = -velocity_change_per_step_max*9/10; } else { // in any case increase accelleration if overrun is detected during decelleration if (next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction && Shutter[i].accelerator < 0) { Shutter[i].accelerator = -velocity_change_per_step_max*11/10; } else { // as long as the calculated end position is ok stay with proposed decelleration Shutter[i].accelerator = -velocity_change_per_step_max; } } // detect during the acceleration phase the point final speed is reached } else if ( Shutter[i].accelerator > 0 && current_pwm_velocity == velocity_max) { Shutter[i].accelerator = 0; } break; } } } void ShutterDecellerateForStop(uint8_t i) { switch (ShutterGlobal.position_mode) { case SHT_PWM_VALUE: case SHT_COUNTER: int16_t missing_steps; Shutter[i].accelerator = -(ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>4 ? (Shutter[i].motordelay*11)/10 : 4) ); while (Shutter[i].pwm_velocity > -2*Shutter[i].accelerator && Shutter[i].pwm_velocity != 100) { delay(50); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Velocity %ld, Delta %d"), Shutter[i].pwm_velocity, Shutter[i].accelerator ); // Control will be done in RTC Ticker. } if (ShutterGlobal.position_mode == SHT_COUNTER){ missing_steps = ((Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) - RtcSettings.pulse_counter[i]; //prepare for stop PWM Shutter[i].accelerator = 0; Shutter[i].pwm_velocity = 0; while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) { } analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog Shutter[i].real_position = ShutterCalculatePosition(i); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d"), missing_steps); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Real %d, Pulsecount %d, tobe %d, Start %d"), Shutter[i].real_position,RtcSettings.pulse_counter[i], (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND, Shutter[i].start_position); } Shutter[i].direction = 0; Shutter[i].pwm_velocity = 0; break; } } void ShutterPowerOff(uint8_t i) { AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Shutter %d. Switchmode %d"), i+1,Shutter[i].switch_mode); // fix log to indicate correct shutter number ShutterDecellerateForStop(i); switch (Shutter[i].switch_mode) { case SHT_SWITCH: if ((1 << (Settings.shutter_startrelay[i]-1)) & TasmotaGlobal.power) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); } if ((1 << (Settings.shutter_startrelay[i])) & TasmotaGlobal.power) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER); } break; case SHT_PULSE: uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter[i].direction == 1 ? 0 : (uint8_t)(ShutterGlobal.position_mode == SHT_TIME)) ; // we have a momentary switch here. Needs additional pulse on same relay after the end if ((SRC_PULSETIMER == TasmotaGlobal.last_source || SRC_SHUTTER == TasmotaGlobal.last_source || SRC_WEBGUI == TasmotaGlobal.last_source)) { ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER); // switch off direction relay to make it power less if (((1 << (Settings.shutter_startrelay[i])) & TasmotaGlobal.power) && Settings.shutter_startrelay[i]+1 != cur_relay) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER); } } else { TasmotaGlobal.last_source = SRC_SHUTTER; } break; } // Store current PWM value to ensure proper position after reboot. switch (ShutterGlobal.position_mode) { case SHT_PWM_VALUE: char scmnd[20]; #ifdef SHUTTER_CLEAR_PWM_ONSTOP // free the PWM servo lock on stop. snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM "%d 0" ), i+1); #else snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM "%d %d" ), i+1,Shutter[i].pwm_value); #endif ExecuteCommand(scmnd, SRC_BUTTON); break; } if (Shutter[i].direction !=0) { Shutter[i].direction = 0; delay(MOTOR_STOP_TIME); } } void ShutterUpdatePosition(void) { char scommand[CMDSZ]; char stopic[TOPSZ]; for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) { if (Shutter[i].direction != 0) { if (!ShutterGlobal.start_reported) { ShutterReportPosition(true, i); XdrvRulesProcess(); ShutterGlobal.start_reported = 1; } AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Time %d, cStop %d, cVelo %d, mVelo %d, aVelo %d, mRun %d, aPos %d, nStop %d, Trgt %d, mVelo %d, Dir %d"), Shutter[i].time, current_stop_way, current_pwm_velocity, velocity_max, Shutter[i].accelerator, min_runtime_ms, current_real_position, next_possible_stop_position, Shutter[i].target_position, velocity_change_per_step_max, Shutter[i].direction); if ( Shutter[i].real_position * Shutter[i].direction >= Shutter[i].target_position * Shutter[i].direction || (ShutterGlobal.position_mode == SHT_COUNTER && Shutter[i].accelerator <0 && Shutter[i].pwm_velocity+Shutter[i].accelerator<100)) { if (Shutter[i].direction != 0) { Shutter[i].lastdirection = Shutter[i].direction; } ShutterPowerOff(i); ShutterLimitRealAndTargetPositions(i); Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter[i].real_position, i); Shutter[i].start_position = Shutter[i].real_position; ShutterLogPos(i); // sending MQTT result to broker snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1); GetTopic_P(stopic, STAT, TasmotaGlobal.mqtt_topic, scommand); Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]); MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN ShutterReportPosition(true, i); TasmotaGlobal.rules_flag.shutter_moved = 1; XdrvRulesProcess(); } } } } bool ShutterState(uint32_t device) { if (device > 4) { return false; } device--; device &= 3; return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support (ShutterGlobal.RelayShutterMask & (1 << (Settings.shutter_startrelay[device]-1))) ); } void ShutterAllowPreStartProcedure(uint8_t i) { #ifdef USE_RULES uint32_t uptime_Local=0; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. var%d <99>=<%s>, max10s?"),i+i, rules_vars[i]); TasmotaGlobal.rules_flag.shutter_moving = 1; XdrvRulesProcess(); uptime_Local = TasmotaGlobal.uptime; while (uptime_Local+10 > TasmotaGlobal.uptime && (String)rules_vars[i] == "99") { loop(); } AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. Done")); #endif // USE_RULES } void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos) { //AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: dir %d, delta1 %d, delta2 %d, grant %d"),direction, (Shutter[i].open_max - Shutter[i].real_position) / Shutter[i].close_velocity, Shutter[i].real_position / Shutter[i].close_velocity, 2+Shutter[i].motordelay); if ( ( (1 == direction) && ((Shutter[i].open_max - Shutter[i].real_position) / 100 <= 2) ) || ( (-1 == direction) && (Shutter[i].real_position / Shutter[i].close_velocity <= 2)) ) { ShutterGlobal.skip_relay_change = 1; } else { Shutter[i].pwm_velocity = 0; switch (ShutterGlobal.position_mode) { #ifdef SHUTTER_STEPPER case SHT_COUNTER: analogWriteFreq(Shutter[i].pwm_velocity); analogWrite(Pin(GPIO_PWM1, i), 0); RtcSettings.pulse_counter[i] = 0; break; #endif } Shutter[i].accelerator = ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1); Shutter[i].target_position = target_pos; Shutter[i].start_position = Shutter[i].real_position; TasmotaGlobal.rules_flag.shutter_moving = 1; ShutterAllowPreStartProcedure(i); Shutter[i].time = 0; Shutter[i].direction = direction; ShutterGlobal.skip_relay_change = 0; TasmotaGlobal.rules_flag.shutter_moved = 0; ShutterGlobal.start_reported = 0; //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d,freq_max %d, dir %d, freq %d"),Shutter[i].real_position, Shutter[i].start_position ,RtcSettings.pulse_counter[i],ShutterGlobal.open_velocity_max , Shutter[i].direction ,ShutterGlobal.open_velocity_max ); } //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Start shtr%d from %d to %d in direction %d"), i, Shutter[i].start_position, Shutter[i].target_position, Shutter[i].direction); } int32_t ShutterCalculatePosition(uint32_t i) { // No Logging allowed. Part of RTC Timer if (Shutter[i].direction != 0) { switch (ShutterGlobal.position_mode) { case SHT_COUNTER: return ((int64_t)RtcSettings.pulse_counter[i]*Shutter[i].direction*STEPS_PER_SECOND * RESOLUTION / ShutterGlobal.open_velocity_max)+Shutter[i].start_position; break; case SHT_TIME: case SHT_TIME_UP_DOWN: case SHT_TIME_GARAGE: return Shutter[i].start_position + ( (Shutter[i].time - Shutter[i].motordelay) * (Shutter[i].direction > 0 ? RESOLUTION : -Shutter[i].close_velocity)); break; case SHT_PWM_TIME: break; case SHT_PWM_VALUE: return Shutter[i].real_position; break; default: break; } } else { return Shutter[i].real_position; } return 0; // Never reaches here, Satisfy compiler } void ShutterRelayChanged(void) { // ShutterGlobal.RelayCurrentMask = binary relay that was recently changed and cause an Action // powerstate_local = binary powermatrix and relays from shutter: 0..3 // relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer char stemp1[10]; for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) { power_t powerstate_local = (TasmotaGlobal.power >> (Settings.shutter_startrelay[i] -1)) & 3; // SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay. //uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != TasmotaGlobal.last_source && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ; uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ; AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed); if (manual_relays_changed) { //ShutterGlobal.skip_relay_change = true; ShutterLimitRealAndTargetPositions(i); switch (Shutter[i].switch_mode ) { case SHT_PULSE: if (Shutter[i].direction != 0 && powerstate_local) { Shutter[i].target_position = Shutter[i].real_position; powerstate_local = 0; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Switch OFF motor. Target %ld, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"), i+1, Shutter[i].target_position, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed); } break; default: TasmotaGlobal.last_source = SRC_SHUTTER; // avoid switch off in the next loop if (Shutter[i].direction != 0 ) Shutter[i].target_position = Shutter[i].real_position; } switch (ShutterGlobal.position_mode) { // enum Shutterposition_mode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,}; case SHT_TIME_UP_DOWN: case SHT_COUNTER: case SHT_PWM_VALUE: case SHT_PWM_TIME: ShutterPowerOff(i); switch (powerstate_local) { case 1: ShutterStartInit(i, 1, Shutter[i].open_max); break; case 3: ShutterStartInit(i, -1, 0); break; default: //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Switch OFF motor."),i); Shutter[i].target_position = Shutter[i].real_position; } break; case SHT_TIME: switch (powerstate_local) { case 1: ShutterStartInit(i, 1, Shutter[i].open_max); break; case 2: ShutterStartInit(i, -1, 0); break; default: //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Switch OFF motor."),i); Shutter[i].target_position = Shutter[i].real_position; } break; case SHT_TIME_GARAGE: switch (powerstate_local) { case 1: ShutterStartInit(i, Shutter[i].lastdirection*-1 , Shutter[i].lastdirection == 1 ? 0 : Shutter[i].open_max); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Garage. NewTarget %d"), i, Shutter[i].target_position); break; default: Shutter[i].target_position = Shutter[i].real_position; } } // switch (ShutterGlobal.position_mode) AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Target %ld, Powerstatelocal %d"), i+1, Shutter[i].target_position, powerstate_local); } // if (manual_relays_changed) } // for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) } bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index) { // check for simultaneous shutter button hold uint32 min_shutterbutton_hold_timer = -1; // -1 == max(uint32) for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) { if ((button_index != i) && (Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (Button.hold_timer[i] < min_shutterbutton_hold_timer)) min_shutterbutton_hold_timer = Button.hold_timer[i]; } return ((-1 != min_shutterbutton_hold_timer) && (min_shutterbutton_hold_timer > (Button.hold_timer[button_index]>>1))); } void ShutterButtonHandler(void) { uint8_t buttonState = SHT_NOT_PRESSED; uint8_t button = XdrvMailbox.payload; uint8_t press_index; uint32_t button_index = XdrvMailbox.index; uint8_t shutter_index = Settings.shutter_button[button_index] & 0x03; uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50) if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) { if (Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action buttonState = SHT_PRESSED_MULTI; press_index = 1; } else { if ((Shutter[shutter_index].direction) && (Button.press_counter[button_index]==0)) { buttonState = SHT_PRESSED_IMMEDIATE; press_index = 1; Button.press_counter[button_index] = 99; // Remember to discard further action for press & hold within button timings } else { Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1; // Button.window_timer[button_index] = (Button.press_counter[button_index]==1) ? loops_per_second / 2 : loops_per_second; // 0.5 second multi press window after 1st press, 1s afterwards Button.window_timer[button_index] = (loops_per_second >> 2) * 3; // 0.75 second multi press window } } TasmotaGlobal.blinks = 201; } if (NOT_PRESSED == button) { Button.hold_timer[button_index] = 0; } else { Button.hold_timer[button_index]++; if (!Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action if (Settings.param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold if (Button.hold_timer[button_index] > loops_per_second * Settings.param[P_HOLD_IGNORE] / 10) { Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger Button.press_counter[button_index] = 0; // Discard button press to disable functionality } } if ((Button.press_counter[button_index]<99) && (Button.hold_timer[button_index] == loops_per_second * Settings.param[P_HOLD_TIME] / 10)) { // press still valid && SetOption32 (40) - Button hold // check for simultaneous shutter button hold if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) { // simultaneous shutter button hold detected for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index)) Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings press_index = 0; buttonState = SHT_PRESSED_HOLD_SIMULTANEOUS; } if (Button.press_counter[button_index]<99) { press_index = 0; buttonState = SHT_PRESSED_HOLD; } Button.press_counter[button_index] = 0; } if ((Button.press_counter[button_index]==0) && (Button.hold_timer[button_index] == loops_per_second * IMMINENT_RESET_FACTOR * Settings.param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer press_index = -1; // check for simultaneous shutter button extend hold if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) { // simultaneous shutter button extend hold detected buttonState = SHT_PRESSED_EXT_HOLD_SIMULTANEOUS; } else { buttonState = SHT_PRESSED_EXT_HOLD; } } } } if (!Settings.flag.button_single) { // SetOption13 (0) - Allow multi-press if (Button.window_timer[button_index]) { Button.window_timer[button_index]--; } else { if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0)) { if (Button.press_counter[button_index]<99) { // check for simultaneous shutter button press uint32 min_shutterbutton_press_counter = -1; // -1 == max(uint32) for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: ShutterButton[i] %ld, ShutterIndex %d, ButtonPressCounter[i] %d, minShutterButtonPressCounter %d, i %d"), Settings.shutter_button[i], shutter_index, Button.press_counter[i] , min_shutterbutton_press_counter, i); if ((button_index != i) && (Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (i != button_index) && (Button.press_counter[i] < min_shutterbutton_press_counter)) { min_shutterbutton_press_counter = Button.press_counter[i]; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: minShutterButtonPressCounter %d"), min_shutterbutton_press_counter); } } if (min_shutterbutton_press_counter == Button.press_counter[button_index]) { // simultaneous shutter button press detected AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Simultanous press detected")); press_index = Button.press_counter[button_index]; for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) != shutter_index)) Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings buttonState = SHT_PRESSED_MULTI_SIMULTANEOUS; } if ((buttonState != SHT_PRESSED_MULTI_SIMULTANEOUS) && (Button.press_counter[button_index]<99)) { // no simultaneous shutter button press >3 detected press_index = Button.press_counter[button_index]; buttonState = SHT_PRESSED_MULTI; } } Button.press_counter[button_index] = 0; } } } if (buttonState != SHT_NOT_PRESSED) { if ((!Settings.flag.button_restrict) && (((press_index>=5) && (press_index<=7)) || (buttonState == SHT_PRESSED_EXT_HOLD) || (buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS))){ // check number of buttons for this shutter uint8_t shutter_index_num_buttons = 0; for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) { if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index)) { shutter_index_num_buttons++; } } if ((buttonState == SHT_PRESSED_MULTI_SIMULTANEOUS) || ((shutter_index_num_buttons==1) && (buttonState == SHT_PRESSED_MULTI))){ // 5x..7x && no SetOption1 (0) checked above // simultaneous or stand alone button press 5x, 6x, 7x detected char scmnd[20]; snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2")); ExecuteCommand(scmnd, SRC_BUTTON); return; } else if ((buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS) || ((shutter_index_num_buttons==1) && (buttonState == SHT_PRESSED_EXT_HOLD))){ // no SetOption1 (0) checked above // simultaneous or stand alone button extended hold detected char scmnd[20]; snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1")); ExecuteCommand(scmnd, SRC_BUTTON); return; } } if (buttonState <= SHT_PRESSED_IMMEDIATE) { if (Settings.shutter_startrelay[shutter_index] && Settings.shutter_startrelay[shutter_index] <9) { uint8_t pos_press_index = (buttonState == SHT_PRESSED_HOLD) ? 3 : (press_index-1); if (pos_press_index>3) pos_press_index=3; AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Button %d = %d (single=1, double=2, tripple=3, hold=4)"), shutter_index+1, button_index+1, pos_press_index+1); XdrvMailbox.index = shutter_index +1; TasmotaGlobal.last_source = SRC_BUTTON; XdrvMailbox.data_len = 0; char databuf[1] = ""; XdrvMailbox.data = databuf; XdrvMailbox.command = NULL; if (buttonState == SHT_PRESSED_IMMEDIATE) { XdrvMailbox.payload = XdrvMailbox.index; CmndShutterStop(); } else { uint8_t position = (Settings.shutter_button[button_index]>>(6*pos_press_index + 2)) & 0x03f; if (position) { if (Shutter[shutter_index].direction) { XdrvMailbox.payload = XdrvMailbox.index; CmndShutterStop(); } else { XdrvMailbox.payload = position = (position-1)<<1; //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d -> %d"), shutter_index+1, position); if (102 == position) { XdrvMailbox.payload = XdrvMailbox.index; CmndShutterToggle(); } else { CmndShutterPosition(); } if (Settings.shutter_button[button_index] & ((0x01<<26)< 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (dir) { XdrvMailbox.payload = (Shutter[index].direction==0 ? ((Shutter[index].lastdirection > 0) ? 0 : 100) : (Shutter[index].direction > 0) ? 0 : 100); } else { XdrvMailbox.payload = (50 < ShutterRealToPercentPosition(Shutter[index].real_position, index)) ? 0 : 100; } XdrvMailbox.data_len = 0; TasmotaGlobal.last_source = SRC_WEBGUI; CmndShutterPosition(); } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void CmndShutterOpen(void) { //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload open: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index); if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) { XdrvMailbox.index = XdrvMailbox.payload; } XdrvMailbox.payload = 100; TasmotaGlobal.last_source = SRC_WEBGUI; CmndShutterPosition(); } void CmndShutterStopOpen(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (Shutter[index].direction) { CmndShutterStop(); } else { CmndShutterOpen(); } } } void CmndShutterClose(void) { //AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload close: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index); if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) { XdrvMailbox.index = XdrvMailbox.payload; } XdrvMailbox.payload = 0; XdrvMailbox.data_len = 0; TasmotaGlobal.last_source = SRC_WEBGUI; CmndShutterPosition(); } void CmndShutterStopClose(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (Shutter[index].direction) { CmndShutterStop(); } else { CmndShutterClose(); } } } void CmndShutterToggle(void) { ShutterToggle(false); } void CmndShutterToggleDir(void) { ShutterToggle(true); } void CmndShutterStopToggle(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (Shutter[index].direction) { CmndShutterStop(); } else { CmndShutterToggle(); } } } void CmndShutterStopToggleDir(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (Shutter[index].direction) { CmndShutterStop(); } else { CmndShutterToggleDir(); } } } void CmndShutterStop(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) { if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) { XdrvMailbox.index = XdrvMailbox.payload; } uint32_t i = XdrvMailbox.index -1; if (Shutter[i].direction != 0) { AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter[i].direction); Shutter[i].target_position = Shutter[i].real_position; } if (XdrvMailbox.command) ResponseCmndDone(); ShutterUpdatePosition(); } else { if (XdrvMailbox.command) ResponseCmndIdxChar("Locked"); } } } void CmndShutterIncDec(void) { //AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Change in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source ); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { XdrvMailbox.payload = ShutterRealToPercentPosition(Shutter[XdrvMailbox.index-1].target_position, XdrvMailbox.index-1)+XdrvMailbox.payload; // limit position to boundaries XdrvMailbox.payload = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload); CmndShutterPosition(); } } } void CmndShutterPosition(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) { uint32_t index = XdrvMailbox.index-1; //limit the payload AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Pos. in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source ); // value 0 with data_len > 0 can mean Open // special handling fo UP,DOWN,TOGGLE,STOP command comming with payload -99 if ((XdrvMailbox.data_len > 1) && (XdrvMailbox.payload <= 0)) { //UpperCase(XdrvMailbox.data, XdrvMailbox.data); if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN))) { CmndShutterOpen(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_DOWN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_CLOSE) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE))) { CmndShutterClose(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLE)) { CmndShutterToggle(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDIR)) { CmndShutterToggleDir(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOP) || ((Shutter[index].direction) && (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE)))) { XdrvMailbox.payload = -99; CmndShutterStop(); return; } } int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? (XdrvMailbox.payload == -99 ? ShutterRealToPercentPosition(Shutter[index].real_position, index) : 0) : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload); // webgui still send also on inverted shutter the native position. target_pos_percent = ((Settings.shutter_options[index] & 1) && (SRC_WEBGUI != TasmotaGlobal.last_source)) ? 100 - target_pos_percent : target_pos_percent; if (XdrvMailbox.payload != -99) { //target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent; Shutter[index].target_position = ShutterPercentToRealPosition(target_pos_percent, index); //Shutter[i].accelerator[index] = ShutterGlobal.open_velocity_max / ((Shutter[i].motordelay[index] > 0) ? Shutter[i].motordelay[index] : 1); //Shutter[i].target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index]; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), TasmotaGlobal.last_source, Shutter[index].real_position ,Shutter[index].target_position,target_pos_percent); } if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter[index].target_position - Shutter[index].real_position ) / Shutter[index].close_velocity > 2) { if (Settings.shutter_options[index] & 4) { if (0 == target_pos_percent) Shutter[index].target_position -= 1 * RESOLUTION * STEPS_PER_SECOND; if (100 == target_pos_percent) Shutter[index].target_position += 1 * RESOLUTION * STEPS_PER_SECOND; } int8_t new_shutterdirection = Shutter[index].real_position < Shutter[index].target_position ? 1 : -1; if (Shutter[index].direction == -new_shutterdirection) { ShutterPowerOff(index); } if (Shutter[index].direction != new_shutterdirection) { ShutterStartInit(index, new_shutterdirection, Shutter[index].target_position); switch (ShutterGlobal.position_mode) { case SHT_COUNTER: case SHT_PWM_TIME: case SHT_PWM_VALUE: case SHT_TIME_UP_DOWN: if (!ShutterGlobal.skip_relay_change) { // Code for shutters with circuit safe configuration, switch the direction Relay ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER); // power on ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); } //if (ShutterGlobal.position_mode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER); break; case SHT_TIME: if (!ShutterGlobal.skip_relay_change) { if ( (TasmotaGlobal.power >> (Settings.shutter_startrelay[index] -1)) & 3 > 0 ) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter[index].switch_mode == SHT_SWITCH ? 0 : 1, SRC_SHUTTER); } ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); } break; case SHT_TIME_GARAGE: if (!ShutterGlobal.skip_relay_change) { if (new_shutterdirection == Shutter[index].lastdirection) { AddLog(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter[index].switch_mode == SHT_PULSE); for (uint8_t k=0 ; k <= (uint8_t)(Shutter[index].switch_mode == SHT_PULSE) ; k++) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); delay(500); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 0, SRC_SHUTTER); delay(500); } // reset shutter time to avoid 2 seconds above count as runtime Shutter[index].time = 0; } // if (new_shutterdirection == Shutter[i].lastdirection[index]) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); } // if (!ShutterGlobal.skip_relay_change) break; } // switch (ShutterGlobal.position_mode) ShutterGlobal.RelayCurrentMask = 0; } // if (Shutter[i].direction[index] != new_shutterdirection) } else { target_pos_percent = ShutterRealToPercentPosition(Shutter[index].real_position, index); ShutterReportPosition(true, index); } XdrvMailbox.index = index +1; // Fix random index for ShutterClose if (XdrvMailbox.command) ResponseCmndIdxNumber((Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent); } else { ShutterReportPosition(true, MAX_SHUTTERS); if (XdrvMailbox.command) ResponseCmndIdxChar("Locked"); } } } void CmndShutterStopPosition(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { uint32_t index = XdrvMailbox.index-1; if (Shutter[index].direction) { XdrvMailbox.payload = -99; CmndShutterStop(); } else { CmndShutterPosition(); } } } void CmndShutterOpenTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterCloseTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterMotorDelay(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_motordelay[XdrvMailbox.index -1] = (uint16_t)(STEPS_PER_SECOND * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_motordelay[XdrvMailbox.index -1]) / STEPS_PER_SECOND, 2, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterMode(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) { ShutterGlobal.position_mode = XdrvMailbox.payload; Settings.shutter_mode = XdrvMailbox.payload; ShutterInit(); } ResponseCmndNumber(ShutterGlobal.position_mode); } void CmndShutterRelay(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) { Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; if (XdrvMailbox.payload > 0) { ShutterGlobal.RelayShutterMask |= 3 << (XdrvMailbox.payload - 1); } else { ShutterGlobal.RelayShutterMask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1); } Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; ShutterInit(); // if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work } ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]); } } void CmndShutterButton(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { uint32_t setting = 0; // (setting>>31)&(0x01) : enabled // (setting>>30)&(0x01) : mqtt broadcast to all index // (setting>>29)&(0x01) : mqtt broadcast hold // (setting>>28)&(0x01) : mqtt broadcast tripple press // (setting>>27)&(0x01) : mqtt broadcast double press // (setting>>26)&(0x01) : mqtt broadcast single press // (setting>>20)&(0x3f) : shutter_position hold; 0 disabled, 1..101 == 0..100%, 102 == toggle // (setting>>14)&(0x3f) : shutter_position tripple press 0 disabled, 1..101 == 0..100%, 102 == toggle // (setting>> 8)&(0x3f) : shutter_position double press 0 disabled, 1..101 == 0..100%, 102 == toggle // (setting>> 2)&(0x3f) : shutter_position single press 0 disabled, 1..101 == 0..100%, 102 == toggle // (setting>> 0)&(0x03) : shutter_index if (XdrvMailbox.data_len > 0) { uint32_t i = 0; uint32_t button_index = 0; bool done = false; bool isShortCommand = false; char *str_ptr; char data_copy[strlen(XdrvMailbox.data) +1]; strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it. // Loop through the data string, splitting on ' ' seperators. for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < (1+4+4+1); str = strtok_r(nullptr, " ", &str_ptr), i++) { int field; switch (str[0]) { case '-': field = -1; break; case 't': field = 102; break; default: field = atoi(str); break; } switch (i) { case 0: if ((field >= -1) && (field<=4)) { button_index = (field<=0)?(-1):field; done = (button_index==-1); } else done = true; break; case 1: if (!strcmp_P(str, PSTR("up"))) { setting |= (((100>>1)+1)<<2) | (((50>>1)+1)<<8) | (((75>>1)+1)<<14) | (((100>>1)+1)<<20); isShortCommand = true; break; } else if (!strcmp_P(str, PSTR("down"))) { setting |= (((0>>1)+1)<<2) | (((50>>1)+1)<<8) | (((25>>1)+1)<<14) | (((0>>1)+1)<<20); isShortCommand = true; break; } else if (!strcmp_P(str, PSTR("updown"))) { setting |= (((100>>1)+1)<<2) | (((0>>1)+1)<<8) | (((50>>1)+1)<<14); isShortCommand = true; break; } else if (!strcmp_P(str, PSTR("toggle"))) { setting |= (((102>>1)+1)<<2) | (((50>>1)+1)<<8); isShortCommand = true; break; } case 2: if (isShortCommand) { if ((field==1) && (setting & (0x3F<<(2+6*3)))) // if short command up or down (hold press position set) then also enable MQTT broadcast setting |= (0x3<<29); done = true; break; } case 3: case 4: if ((field >= -1) && (field<=102)) setting |= (((field>>1)+1)<<(i*6 + (2-6))); break; case 5: case 6: case 7: case 8: case 9: if (field==1) setting |= (1<<(i + (26-5))); break; } if (done) break; } if (button_index) { if (button_index==-1) { // remove all buttons for this shutter for (uint32_t i=0 ; i < MAX_SHUTTER_KEYS ; i++) if ((Settings.shutter_button[i]&0x3) == (XdrvMailbox.index-1)) Settings.shutter_button[i] = 0; } else { if (setting) { // anything was set setting |= (1<<31); setting |= (XdrvMailbox.index-1) & 0x3; } Settings.shutter_button[button_index-1] = setting; } } } char setting_chr[30*MAX_SHUTTER_KEYS] = "-", *setting_chr_ptr = setting_chr; for (uint32_t i=0 ; i < MAX_SHUTTER_KEYS ; i++) { setting = Settings.shutter_button[i]; if ((setting&(1<<31)) && ((setting&0x3) == (XdrvMailbox.index-1))) { if (*setting_chr_ptr == 0) setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("|")); setting_chr_ptr += snprintf_P(setting_chr_ptr, 2, PSTR("%d"), i+1); for (uint32_t j=0 ; j < 4 ; j++) { int8_t pos = (((setting>> (2+6*j))&(0x3f))-1)<<1; if (0 <= pos) if (102 == pos) { setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" t")); } else { setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR(" %d"), pos); } else setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -")); } for (uint32_t j=0 ; j < 5 ; j++) { bool mqtt = ((setting>>(26+j))&(0x01)!=0); if (mqtt) setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" 1")); else setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -")); } } } ResponseCmndIdxChar(setting_chr); } } void CmndShutterSetHalfway(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { Settings.shutter_set50percent[XdrvMailbox.index -1] = (Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - XdrvMailbox.payload : XdrvMailbox.payload; Settings.shuttercoeff[0][XdrvMailbox.index -1] = 0; ShutterInit(); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - Settings.shutter_set50percent[XdrvMailbox.index -1] : Settings.shutter_set50percent[XdrvMailbox.index -1]); } } void CmndShutterFrequency(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) { ShutterGlobal.open_velocity_max = XdrvMailbox.payload; if (TasmotaGlobal.shutters_present < 4) { Settings.shuttercoeff[4][3] = ShutterGlobal.open_velocity_max; } ShutterInit(); } ResponseCmndNumber(ShutterGlobal.open_velocity_max); } void CmndShutterSetClose(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { Shutter[XdrvMailbox.index -1].real_position = 0; ShutterStartInit(XdrvMailbox.index -1, 0, 0); Settings.shutter_position[XdrvMailbox.index -1] = 0; ResponseCmndIdxChar(D_CONFIGURATION_RESET); } } void CmndShutterSetOpen(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { Shutter[XdrvMailbox.index -1].real_position = Shutter[XdrvMailbox.index -1].open_max; ShutterStartInit(XdrvMailbox.index -1, 0, Shutter[XdrvMailbox.index -1].open_max); Settings.shutter_position[XdrvMailbox.index -1] = 100; ResponseCmndIdxChar(D_CONFIGURATION_RESET); } } void CmndShutterPwmRange(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { uint8_t i = 0; char *str_ptr; char data_copy[strlen(XdrvMailbox.data) +1]; strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it. // Loop through the data string, splitting on ' ' seperators. for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 2; str = strtok_r(nullptr, " ", &str_ptr), i++) { uint16_t field = atoi(str); // The fields in a data string can only range from 1-30000. // and following value must be higher than previous one if ((field <= 0) || (field > 1023)) { break; } Settings.shutter_pwmrange[i][XdrvMailbox.index -1] = field; } AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init1. pwmmin %d, pwmmax %d"), XdrvMailbox.index , Settings.shutter_pwmrange[0][XdrvMailbox.index -1], Settings.shutter_pwmrange[1][XdrvMailbox.index -1]); ShutterInit(); ResponseCmndIdxChar(XdrvMailbox.data); } else { char setting_chr[30] = "0"; snprintf_P(setting_chr, sizeof(setting_chr), PSTR("Shutter %d: min:%d max:%d"), XdrvMailbox.index, Settings.shutter_pwmrange[0][XdrvMailbox.index -1], Settings.shutter_pwmrange[1][XdrvMailbox.index -1]); ResponseCmndIdxChar(setting_chr); } } } void CmndShutterCalibration(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.data_len > 0) { uint8_t i = 0; char *str_ptr; char data_copy[strlen(XdrvMailbox.data) +1]; strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it. // Loop through the data string, splitting on ' ' seperators. for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) { int field = atoi(str); // The fields in a data string can only range from 1-30000. // and following value must be higher than previous one if ((field <= 0) || (field > 30000) || ( (i>0) && (field <= messwerte[i-1]) ) ) { break; } messwerte[i] = field; } Settings.shutter_set50percent[XdrvMailbox.index -1] = 50; for (i = 0; i < 5; i++) { Settings.shuttercoeff[i][XdrvMailbox.index -1] = SHT_DIV_ROUND((uint32_t)messwerte[i] * 1000, messwerte[4]); AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shuttercoeff %d, i %d, Value %d, MeasuredValue %d"), i,XdrvMailbox.index -1,Settings.shuttercoeff[i][XdrvMailbox.index -1], messwerte[i]); } ShutterInit(); ResponseCmndIdxChar(XdrvMailbox.data); } else { char setting_chr[30] = "0"; snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), Settings.shuttercoeff[0][XdrvMailbox.index -1], Settings.shuttercoeff[1][XdrvMailbox.index -1], Settings.shuttercoeff[2][XdrvMailbox.index -1], Settings.shuttercoeff[3][XdrvMailbox.index -1], Settings.shuttercoeff[4][XdrvMailbox.index -1]); ResponseCmndIdxChar(setting_chr); } } } void ShutterOptionsSetHelper(uint16_t option){ if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) { if (XdrvMailbox.payload == 0) { Settings.shutter_options[XdrvMailbox.index -1] &= ~(option); } else if (XdrvMailbox.payload == 1) { Settings.shutter_options[XdrvMailbox.index -1] |= (option); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & option) ? 1 : 0); } } void CmndShutterInvert(void) { ShutterOptionsSetHelper(1); } void CmndShutterLock(void) { ShutterOptionsSetHelper(2); } void CmndShutterEnableEndStopTime(void) { ShutterOptionsSetHelper(4); } void CmndShutterInvertWebButtons(void) { ShutterOptionsSetHelper(8); } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv27(uint8_t function) { bool result = false; if (Settings.flag3.shutter_mode) { // SetOption80 - Enable shutter support switch (function) { case FUNC_PRE_INIT: ShutterInit(); break; case FUNC_EVERY_50_MSECOND: ShutterUpdatePosition(); break; case FUNC_EVERY_SECOND: //case FUNC_EVERY_250_MSECOND: ShutterReportPosition(false, MAX_SHUTTERS); break; case FUNC_COMMAND: result = DecodeCommand(kShutterCommands, ShutterCommand); break; case FUNC_JSON_APPEND: for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) { uint8_t position = (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i] : Settings.shutter_position[i]; uint8_t target = (Settings.shutter_options[i] & 1) ? 100 - ShutterRealToPercentPosition(Shutter[i].target_position, i) : ShutterRealToPercentPosition(Shutter[i].target_position, i); ResponseAppend_P(","); ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter[i].direction,target); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (0 == i)) { DomoticzSensor(DZ_SHUTTER, position); } #endif // USE_DOMOTICZ } break; case FUNC_SET_POWER: char stemp1[10]; // extract the number of the relay that was switched and save for later in Update Position. ShutterGlobal.RelayCurrentMask = XdrvMailbox.index ^ ShutterGlobal.RelayOldMask; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay %d by %s"), ShutterGlobal.RelayCurrentMask,GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource)); ShutterRelayChanged(); ShutterGlobal.RelayOldMask = XdrvMailbox.index; break; case FUNC_SET_DEVICE_POWER: if (ShutterGlobal.skip_relay_change ) { uint8_t i; for (i = 0; i < TasmotaGlobal.devices_present; i++) { if (ShutterGlobal.RelayCurrentMask &1) { break; } ShutterGlobal.RelayCurrentMask >>= 1; } //AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Skip relay change %d"), i+1); result = true; ShutterGlobal.skip_relay_change = 0; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"), i); ExecuteCommandPowerShutter(i+1, 0, SRC_SHUTTER); } break; case FUNC_BUTTON_PRESSED: if (Settings.shutter_button[XdrvMailbox.index] & (1<<31)) { ShutterButtonHandler(); result = true; } break; } } return result; } #endif //USE_SHUTTER #ifdef SHUTTER_UNITTEST void CmndShutterUnitTest(void) { int16_t input_percent[10] = {-5,0,10,26,35,55,80,99,100,105}; int16_t output_percent[10] = {0,0,10,26,35,55,80,99,100,100}; uint32_t result_percent[2][2][10] = {{{0,0,24000,62400,84000,132000,192000,237600,240000,240000}, {0,0,360000,936000,1260000,1980000,2880000,3564000,3600000,3600000}}, {{0,0,76296,100000,113333,174299,205795,237983,240000,240000}, {0,0,1144444,1500000,1700000,2614488,3086929,3569748,3600000,3600000}}}; uint32_t result = 0; char svalue[50]; // Command and number parameter Settings.shuttercoeff[0][0] = 0; for (uint8_t i=0; i<2 ; i++){ snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12); ExecuteCommand(svalue, SRC_SHUTTER); ShutterInit(); for (uint8_t j=0; j<2 ; j++){ for (uint8_t k=0; k<10 ; k++){ result += (result_percent[i][j][k] == ShutterPercentToRealPosition(input_percent[k] , 0) ? 0 : 1); AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition error %d: %d <-> %d"),result, ShutterPercentToRealPosition(input_percent[k] , 0), result_percent[i][j][k]); } snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180); ExecuteCommand(svalue, SRC_SHUTTER); } snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210"); ExecuteCommand(svalue, SRC_SHUTTER); } if (!result){ AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: PASS")); } else { AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: FAIL")); } Settings.shuttercoeff[0][0] = 0; for (uint8_t i=0; i<2 ; i++){ snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12); ExecuteCommand(svalue, SRC_SHUTTER); ShutterInit(); for (uint8_t j=0; j<2 ; j++){ for (uint8_t k=0; k<10 ; k++){ result += (output_percent[k] == ShutterRealToPercentPosition(result_percent[i][j][k] , 0) ? 0 : 1); AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition error %d: %d <-> %d"),result, ShutterRealToPercentPosition(result_percent[i][j][k] , 0), output_percent[k]); } snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180); ExecuteCommand(svalue, SRC_SHUTTER); } snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210"); ExecuteCommand(svalue, SRC_SHUTTER); } if (!result){ AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: PASS")); } else { AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: FAIL")); } } #else void CmndShutterUnitTest(void) {} #endif