/* support_tasmota.ino - Core support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ const char kSleepMode[] PROGMEM = "Dynamic|Normal"; const char kPrefixes[] PROGMEM = D_CMND "|" D_STAT "|" D_TELE; char* Format(char* output, const char* input, int size) { char *token; uint32_t digits = 0; if (strstr(input, "%") != nullptr) { strlcpy(output, input, size); token = strtok(output, "%"); if (strstr(input, "%") == input) { output[0] = '\0'; } else { token = strtok(nullptr, ""); } if (token != nullptr) { digits = atoi(token); if (digits) { char tmp[size]; if (strchr(token, 'd')) { snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits); snprintf_P(output, size, tmp, ESP_getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname } else { snprintf_P(tmp, size, PSTR("%s%c0%dX"), output, '%', digits); snprintf_P(output, size, tmp, ESP_getChipId()); // %06X - full chip ID in hex } } else { if (strchr(token, 'd')) { snprintf_P(output, size, PSTR("%s%d"), output, ESP_getChipId()); // %d - full chip ID in dec digits = 8; } } } } if (!digits) { strlcpy(output, input, size); } return output; } char* GetOtaUrl(char *otaurl, size_t otaurl_size) { if (strstr(SettingsText(SET_OTAURL), "%04d") != nullptr) { // OTA url contains placeholder for chip ID snprintf(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId() & 0x1fff); } else if (strstr(SettingsText(SET_OTAURL), "%d") != nullptr) { // OTA url contains placeholder for chip ID snprintf_P(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId()); } else { strlcpy(otaurl, SettingsText(SET_OTAURL), otaurl_size); } return otaurl; } char* GetTopic_P(char *stopic, uint32_t prefix, char *topic, const char* subtopic) { /* prefix 0 = Cmnd prefix 1 = Stat prefix 2 = Tele prefix 4 = Cmnd fallback prefix 5 = Stat fallback prefix 6 = Tele fallback prefix 8 = Cmnd topic prefix 9 = Stat topic prefix 10 = Tele topic */ char romram[CMDSZ]; String fulltopic; snprintf_P(romram, sizeof(romram), subtopic); if (fallback_topic_flag || (prefix > 3)) { bool fallback = (prefix < 8); prefix &= 3; char stemp[11]; fulltopic = GetTextIndexed(stemp, sizeof(stemp), prefix, kPrefixes); fulltopic += F("/"); if (fallback) { fulltopic += mqtt_client; fulltopic += F("_fb"); // cmnd/_fb } else { fulltopic += topic; // cmnd/ } } else { fulltopic = SettingsText(SET_MQTT_FULLTOPIC); if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) { fulltopic += F("/"); fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops } for (uint32_t i = 0; i < MAX_MQTT_PREFIXES; i++) { if (!strlen(SettingsText(SET_MQTTPREFIX1 + i))) { char temp[TOPSZ]; SettingsUpdateText(SET_MQTTPREFIX1 + i, GetTextIndexed(temp, sizeof(temp), i, kPrefixes)); } } fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), SettingsText(SET_MQTTPREFIX1 + prefix)); fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), topic); fulltopic.replace(F("%hostname%"), my_hostname); String token_id = WiFi.macAddress(); token_id.replace(":", ""); fulltopic.replace(F("%id%"), token_id); } fulltopic.replace(F("#"), ""); fulltopic.replace(F("//"), "/"); if (!fulltopic.endsWith("/")) { fulltopic += "/"; } snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram); return stopic; } char* GetGroupTopic_P(char *stopic, const char* subtopic, uint32_t itopic) { // SetOption75 0: %prefix%/nothing/%topic% = cmnd/nothing//# // SetOption75 1: cmnd/ return GetTopic_P(stopic, (Settings.flag3.grouptopic_mode) ? CMND +8 : CMND, SettingsText(itopic), subtopic); // SetOption75 - GroupTopic replaces %topic% (0) or fixed topic cmnd/grouptopic (1) } char* GetFallbackTopic_P(char *stopic, const char* subtopic) { return GetTopic_P(stopic, CMND +4, nullptr, subtopic); } char* GetStateText(uint32_t state) { if (state >= MAX_STATE_TEXT) { state = 1; } return SettingsText(SET_STATE_TXT1 + state); } /********************************************************************************************/ void SetLatchingRelay(power_t lpower, uint32_t state) { // power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off // power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off // power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On // power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished latching_power = lpower; latching_relay_pulse = 2; // max 200mS (initiated by stateloop()) } for (uint32_t i = 0; i < devices_present; i++) { uint32_t port = (i << 1) + ((latching_power >> i) &1); DigitalWrite(GPIO_REL1 +port, bitRead(rel_inverted, port) ? !state : state); } } void SetDevicePower(power_t rpower, uint32_t source) { ShowSource(source); last_source = source; if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on power = (1 << devices_present) -1; rpower = power; } if (Settings.flag.interlock) { // Allow only one or no relay set - CMND_INTERLOCK - Enable/disable interlock for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { power_t mask = 1; uint32_t count = 0; for (uint32_t j = 0; j < devices_present; j++) { if ((Settings.interlock[i] & mask) && (rpower & mask)) { count++; } mask <<= 1; } if (count > 1) { mask = ~Settings.interlock[i]; // Turn interlocked group off as there would be multiple relays on power &= mask; rpower &= mask; } } } if (rpower) { // Any power set last_power = rpower; } XdrvMailbox.index = rpower; XdrvCall(FUNC_SET_POWER); // Signal power state XdrvMailbox.index = rpower; XdrvMailbox.payload = source; if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced // Serviced } #ifdef ESP8266 else if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) { Serial.write(0xA0); Serial.write(0x04); Serial.write(rpower &0xFF); Serial.write(0xA1); Serial.write('\n'); Serial.flush(); } else if (EXS_RELAY == my_module_type) { SetLatchingRelay(rpower, 1); } else #endif // ESP8266 { for (uint32_t i = 0; i < devices_present; i++) { power_t state = rpower &1; if (i < MAX_RELAYS) { DigitalWrite(GPIO_REL1 +i, bitRead(rel_inverted, i) ? !state : state); } rpower >>= 1; } } } void RestorePower(bool publish_power, uint32_t source) { if (power != last_power) { power = last_power; SetDevicePower(power, source); if (publish_power) { MqttPublishAllPowerState(); } } } void SetAllPower(uint32_t state, uint32_t source) { // state 0 = POWER_OFF = Relay Off // state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled) // state 2 = POWER_TOGGLE = Toggle relay // state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState // state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState // state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState // state 16 = POWER_SHOW_STATE = Show power state bool publish_power = true; if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) { state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE publish_power = false; } if ((state >= POWER_OFF) && (state <= POWER_TOGGLE)) { power_t all_on = (1 << devices_present) -1; switch (state) { case POWER_OFF: power = 0; break; case POWER_ON: power = all_on; break; case POWER_TOGGLE: power ^= all_on; // Complement current state } SetDevicePower(power, source); } if (publish_power) { MqttPublishAllPowerState(); } } void SetPowerOnState(void) { #ifdef ESP8266 if (MOTOR == my_module_type) { Settings.poweronstate = POWER_ALL_ON; // Needs always on else in limbo! } #endif // ESP8266 if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { SetDevicePower(1, SRC_RESTART); } else { if ((ResetReason() == REASON_DEFAULT_RST) || (ResetReason() == REASON_EXT_SYS_RST)) { switch (Settings.poweronstate) { case POWER_ALL_OFF: case POWER_ALL_OFF_PULSETIME_ON: power = 0; SetDevicePower(power, SRC_RESTART); break; case POWER_ALL_ON: // All on power = (1 << devices_present) -1; SetDevicePower(power, SRC_RESTART); break; case POWER_ALL_SAVED_TOGGLE: power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK; if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(power, SRC_RESTART); } break; case POWER_ALL_SAVED: power = Settings.power & ((1 << devices_present) -1); if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(power, SRC_RESTART); } break; } } else { power = Settings.power & ((1 << devices_present) -1); if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(power, SRC_RESTART); } } } // Issue #526 and #909 for (uint32_t i = 0; i < devices_present; i++) { if (!Settings.flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663 if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) { bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i)); } } if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) { SetPulseTimer(i, Settings.pulse_timer[i]); } } blink_powersave = power; } void SetLedPowerIdx(uint32_t led, uint32_t state) { if ((99 == pin[GPIO_LEDLNK]) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present if (pin[GPIO_LED2] < 99) { led = 1; } } if (pin[GPIO_LED1 + led] < 99) { uint32_t mask = 1 << led; if (state) { state = 1; led_power |= mask; } else { led_power &= (0xFF ^ mask); } DigitalWrite(GPIO_LED1 + led, bitRead(led_inverted, led) ? !state : state); } #ifdef USE_BUZZER if (led == 0) { BuzzerSetStateToLed(state); } #endif // USE_BUZZER } void SetLedPower(uint32_t state) { if (99 == pin[GPIO_LEDLNK]) { // Legacy - Only use LED1 and/or LED2 SetLedPowerIdx(0, state); } else { power_t mask = 1; for (uint32_t i = 0; i < leds_present; i++) { // Map leds to power bool tstate = (power & mask); SetLedPowerIdx(i, tstate); mask <<= 1; } } } void SetLedPowerAll(uint32_t state) { for (uint32_t i = 0; i < leds_present; i++) { SetLedPowerIdx(i, state); } } void SetLedLink(uint32_t state) { uint32_t led_pin = pin[GPIO_LEDLNK]; uint32_t led_inv = ledlnk_inverted; if (99 == led_pin) { // Legacy - LED1 is status led_pin = pin[GPIO_LED1]; led_inv = bitRead(led_inverted, 0); } if (led_pin < 99) { if (state) { state = 1; } digitalWrite(led_pin, (led_inv) ? !state : state); } #ifdef USE_BUZZER BuzzerSetStateToLed(state); #endif // USE_BUZZER } void SetPulseTimer(uint32_t index, uint32_t time) { pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L; } uint32_t GetPulseTimer(uint32_t index) { long time = TimePassedSince(pulse_timer[index]); if (time < 0) { time *= -1; return (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0; } return 0; } /********************************************************************************************/ bool SendKey(uint32_t key, uint32_t device, uint32_t state) { // key 0 = KEY_BUTTON = button_topic // key 1 = KEY_SWITCH = switch_topic // state 0 = POWER_OFF = off // state 1 = POWER_ON = on // state 2 = POWER_TOGGLE = toggle // state 3 = POWER_HOLD = hold // state 9 = CLEAR_RETAIN = clear retain flag char stopic[TOPSZ]; char scommand[CMDSZ]; char key_topic[TOPSZ]; bool result = false; uint32_t device_save = device; char *tmp = (key) ? SettingsText(SET_MQTT_SWITCH_TOPIC) : SettingsText(SET_MQTT_BUTTON_TOPIC); Format(key_topic, tmp, sizeof(key_topic)); if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) { // SetOption3 - Enable MQTT if (!key && (device > devices_present)) { device = 1; // Only allow number of buttons up to number of devices } GetTopic_P(stopic, CMND, key_topic, GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings.flag.device_index_enable))); // cmnd/switchtopic/POWERx - SetOption26 - Switch between POWER or POWER1 if (CLEAR_RETAIN == state) { mqtt_data[0] = '\0'; } else { if ((Settings.flag3.button_switch_force_local || // SetOption61 - Force local operation when button/switch topic is set !strcmp(mqtt_topic, key_topic) || !strcmp(SettingsText(SET_MQTT_GRP_TOPIC), key_topic)) && (POWER_TOGGLE == state)) { state = ~(power >> (device -1)) &1; // POWER_OFF or POWER_ON } snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state)); } #ifdef USE_DOMOTICZ if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) { #endif // USE_DOMOTICZ MqttPublish(stopic, ((key) ? Settings.flag.mqtt_switch_retain // CMND_SWITCHRETAIN : Settings.flag.mqtt_button_retain) && // CMND_BUTTONRETAIN (state != POWER_HOLD || !Settings.flag3.no_hold_retain)); // SetOption62 - Don't use retain flag on HOLD messages #ifdef USE_DOMOTICZ } #endif // USE_DOMOTICZ result = !Settings.flag3.button_switch_force_local; // SetOption61 - Force local operation when button/switch topic is set } else { Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state); result = XdrvRulesProcess(); } int32_t payload_save = XdrvMailbox.payload; XdrvMailbox.payload = device_save << 24 | key << 16 | state << 8 | device; XdrvCall(FUNC_ANY_KEY); XdrvMailbox.payload = payload_save; return result; } void ExecuteCommandPower(uint32_t device, uint32_t state, uint32_t source) { // device = Relay number 1 and up // state 0 = POWER_OFF = Relay Off // state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled) // state 2 = POWER_TOGGLE = Toggle relay // state 3 = POWER_BLINK = Blink relay // state 4 = POWER_BLINK_STOP = Stop blinking relay // state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState // state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState // state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState // state 16 = POWER_SHOW_STATE = Show power state // ShowSource(source); #ifdef USE_SONOFF_IFAN if (IsModuleIfan()) { blink_mask &= 1; // No blinking on the fan relays Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller - CMND_INTERLOCK - Enable/disable interlock Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays Settings.pulse_timer[2] = 0; Settings.pulse_timer[3] = 0; } #endif // USE_SONOFF_IFAN bool publish_power = true; if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) { state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE publish_power = false; } if ((device < 1) || (device > devices_present)) { device = 1; } active_device = device; if (device <= MAX_PULSETIMERS) { SetPulseTimer(device -1, 0); } power_t mask = 1 << (device -1); // Device to control if (state <= POWER_TOGGLE) { if ((blink_mask & mask)) { blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); } if (Settings.flag.interlock && // CMND_INTERLOCK - Enable/disable interlock !interlock_mutex && ((POWER_ON == state) || ((POWER_TOGGLE == state) && !(power & mask))) ) { interlock_mutex = true; // Clear all but masked relay in interlock group if new set requested for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { if (Settings.interlock[i] & mask) { // Find interlock group for (uint32_t j = 0; j < devices_present; j++) { power_t imask = 1 << j; if ((Settings.interlock[i] & imask) && (power & imask) && (mask != imask)) { ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE); delay(50); // Add some delay to make sure never have more than one relay on } } break; // An interlocked relay is only present in one group so quit } } interlock_mutex = false; } switch (state) { case POWER_OFF: { power &= (POWER_MASK ^ mask); break; } case POWER_ON: power |= mask; break; case POWER_TOGGLE: power ^= mask; } #ifdef USE_DEVICE_GROUPS if (SRC_REMOTE != source && SRC_RETRY != source) SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_POWER, power); #endif // USE_DEVICE_GROUPS SetDevicePower(power, source); #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(device); #endif // USE_DOMOTICZ #ifdef USE_KNX KnxUpdatePowerState(device, power); #endif // USE_KNX if (publish_power && Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT MqttPublishTeleState(); } if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0); } } else if (POWER_BLINK == state) { if (!(blink_mask & mask)) { blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state blink_power = (power >> (device -1))&1; // Prep to Toggle } blink_timer = millis() + 100; blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1; blink_mask |= mask; // Set device mask MqttPublishPowerBlinkState(device); return; } else if (POWER_BLINK_STOP == state) { bool flag = (blink_mask & mask); blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); if (flag) { ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state } return; } if (publish_power) { MqttPublishPowerState(device); } } void StopAllPowerBlink(void) { power_t mask; for (uint32_t i = 1; i <= devices_present; i++) { mask = 1 << (i -1); if (blink_mask & mask) { blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(i); ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state } } } void MqttShowPWMState(void) { ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{")); bool first = true; for (uint32_t i = 0; i < MAX_PWMS; i++) { if (pin[GPIO_PWM1 + i] < 99) { ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings.pwm_value[i]); first = false; } } ResponseJsonEnd(); } void MqttShowState(void) { char stemp1[TOPSZ]; ResponseAppendTime(); ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime()); #ifdef USE_ADC_VCC dtostrfd((double)ESP.getVcc()/1000, 3, stemp1); ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1); #endif ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"), ESP.getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep ssleep, loop_load_avg, MqttConnectCount()); for (uint32_t i = 1; i <= devices_present; i++) { #ifdef USE_LIGHT if ((LightDevice()) && (i >= LightDevice())) { if (i == LightDevice()) { LightState(1); } // call it only once } else { #endif ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i, sizeof(stemp1), Settings.flag.device_index_enable), // SetOption26 - Switch between POWER or POWER1 GetStateText(bitRead(power, i-1))); #ifdef USE_SONOFF_IFAN if (IsModuleIfan()) { ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed()); break; } #endif // USE_SONOFF_IFAN #ifdef USE_LIGHT } #endif } if (pwm_present) { ResponseAppend_P(PSTR(",")); MqttShowPWMState(); } int32_t rssi = WiFi.RSSI(); ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d,\"" D_JSON_SIGNAL "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}}"), Settings.sta_active +1, SettingsText(SET_STASSID1 + Settings.sta_active), WiFi.BSSIDstr().c_str(), WiFi.channel(), WifiGetRssiAsQuality(rssi), rssi, WifiLinkCount(), WifiDowntime().c_str()); } void MqttPublishTeleState(void) { mqtt_data[0] = '\0'; MqttShowState(); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN); #if defined(USE_RULES) || defined(USE_SCRIPT) RulesTeleperiod(); // Allow rule based HA messages #endif // USE_SCRIPT } void TempHumDewShow(bool json, bool pass_on, const char *types, float f_temperature, float f_humidity) { if (json) { ResponseAppend_P(PSTR(",\"%s\":{"), types); ResponseAppendTHD(f_temperature, f_humidity); ResponseJsonEnd(); #ifdef USE_DOMOTICZ if (pass_on) { DomoticzTempHumPressureSensor(f_temperature, f_humidity); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (pass_on) { KnxSensor(KNX_TEMPERATURE, f_temperature); KnxSensor(KNX_HUMIDITY, f_humidity); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_THD(types, f_temperature, f_humidity); #endif // USE_WEBSERVER } } bool MqttShowSensor(void) { ResponseAppendTime(); int json_data_start = strlen(mqtt_data); for (uint32_t i = 0; i < MAX_SWITCHES; i++) { #ifdef USE_TM1638 if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) { #else if (pin[GPIO_SWT1 +i] < 99) { #endif // USE_TM1638 ResponseAppend_P(PSTR(",\"" D_JSON_SWITCH "%d\":\"%s\""), i +1, GetStateText(SwitchState(i))); } } XsnsCall(FUNC_JSON_APPEND); XdrvCall(FUNC_JSON_APPEND); bool json_data_available = (strlen(mqtt_data) - json_data_start); if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) { ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str()); } if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE)) != nullptr) { ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit()); } if ((strstr_P(mqtt_data, PSTR(D_JSON_SPEED)) != nullptr) && Settings.flag2.speed_conversion) { ResponseAppend_P(PSTR(",\"" D_JSON_SPEED_UNIT "\":\"%s\""), SpeedUnit().c_str()); } ResponseJsonEnd(); if (json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); } return json_data_available; } void MqttPublishSensor(void) { mqtt_data[0] = '\0'; if (MqttShowSensor()) { MqttPublishTeleSensor(); } } /*********************************************************************************************\ * State loops \*********************************************************************************************/ /*-------------------------------------------------------------------------------------------*\ * Every second \*-------------------------------------------------------------------------------------------*/ void PerformEverySecond(void) { uptime++; if (POWER_CYCLE_TIME == uptime) { UpdateQuickPowerCycle(false); } if (BOOT_LOOP_TIME == uptime) { RtcRebootReset(); #ifdef USE_DEEPSLEEP if (!(DeepSleepEnabled() && !Settings.flag3.bootcount_update)) { #endif Settings.bootcount++; // Moved to here to stop flash writes during start-up AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount); #ifdef USE_DEEPSLEEP } #endif } if (mqtt_cmnd_blocked_reset) { mqtt_cmnd_blocked_reset--; if (!mqtt_cmnd_blocked_reset) { mqtt_cmnd_blocked = 0; // Clean up MQTT cmnd loop block } } if (seriallog_timer) { seriallog_timer--; if (!seriallog_timer) { if (seriallog_level) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED)); } seriallog_level = 0; } } if (syslog_timer) { // Restore syslog level syslog_timer--; if (!syslog_timer) { syslog_level = Settings.syslog_level; if (Settings.syslog_level) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose) } } } ResetGlobalValues(); if (Settings.tele_period) { if (tele_period >= 9999) { if (!global_state.wifi_down) { tele_period = 0; // Allow teleperiod once wifi is connected } } else { tele_period++; if (tele_period >= Settings.tele_period) { tele_period = 0; MqttPublishTeleState(); mqtt_data[0] = '\0'; if (MqttShowSensor()) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); // CMND_SENSORRETAIN #if defined(USE_RULES) || defined(USE_SCRIPT) RulesTeleperiod(); // Allow rule based HA messages #endif // USE_RULES } XsnsCall(FUNC_AFTER_TELEPERIOD); XdrvCall(FUNC_AFTER_TELEPERIOD); } } } #ifndef ARDUINO_ESP8266_RELEASE_2_3_0 // Wifi keep alive to send Gratuitous ARP wifiKeepAlive(); #endif // ARDUINO_ESP8266_RELEASE_2_3_0 #ifdef ESP32 if (11 == uptime) { // Perform one-time ESP32 houskeeping ESP_getSketchSize(); // Init sketchsize as it can take up to 2 seconds } #endif } /*-------------------------------------------------------------------------------------------*\ * Every 0.1 second \*-------------------------------------------------------------------------------------------*/ void Every100mSeconds(void) { // As the max amount of sleep = 250 mSec this loop will shift in time... power_t power_now; if (prepped_loglevel) { AddLog(prepped_loglevel); } if (latching_relay_pulse) { latching_relay_pulse--; if (!latching_relay_pulse) SetLatchingRelay(0, 0); } for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) { if (pulse_timer[i] != 0L) { // Timer active? if (TimeReached(pulse_timer[i])) { // Timer finished? pulse_timer[i] = 0L; // Turn off this timer ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER); } } } if (blink_mask) { if (TimeReached(blink_timer)) { SetNextTimeInterval(blink_timer, 100 * Settings.blinktime); blink_counter--; if (!blink_counter) { StopAllPowerBlink(); } else { blink_power ^= 1; power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0); SetDevicePower(power_now, SRC_IGNORE); } } } } /*-------------------------------------------------------------------------------------------*\ * Every 0.25 second \*-------------------------------------------------------------------------------------------*/ void Every250mSeconds(void) { // As the max amount of sleep = 250 mSec this loop should always be taken... uint32_t blinkinterval = 1; state_250mS++; state_250mS &= 0x3; if (!Settings.flag.global_state) { // Problem blinkyblinky enabled - SetOption31 - Control link led blinking if (global_state.data) { // Any problem if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest) if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow) blinks = 201; // Allow only a single blink in case the problem is solved } } if (blinks || restart_flag || ota_state_flag) { if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit blinkstate = true; // Stay lit } else { blinkspeed--; if (!blinkspeed) { blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds blinkstate ^= 1; // Blink } } if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) { SetLedLink(blinkstate); // Set led on or off } if (!blinkstate) { blinks--; if (200 == blinks) blinks = 0; // Disable blink } } if (Settings.ledstate &1 && (pin[GPIO_LEDLNK] < 99 || !(blinks || restart_flag || ota_state_flag)) ) { bool tstate = power & Settings.ledmask; #ifdef ESP8266 if ((SONOFF_TOUCH == my_module_type) || (SONOFF_T11 == my_module_type) || (SONOFF_T12 == my_module_type) || (SONOFF_T13 == my_module_type)) { tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark } #endif // ESP8266 SetLedPower(tstate); } /*-------------------------------------------------------------------------------------------*\ * Every second at 0.25 second interval \*-------------------------------------------------------------------------------------------*/ switch (state_250mS) { case 0: // Every x.0 second if (ota_state_flag && BACKLOG_EMPTY) { ota_state_flag--; if (2 == ota_state_flag) { RtcSettings.ota_loader = 0; // Try requested image first ota_retry_counter = OTA_ATTEMPTS; ESPhttpUpdate.rebootOnUpdate(false); SettingsSave(1); // Free flash for OTA update } if (ota_state_flag <= 0) { #ifdef USE_WEBSERVER if (Settings.webserver) StopWebserver(); #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF ota_state_flag = 92; ota_result = 0; ota_retry_counter--; if (ota_retry_counter) { strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data)); #ifndef FIRMWARE_MINIMAL if (RtcSettings.ota_loader) { // OTA File too large so try OTA minimal version // Replace tasmota with tasmota-minimal // Replace tasmota-DE with tasmota-minimal // Replace tasmota.bin with tasmota-minimal.bin // Replace tasmota.xyz with tasmota-minimal.xyz // Replace tasmota.bin.gz with tasmota-minimal.bin.gz // Replace tasmota.xyz.gz with tasmota-minimal.xyz.gz // Replace tasmota.ino.bin with tasmota-minimal.ino.bin // Replace tasmota.ino.bin.gz with tasmota-minimal.ino.bin.gz // Replace http://domus1:80/api/arduino/tasmota.bin with http://domus1:80/api/arduino/tasmota-minimal.bin // Replace http://domus1:80/api/arduino/tasmota.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz // Replace http://domus1:80/api/arduino/tasmota-DE.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz // Replace http://domus1:80/api/ard-uino/tasmota-DE.bin.gz with http://domus1:80/api/ard-uino/tasmota-minimal.bin.gz // Replace http://192.168.2.17:80/api/arduino/tasmota.bin with http://192.168.2.17:80/api/arduino/tasmota-minimal.bin // Replace http://192.168.2.17/api/arduino/tasmota.bin.gz with http://192.168.2.17/api/arduino/tasmota-minimal.bin.gz char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it if (bch == nullptr) { bch = mqtt_data; } // No path found so use filename only /* char *ech = strrchr(bch, '.'); // Find file type in filename (none, .bin or .gz) if ((ech != nullptr) && (0 == strncasecmp_P(ech, PSTR(".GZ"), 3))) { char *fch = ech; *fch = '\0'; ech = strrchr(bch, '.'); // Find file type .bin.gz *fch = '.'; } */ char *ech = strchr(bch, '.'); // Find file type in filename (none, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz) if (ech == nullptr) { ech = mqtt_data + strlen(mqtt_data); } // Point to '/0' at end of mqtt_data becoming an empty string //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("OTA: File type [%s]"), ech); char ota_url_type[strlen(ech) +1]; strncpy(ota_url_type, ech, sizeof(ota_url_type)); // Either empty, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz char *pch = strrchr(bch, '-'); // Find last dash (-) and ignore remainder - handles tasmota-DE if (pch == nullptr) { pch = ech; } // No dash so ignore filetype *pch = '\0'; // mqtt_data = http://domus1:80/api/arduino/tasmota snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ota_url_type); // Minimal filename must be filename-minimal } #endif // FIRMWARE_MINIMAL AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s"), mqtt_data); #if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data)); #else // If using core stage or 2.5.0+ the syntax has changed WiFiClient OTAclient; ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data)); #endif if (!ota_result) { #ifndef FIRMWARE_MINIMAL int ota_error = ESPhttpUpdate.getLastError(); DEBUG_CORE_LOG(PSTR("OTA: Error %d"), ota_error); if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) { RtcSettings.ota_loader = 1; // Try minimal image next } #endif // FIRMWARE_MINIMAL ota_state_flag = 2; // Upgrade failed - retry } } } if (90 == ota_state_flag) { // Allow MQTT to reconnect ota_state_flag = 0; Response_P(PSTR("{\"" D_CMND_UPGRADE "\":\"")); if (ota_result) { // SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285 if (!VersionCompatible()) { ResponseAppend_P(PSTR(D_JSON_FAILED " " D_UPLOAD_ERR_14)); } else { ResponseAppend_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING)); restart_flag = 2; } } else { ResponseAppend_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str()); } ResponseAppend_P(PSTR("\"}")); // restart_flag = 2; // Restart anyway to keep memory clean webserver MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE)); } } break; case 1: // Every x.25 second if (MidnightNow()) { XsnsCall(FUNC_SAVE_AT_MIDNIGHT); } if (save_data_counter && BACKLOG_EMPTY) { save_data_counter--; if (save_data_counter <= 0) { if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart power_t mask = POWER_MASK; for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) { if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds mask &= ~(1 << i); } } if (!((Settings.power &mask) == (power &mask))) { Settings.power = power; } } else { Settings.power = 0; } SettingsSave(0); save_data_counter = Settings.save_data; } } if (restart_flag && BACKLOG_EMPTY) { if ((214 == restart_flag) || (215 == restart_flag) || (216 == restart_flag)) { // Backup current SSIDs and Passwords char storage_ssid1[strlen(SettingsText(SET_STASSID1)) +1]; strncpy(storage_ssid1, SettingsText(SET_STASSID1), sizeof(storage_ssid1)); char storage_ssid2[strlen(SettingsText(SET_STASSID2)) +1]; strncpy(storage_ssid2, SettingsText(SET_STASSID2), sizeof(storage_ssid2)); char storage_pass1[strlen(SettingsText(SET_STAPWD1)) +1]; strncpy(storage_pass1, SettingsText(SET_STAPWD1), sizeof(storage_pass1)); char storage_pass2[strlen(SettingsText(SET_STAPWD2)) +1]; strncpy(storage_pass2, SettingsText(SET_STAPWD2), sizeof(storage_pass2)); char storage_mqtthost[strlen(SettingsText(SET_MQTT_HOST)) +1]; strncpy(storage_mqtthost, SettingsText(SET_MQTT_HOST), sizeof(storage_mqtthost)); char storage_mqttuser[strlen(SettingsText(SET_MQTT_USER)) +1]; strncpy(storage_mqttuser, SettingsText(SET_MQTT_USER), sizeof(storage_mqttuser)); char storage_mqttpwd[strlen(SettingsText(SET_MQTT_PWD)) +1]; strncpy(storage_mqttpwd, SettingsText(SET_MQTT_PWD), sizeof(storage_mqttpwd)); char storage_mqtttopic[strlen(SettingsText(SET_MQTT_TOPIC)) +1]; strncpy(storage_mqtttopic, SettingsText(SET_MQTT_TOPIC), sizeof(storage_mqtttopic)); uint16_t mqtt_port = Settings.mqtt_port; // if (216 == restart_flag) { // Backup mqtt host, port, client, username and password // } if ((215 == restart_flag) || (216 == restart_flag)) { SettingsErase(0); // Erase all flash from program end to end of physical flash } SettingsDefault(); // Restore current SSIDs and Passwords SettingsUpdateText(SET_STASSID1, storage_ssid1); SettingsUpdateText(SET_STASSID2, storage_ssid2); SettingsUpdateText(SET_STAPWD1, storage_pass1); SettingsUpdateText(SET_STAPWD2, storage_pass2); if (216 == restart_flag) { // Restore the mqtt host, port, client, username and password SettingsUpdateText(SET_MQTT_HOST, storage_mqtthost); SettingsUpdateText(SET_MQTT_USER, storage_mqttuser); SettingsUpdateText(SET_MQTT_PWD, storage_mqttpwd); SettingsUpdateText(SET_MQTT_TOPIC, storage_mqtttopic); Settings.mqtt_port = mqtt_port; } restart_flag = 2; } else if (213 == restart_flag) { SettingsSdkErase(); // Erase flash SDK parameters restart_flag = 2; } else if (212 == restart_flag) { SettingsErase(0); // Erase all flash from program end to end of physical flash restart_flag = 211; } if (211 == restart_flag) { SettingsDefault(); restart_flag = 2; } if (2 == restart_flag) { SettingsSaveAll(); } restart_flag--; if (restart_flag <= 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING)); EspRestart(); } } break; case 2: // Every x.5 second WifiCheck(wifi_state_flag); wifi_state_flag = WIFI_RESTART; break; case 3: // Every x.75 second if (!global_state.wifi_down) { MqttCheck(); } break; } } #ifdef USE_ARDUINO_OTA /*********************************************************************************************\ * Allow updating via the Arduino OTA-protocol. * * - Once started disables current wifi clients and udp * - Perform restart when done to re-init wifi clients \*********************************************************************************************/ bool arduino_ota_triggered = false; uint16_t arduino_ota_progress_dot_count = 0; void ArduinoOTAInit(void) { ArduinoOTA.setPort(8266); ArduinoOTA.setHostname(my_hostname); if (strlen(SettingsText(SET_WEBPWD))) { ArduinoOTA.setPassword(SettingsText(SET_WEBPWD)); } ArduinoOTA.onStart([]() { SettingsSave(1); // Free flash for OTA update #ifdef USE_WEBSERVER if (Settings.webserver) { StopWebserver(); } #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF if (Settings.flag.mqtt_enabled) { MqttDisconnect(); // SetOption3 - Enable MQTT } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED)); arduino_ota_triggered = true; arduino_ota_progress_dot_count = 0; delay(100); // Allow time for message xfer }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { if ((LOG_LEVEL_DEBUG <= seriallog_level)) { arduino_ota_progress_dot_count++; Serial.printf("."); if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); } } }); ArduinoOTA.onError([](ota_error_t error) { /* From ArduinoOTA.h: typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t; */ char error_str[100]; if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); } switch (error) { case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break; case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break; case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break; default: snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str); EspRestart(); }); ArduinoOTA.onEnd([]() { if ((LOG_LEVEL_DEBUG <= seriallog_level)) { Serial.println(); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING)); EspRestart(); }); ArduinoOTA.begin(); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266")); } void ArduinoOtaLoop(void) { MDNS.update(); ArduinoOTA.handle(); // Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails) while (arduino_ota_triggered) { ArduinoOTA.handle(); } } #endif // USE_ARDUINO_OTA /********************************************************************************************/ void SerialInput(void) { while (Serial.available()) { // yield(); delay(0); serial_in_byte = Serial.read(); #ifdef ESP8266 /*-------------------------------------------------------------------------------------------*\ * Sonoff dual and ch4 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) { serial_in_byte = ButtonSerial(serial_in_byte); } #endif // ESP8266 /*-------------------------------------------------------------------------------------------*/ if (XdrvCall(FUNC_SERIAL)) { serial_in_byte_counter = 0; Serial.flush(); return; } /*-------------------------------------------------------------------------------------------*/ if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed - CMND_SERIALSEND3 serial_in_byte_counter = 0; Serial.flush(); return; } if (!Settings.flag.mqtt_serial) { // SerialSend active - CMND_SERIALSEND and CMND_SERIALLOG if (isprint(serial_in_byte)) { // Any char between 32 and 127 if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits serial_in_buffer[serial_in_byte_counter++] = serial_in_byte; } else { serial_in_byte_counter = 0; } } } else { if (serial_in_byte || Settings.flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255) - CMND_SERIALSEND3 if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ... ((isprint(serial_in_byte) && (128 == Settings.serial_delimiter)) || // Any char between 32 and 127 ((serial_in_byte != Settings.serial_delimiter) && (128 != Settings.serial_delimiter)) || // Any char between 1 and 127 and not being delimiter Settings.flag.mqtt_serial_raw)) { // Any char between 0 and 255 - CMND_SERIALSEND3 serial_in_buffer[serial_in_byte_counter++] = serial_in_byte; serial_polling_window = millis(); } else { serial_polling_window = 0; // Reception done - send mqtt break; } } } #ifdef USE_SONOFF_SC /*-------------------------------------------------------------------------------------------*\ * Sonoff SC 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if (SONOFF_SC == my_module_type) { if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed SonoffScSerialInput(serial_in_buffer); serial_in_byte_counter = 0; Serial.flush(); return; } } else #endif // USE_SONOFF_SC /*-------------------------------------------------------------------------------------------*/ if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) { // CMND_SERIALSEND and CMND_SERIALLOG serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level; AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer); ExecuteCommand(serial_in_buffer, SRC_SERIAL); serial_in_byte_counter = 0; serial_polling_window = 0; Serial.flush(); return; } } if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) { // CMND_SERIALSEND and CMND_SERIALLOG serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed char hex_char[(serial_in_byte_counter * 2) + 2]; bool assume_json = (!Settings.flag.mqtt_serial_raw && (serial_in_buffer[0] == '{')); Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":%s%s%s}"), (assume_json) ? "" : "\"", (Settings.flag.mqtt_serial_raw) ? ToHex_P((unsigned char*)serial_in_buffer, serial_in_byte_counter, hex_char, sizeof(hex_char)) : serial_in_buffer, (assume_json) ? "" : "\""); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED)); XdrvRulesProcess(); serial_in_byte_counter = 0; } } /********************************************************************************************/ void ResetPwm(void) { for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only if (pin[GPIO_PWM1 +i] < 99) { analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range : 0); // analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]); } } } /********************************************************************************************/ void GpioInit(void) { uint32_t mpin; if (!ValidModule(Settings.module)) { uint32_t module = MODULE; if (!ValidModule(MODULE)) { #ifdef ESP8266 module = SONOFF_BASIC; #endif // ESP8266 #ifdef ESP32 module = WEMOS; #endif // ESP32 } Settings.module = module; Settings.last_module = module; } SetModuleType(); if (Settings.module != Settings.last_module) { Settings.baudrate = APP_BAUDRATE / 300; Settings.serial_config = TS_SERIAL_8N1; } for (uint32_t i = 0; i < sizeof(Settings.user_template.gp); i++) { if ((Settings.user_template.gp.io[i] >= GPIO_SENSOR_END) && (Settings.user_template.gp.io[i] < GPIO_USER)) { Settings.user_template.gp.io[i] = GPIO_USER; // Fix not supported sensor ids in template } } myio def_gp; ModuleGpios(&def_gp); for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { if ((Settings.my_gp.io[i] >= GPIO_SENSOR_END) && (Settings.my_gp.io[i] < GPIO_USER)) { Settings.my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module } else if (Settings.my_gp.io[i] > GPIO_NONE) { my_module.io[i] = Settings.my_gp.io[i]; // Set User selected Module sensors } if ((def_gp.io[i] > GPIO_NONE) && (def_gp.io[i] < GPIO_USER)) { my_module.io[i] = def_gp.io[i]; // Force Template override } } if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) { Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module } else if (Settings.my_adc0 > ADC0_NONE) { my_adc0 = Settings.my_adc0; // Set User selected Module sensors } my_module_flag = ModuleFlag(); uint32_t template_adc0 = my_module_flag.data &15; if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) { my_adc0 = template_adc0; // Force Template override } for (uint32_t i = 0; i < GPIO_MAX; i++) { pin[i] = 99; } for (uint32_t i = 0; i < sizeof(my_module.io); i++) { mpin = ValidPin(i, my_module.io[i]); DEBUG_CORE_LOG(PSTR("INI: gpio pin %d, mpin %d"), i, mpin); if (mpin) { XdrvMailbox.index = mpin; XdrvMailbox.payload = i; if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) { SwitchPullupFlag(mpin - GPIO_SWT1_NP); mpin -= (GPIO_SWT1_NP - GPIO_SWT1); } else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) { ButtonPullupFlag(mpin - GPIO_KEY1_NP); // 0 .. 3 mpin -= (GPIO_KEY1_NP - GPIO_KEY1); } else if ((mpin >= GPIO_KEY1_INV) && (mpin < (GPIO_KEY1_INV + MAX_KEYS))) { ButtonInvertFlag(mpin - GPIO_KEY1_INV); // 0 .. 3 mpin -= (GPIO_KEY1_INV - GPIO_KEY1); } else if ((mpin >= GPIO_KEY1_INV_NP) && (mpin < (GPIO_KEY1_INV_NP + MAX_KEYS))) { ButtonPullupFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3 ButtonInvertFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3 mpin -= (GPIO_KEY1_INV_NP - GPIO_KEY1); } else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) { bitSet(rel_inverted, mpin - GPIO_REL1_INV); mpin -= (GPIO_REL1_INV - GPIO_REL1); } else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) { bitSet(led_inverted, mpin - GPIO_LED1_INV); mpin -= (GPIO_LED1_INV - GPIO_LED1); } else if (mpin == GPIO_LEDLNK_INV) { ledlnk_inverted = 1; mpin -= (GPIO_LEDLNK_INV - GPIO_LEDLNK); } else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) { bitSet(pwm_inverted, mpin - GPIO_PWM1_INV); mpin -= (GPIO_PWM1_INV - GPIO_PWM1); } else if (XdrvCall(FUNC_PIN_STATE)) { mpin = XdrvMailbox.index; } else if (XsnsCall(FUNC_PIN_STATE)) { mpin = XdrvMailbox.index; }; } if (mpin) pin[mpin] = i; } #ifdef ESP8266 if ((2 == pin[GPIO_TXD]) || (H801 == my_module_type)) { Serial.set_tx(2); } #endif // ESP8266 analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h) analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c) #ifdef USE_SPI spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12))); if (spi_flg) { for (uint32_t i = 0; i < GPIO_MAX; i++) { if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99; } my_module.io[12] = GPIO_SPI_MISO; pin[GPIO_SPI_MISO] = 12; my_module.io[13] = GPIO_SPI_MOSI; pin[GPIO_SPI_MOSI] = 13; my_module.io[14] = GPIO_SPI_CLK; pin[GPIO_SPI_CLK] = 14; } soft_spi_flg = ((pin[GPIO_SSPI_CS] < 99) && (pin[GPIO_SSPI_SCLK] < 99) && ((pin[GPIO_SSPI_MOSI] < 99) || (pin[GPIO_SSPI_MOSI] < 99))); #endif // USE_SPI // Set any non-used GPIO to INPUT - Related to resetPins() in support_legacy_cores.ino // Doing it here solves relay toggles at restart. for (uint32_t i = 0; i < sizeof(my_module.io); i++) { mpin = ValidPin(i, my_module.io[i]); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("INI: gpio pin %d, mpin %d"), i, mpin); if (((i < 6) || (i > 11)) && (0 == mpin)) { // Skip SPI flash interface if (!((1 == i) || (3 == i))) { // Skip serial pinMode(i, INPUT); } } } #ifdef USE_I2C i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99)); if (i2c_flg) { Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]); } #endif // USE_I2C devices_present = 0; light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0 if (XdrvCall(FUNC_MODULE_INIT)) { // Serviced } #ifdef ESP8266 else if (YTF_IR_BRIDGE == my_module_type) { ClaimSerial(); // Stop serial loopback mode // devices_present = 1; } else if (SONOFF_DUAL == my_module_type) { devices_present = 2; SetSerial(19200, TS_SERIAL_8N1); } else if (CH4 == my_module_type) { devices_present = 4; SetSerial(19200, TS_SERIAL_8N1); } #ifdef USE_SONOFF_SC else if (SONOFF_SC == my_module_type) { SetSerial(19200, TS_SERIAL_8N1); } #endif // USE_SONOFF_SC #endif // ESP8266 for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only if (pin[GPIO_PWM1 +i] < 99) { pinMode(pin[GPIO_PWM1 +i], OUTPUT); if (light_type) { // force PWM GPIOs to low or high mode, see #7165 analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range : 0); } else { pwm_present = true; analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]); } } } for (uint32_t i = 0; i < MAX_RELAYS; i++) { if (pin[GPIO_REL1 +i] < 99) { pinMode(pin[GPIO_REL1 +i], OUTPUT); devices_present++; #ifdef ESP8266 if (EXS_RELAY == my_module_type) { digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0); if (i &1) { devices_present--; } } #endif // ESP8266 } } for (uint32_t i = 0; i < MAX_LEDS; i++) { if (pin[GPIO_LED1 +i] < 99) { #ifdef USE_ARILUX_RF if ((3 == i) && (leds_present < 2) && (99 == pin[GPIO_ARIRFSEL])) { pin[GPIO_ARIRFSEL] = pin[GPIO_LED4]; // Legacy support where LED4 was Arilux RF enable pin[GPIO_LED4] = 99; } else { #endif pinMode(pin[GPIO_LED1 +i], OUTPUT); leds_present++; digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i)); #ifdef USE_ARILUX_RF } #endif } } if (pin[GPIO_LEDLNK] < 99) { pinMode(pin[GPIO_LEDLNK], OUTPUT); digitalWrite(pin[GPIO_LEDLNK], ledlnk_inverted); } #ifdef USE_PWM_DIMMER if (PWM_DIMMER == my_module_type && pin[GPIO_REL1] < 99) devices_present--; #endif // USE_PWM_DIMMER ButtonInit(); SwitchInit(); #ifdef ROTARY_V1 RotaryInit(); #endif SetLedPower(Settings.ledstate &8); SetLedLink(Settings.ledstate &8); XdrvCall(FUNC_PRE_INIT); }