/* support.ino - support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ extern "C" { extern struct rst_info resetInfo; } /*********************************************************************************************\ * Watchdog extension (https://github.com/esp8266/Arduino/issues/1532) \*********************************************************************************************/ #include Ticker tickerOSWatch; const uint32_t OSWATCH_RESET_TIME = 120; static unsigned long oswatch_last_loop_time; uint8_t oswatch_blocked_loop = 0; #ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception //void OsWatchTicker() ICACHE_RAM_ATTR; #endif // USE_WS2812_DMA #ifdef USE_KNX bool knx_started = false; #endif // USE_KNX void OsWatchTicker(void) { uint32_t t = millis(); uint32_t last_run = t - oswatch_last_loop_time; #ifdef DEBUG_THEO int32_t rssi = WiFi.RSSI(); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d %% (%d dBm), last_run %d"), ESP_getFreeHeap(), WifiGetRssiAsQuality(rssi), rssi, last_run); #endif // DEBUG_THEO if (last_run >= (OSWATCH_RESET_TIME * 1000)) { // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space RtcSettings.oswatch_blocked_loop = 1; RtcSettingsSave(); // ESP.restart(); // normal reboot // ESP.reset(); // hard reset // Force an exception to get a stackdump // ESP32: Guru Meditation Error: Core 0 panic'ed (LoadProhibited). Exception was unhandled. volatile uint32_t dummy; dummy = *((uint32_t*) 0x00000000); (void)dummy; // avoid compiler warning } } void OsWatchInit(void) { oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop; RtcSettings.oswatch_blocked_loop = 0; oswatch_last_loop_time = millis(); tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker); } void OsWatchLoop(void) { oswatch_last_loop_time = millis(); // while(1) delay(1000); // this will trigger the os watch } bool OsWatchBlockedLoop(void) { return oswatch_blocked_loop; } uint32_t ResetReason(void) { /* user_interface.h REASON_DEFAULT_RST = 0, // "Power on" normal startup by power on REASON_WDT_RST = 1, // "Hardware Watchdog" hardware watch dog reset REASON_EXCEPTION_RST = 2, // "Exception" exception reset, GPIO status won’t change REASON_SOFT_WDT_RST = 3, // "Software Watchdog" software watch dog reset, GPIO status won’t change REASON_SOFT_RESTART = 4, // "Software/System restart" software restart ,system_restart , GPIO status won’t change REASON_DEEP_SLEEP_AWAKE = 5, // "Deep-Sleep Wake" wake up from deep-sleep REASON_EXT_SYS_RST = 6 // "External System" external system reset */ return ESP_ResetInfoReason(); } String GetResetReason(void) { if (oswatch_blocked_loop) { char buff[32]; strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff)); return String(buff); } else { return ESP_getResetReason(); } } #ifdef ESP32 /*********************************************************************************************\ * ESP32 AutoMutex \*********************************************************************************************/ ////////////////////////////////////////// // automutex. // create a mute in your driver with: // void *mutex = nullptr; // // then protect any function with // TasAutoMutex m(&mutex, "somename"); // - mutex is automatically initialised if not already intialised. // - it will be automagically released when the function is over. // - the same thread can take multiple times (recursive). // - advanced options m.give() and m.take() allow you fine control within a function. // - if take=false at creat, it will not be initially taken. // - name is used in serial log of mutex deadlock. // - maxWait in ticks is how long it will wait before failing in a deadlock scenario (and then emitting on serial) class TasAutoMutex { SemaphoreHandle_t mutex; bool taken; int maxWait; const char *name; public: TasAutoMutex(void ** mutex, const char *name = "", int maxWait = 40, bool take=true); ~TasAutoMutex(); void give(); void take(); static void init(void ** ptr); }; ////////////////////////////////////////// TasAutoMutex::TasAutoMutex(void **mutex, const char *name, int maxWait, bool take) { if (mutex) { if (!(*mutex)){ TasAutoMutex::init(mutex); } this->mutex = (SemaphoreHandle_t)*mutex; this->maxWait = maxWait; this->name = name; if (take) { this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait); if (!this->taken){ Serial.printf("\r\nMutexfail %s\r\n", this->name); } } } else { this->mutex = (SemaphoreHandle_t)nullptr; } } TasAutoMutex::~TasAutoMutex() { if (this->mutex) { if (this->taken) { xSemaphoreGiveRecursive(this->mutex); this->taken = false; } } } void TasAutoMutex::init(void ** ptr) { SemaphoreHandle_t mutex = xSemaphoreCreateRecursiveMutex(); (*ptr) = (void *) mutex; // needed, else for ESP8266 as we will initialis more than once in logging // (*ptr) = (void *) 1; } void TasAutoMutex::give() { if (this->mutex) { if (this->taken) { xSemaphoreGiveRecursive(this->mutex); this->taken= false; } } } void TasAutoMutex::take() { if (this->mutex) { if (!this->taken) { this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait); if (!this->taken){ Serial.printf("\r\nMutexfail %s\r\n", this->name); } } } } #endif // ESP32 /*********************************************************************************************\ * Miscellaneous \*********************************************************************************************/ /* String GetBinary(const void* ptr, size_t count) { uint32_t value = *(uint32_t*)ptr; value <<= (32 - count); String result; result.reserve(count + 1); for (uint32_t i = 0; i < count; i++) { result += (value &0x80000000) ? '1' : '0'; value <<= 1; } return result; } */ String GetBinary8(uint8_t value, size_t count) { if (count > 8) { count = 8; } value <<= (8 - count); String result; result.reserve(count + 1); for (uint32_t i = 0; i < count; i++) { result += (value &0x80) ? '1' : '0'; value <<= 1; } return result; } // Get span until single character in string size_t strchrspn(const char *str1, int character) { size_t ret = 0; char *start = (char*)str1; char *end = strchr(str1, character); if (end) ret = end - start; return ret; } uint32_t ChrCount(const char *str, const char *delim) { uint32_t count = 0; char* read = (char*)str; char ch = '.'; while (ch != '\0') { ch = *read++; if (ch == *delim) { count++; } } return count; } uint32_t ArgC(void) { return (XdrvMailbox.data_len > 0) ? ChrCount(XdrvMailbox.data, ",") +1 : 0; } // Function to return a substring defined by a delimiter at an index char* subStr(char* dest, char* str, const char *delim, int index) { char* write = dest; char* read = str; char ch = '.'; while (index && (ch != '\0')) { ch = *read++; if (strchr(delim, ch)) { index--; if (index) { write = dest; } } else { *write++ = ch; } } *write = '\0'; dest = Trim(dest); return dest; } char* ArgV(char* dest, int index) { return subStr(dest, XdrvMailbox.data, ",", index); } uint32_t ArgVul(uint32_t *args, uint32_t count) { uint32_t argc = ArgC(); if (argc > count) { argc = count; } count = argc; if (argc) { char argument[XdrvMailbox.data_len]; for (uint32_t i = 0; i < argc; i++) { if (strlen(ArgV(argument, i +1))) { args[i] = strtoul(argument, nullptr, 0); } else { count--; } } } return count; } uint32_t ParseParameters(uint32_t count, uint32_t *params) { // Destroys XdrvMailbox.data char *p; uint32_t i = 0; for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < count; str = strtok_r(nullptr, ", ", &p), i++) { params[i] = strtoul(str, nullptr, 0); } return i; } float CharToFloat(const char *str) { // simple ascii to double, because atof or strtod are too large char strbuf[24]; strlcpy(strbuf, str, sizeof(strbuf)); char *pt = strbuf; if (*pt == '\0') { return 0.0; } while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces signed char sign = 1; if (*pt == '-') { sign = -1; } if (*pt == '-' || *pt == '+') { pt++; } // Skip any sign float left = 0; if (*pt != '.') { left = atoi(pt); // Get left part while (isdigit(*pt)) { pt++; } // Skip number } float right = 0; if (*pt == '.') { pt++; uint32_t max_decimals = 0; while ((max_decimals < 8) && isdigit(pt[max_decimals])) { max_decimals++; } pt[max_decimals] = '\0'; // Limit decimals to float max of 8 right = atoi(pt); // Decimal part while (isdigit(*pt)) { pt++; right /= 10.0f; } } float result = left + right; if (sign < 0) { return -result; // Add negative sign } return result; } int TextToInt(char *str) { char *p; uint8_t radix = 10; if ('#' == str[0]) { radix = 16; str++; } return strtol(str, &p, radix); } char* dtostrfd(double number, unsigned char prec, char *s) { if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript) strcpy_P(s, PSTR("null")); return s; } else { return dtostrf(number, 1, prec, s); } } char* Unescape(char* buffer, uint32_t* size) { uint8_t* read = (uint8_t*)buffer; uint8_t* write = (uint8_t*)buffer; int32_t start_size = *size; int32_t end_size = *size; uint8_t che = 0; // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size); while (start_size > 0) { uint8_t ch = *read++; start_size--; if (ch != '\\') { *write++ = ch; } else { if (start_size > 0) { uint8_t chi = *read++; start_size--; end_size--; switch (chi) { case '\\': che = '\\'; break; // 5C Backslash case 'a': che = '\a'; break; // 07 Bell (Alert) case 'b': che = '\b'; break; // 08 Backspace case 'e': che = '\e'; break; // 1B Escape case 'f': che = '\f'; break; // 0C Formfeed case 'n': che = '\n'; break; // 0A Linefeed (Newline) case 'r': che = '\r'; break; // 0D Carriage return case 's': che = ' '; break; // 20 Space case 't': che = '\t'; break; // 09 Horizontal tab case 'v': che = '\v'; break; // 0B Vertical tab case 'x': { uint8_t* start = read; che = (uint8_t)strtol((const char*)read, (char**)&read, 16); start_size -= (uint16_t)(read - start); end_size -= (uint16_t)(read - start); break; } case '"': che = '\"'; break; // 22 Quotation mark // case '?': che = '\?'; break; // 3F Question mark default : { che = chi; *write++ = ch; end_size++; } } *write++ = che; } } } *size = end_size; *write++ = 0; // add the end string pointer reference // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size); return buffer; } char* RemoveSpace(char* p) { // Remove white-space character (' ','\t','\n','\v','\f','\r') char* write = p; char* read = p; char ch = '.'; while (ch != '\0') { ch = *read++; if (!isspace(ch)) { *write++ = ch; } } return p; } char* RemoveControlCharacter(char* p) { // Remove control character (0x00 .. 0x1F and 0x7F) char* write = p; char* read = p; char ch = '.'; while (ch != '\0') { ch = *read++; if (!iscntrl(ch)) { *write++ = ch; } } *write++ = '\0'; return p; } char* ReplaceChar(char* p, char find, char replace) { char* write = (char*)p; char* read = (char*)p; char ch = '.'; while (ch != '\0') { ch = *read++; if (ch == find) { ch = replace; } *write++ = ch; } return p; } char* ReplaceCommaWithDot(char* p) { return ReplaceChar(p, ',', '.'); } char* LowerCase(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = tolower(ch); } return dest; } char* UpperCase(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = toupper(ch); } return dest; } char* UpperCase_P(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = pgm_read_byte(read++); *write++ = toupper(ch); } return dest; } char* Trim(char* p) { if (*p != '\0') { while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces char* q = p + strlen(p) -1; while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces q++; *q = '\0'; } return p; } String UrlEncode(const String& text) { const char hex[] = "0123456789ABCDEF"; String encoded = ""; int len = text.length(); int i = 0; while (i < len) { char decodedChar = text.charAt(i++); /* if (('a' <= decodedChar && decodedChar <= 'z') || ('A' <= decodedChar && decodedChar <= 'Z') || ('0' <= decodedChar && decodedChar <= '9') || ('=' == decodedChar)) { encoded += decodedChar; } else { encoded += '%'; encoded += hex[decodedChar >> 4]; encoded += hex[decodedChar & 0xF]; } */ if ((' ' == decodedChar) || ('+' == decodedChar)) { encoded += '%'; encoded += hex[decodedChar >> 4]; encoded += hex[decodedChar & 0xF]; } else { encoded += decodedChar; } } return encoded; } /* char* RemoveAllSpaces(char* p) { // remove any white space from the base64 char *cursor = p; uint32_t offset = 0; while (1) { *cursor = *(cursor + offset); if ((' ' == *cursor) || ('\t' == *cursor) || ('\n' == *cursor)) { // if space found, remove this char until end of string offset++; } else { if (0 == *cursor) { break; } cursor++; } } return p; } */ char* NoAlNumToUnderscore(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_'; } return dest; } char IndexSeparator(void) { /* // 20 bytes more costly !?! const char separators[] = { "-_" }; return separators[Settings.flag3.use_underscore]; */ if (Settings.flag3.use_underscore) { // SetOption64 - Enable "_" instead of "-" as sensor index separator return '_'; } else { return '-'; } } void SetShortcutDefault(void) { if ('\0' != XdrvMailbox.data[0]) { // There must be at least one character in the buffer XdrvMailbox.data[0] = '0' + SC_DEFAULT; // SC_CLEAR, SC_DEFAULT, SC_USER XdrvMailbox.data[1] = '\0'; } } uint8_t Shortcut(void) { uint8_t result = 10; if ('\0' == XdrvMailbox.data[1]) { // Only allow single character input for shortcut if (('"' == XdrvMailbox.data[0]) || ('0' == XdrvMailbox.data[0])) { result = SC_CLEAR; } else { result = atoi(XdrvMailbox.data); // 1 = SC_DEFAULT, 2 = SC_USER if (0 == result) { result = 10; } } } return result; } bool ValidIpAddress(const char* str) { IPAddress ip_address; return ip_address.fromString(str); } bool ParseIPv4(uint32_t* addr, const char* str_p) { uint8_t *part = (uint8_t*)addr; uint8_t i; char str_r[strlen_P(str_p)+1]; char * str = &str_r[0]; strcpy_P(str, str_p); *addr = 0; for (i = 0; i < 4; i++) { part[i] = strtoul(str, nullptr, 10); // Convert byte str = strchr(str, '.'); if (str == nullptr || *str == '\0') { break; // No more separators, exit } str++; // Point to next character after separator } return (3 == i); } // Function to parse & check if version_str is newer than our currently installed version. bool NewerVersion(char* version_str) { uint32_t version = 0; uint32_t i = 0; char *str_ptr; char version_dup[strlen(version_str) +1]; strncpy(version_dup, version_str, sizeof(version_dup)); // Duplicate the version_str as strtok_r will modify it. // Loop through the version string, splitting on '.' seperators. for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) { int field = atoi(str); // The fields in a version string can only range from 0-255. if ((field < 0) || (field > 255)) { return false; } // Shuffle the accumulated bytes across, and add the new byte. version = (version << 8) + field; // Check alpha delimiter after 1.2.3 only if ((2 == i) && isalpha(str[strlen(str)-1])) { field = str[strlen(str)-1] & 0x1f; version = (version << 8) + field; i++; } } // A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1). // If not, then don't consider it a valid version string. if ((i < 2) || (i > sizeof(VERSION))) { return false; } // Keep shifting the parsed version until we hit the maximum number of tokens. // VERSION stores the major number of the version in the most significant byte of the uint32_t. while (i < sizeof(VERSION)) { version <<= 8; i++; } // Now we should have a fully constructed version number in uint32_t form. return (version > VERSION); } char* GetPowerDevice(char* dest, uint32_t idx, size_t size, uint32_t option) { strncpy_P(dest, S_RSLT_POWER, size); // POWER if ((TasmotaGlobal.devices_present + option) > 1) { char sidx[8]; snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x strncat(dest, sidx, size - strlen(dest) -1); // POWERx } return dest; } char* GetPowerDevice(char* dest, uint32_t idx, size_t size) { return GetPowerDevice(dest, idx, size, 0); } void GetEspHardwareType(void) { #ifdef ESP8266 // esptool.py get_efuses uint32_t efuse1 = *(uint32_t*)(0x3FF00050); uint32_t efuse2 = *(uint32_t*)(0x3FF00054); // uint32_t efuse3 = *(uint32_t*)(0x3FF00058); // uint32_t efuse4 = *(uint32_t*)(0x3FF0005C); TasmotaGlobal.is_8285 = ( (efuse1 & (1 << 4)) || (efuse2 & (1 << 16)) ); if (TasmotaGlobal.is_8285 && (ESP.getFlashChipRealSize() > 1048576)) { TasmotaGlobal.is_8285 = false; // ESP8285 can only have 1M flash } #else TasmotaGlobal.is_8285 = false; // ESP8285 can only have 1M flash #endif } String GetDeviceHardware(void) { char buff[10]; #ifdef ESP8266 if (TasmotaGlobal.is_8285) { strcpy_P(buff, PSTR("ESP8285")); } else { strcpy_P(buff, PSTR("ESP8266EX")); } #endif // ESP8266 #ifdef ESP32 strcpy_P(buff, PSTR("ESP32")); #endif // ESP32 return String(buff); } float ConvertTemp(float c) { float result = c; TasmotaGlobal.global_update = TasmotaGlobal.uptime; TasmotaGlobal.temperature_celsius = c; if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit result = c * 1.8 + 32; // Fahrenheit } result = result + (0.1 * Settings.temp_comp); return result; } float ConvertTempToCelsius(float c) { float result = c; if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit result = (c - 32) / 1.8; // Celsius } result = result + (0.1 * Settings.temp_comp); return result; } char TempUnit(void) { // SetOption8 - Switch between Celsius or Fahrenheit return (Settings.flag.temperature_conversion) ? D_UNIT_FAHRENHEIT[0] : D_UNIT_CELSIUS[0]; } float ConvertHumidity(float h) { float result = h; TasmotaGlobal.global_update = TasmotaGlobal.uptime; TasmotaGlobal.humidity = h; result = result + (0.1 * Settings.hum_comp); return result; } float CalcTempHumToDew(float t, float h) { if (isnan(h) || isnan(t)) { return NAN; } if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit t = (t - 32) / 1.8; // Celsius } float gamma = TaylorLog(h / 100) + 17.62 * t / (243.5 + t); float result = (243.5 * gamma / (17.62 - gamma)); if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit result = result * 1.8 + 32; // Fahrenheit } return result; } float ConvertPressure(float p) { float result = p; TasmotaGlobal.global_update = TasmotaGlobal.uptime; TasmotaGlobal.pressure_hpa = p; if (!isnan(p) && Settings.flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit result = p * 0.75006375541921; // mmHg } return result; } float ConvertPressureForSeaLevel(float pressure) { if (pressure == 0.0f) return pressure; return ConvertPressure((pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0f), 5.255f)) - 21.6f); } String PressureUnit(void) { return (Settings.flag.pressure_conversion) ? String(F(D_UNIT_MILLIMETER_MERCURY)) : String(F(D_UNIT_PRESSURE)); } float ConvertSpeed(float s) { // Entry in m/s return s * kSpeedConversionFactor[Settings.flag2.speed_conversion]; } String SpeedUnit(void) { char speed[8]; return String(GetTextIndexed(speed, sizeof(speed), Settings.flag2.speed_conversion, kSpeedUnit)); } void ResetGlobalValues(void) { if ((TasmotaGlobal.uptime - TasmotaGlobal.global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes TasmotaGlobal.global_update = 0; TasmotaGlobal.temperature_celsius = NAN; TasmotaGlobal.humidity = 0.0f; TasmotaGlobal.pressure_hpa = 0.0f; } } uint32_t SqrtInt(uint32_t num) { if (num <= 1) { return num; } uint32_t x = num / 2; uint32_t y; do { y = (x + num / x) / 2; if (y >= x) { return x; } x = y; } while (true); } uint32_t RoundSqrtInt(uint32_t num) { uint32_t s = SqrtInt(4 * num); if (s & 1) { s++; } return s / 2; } char* GetTextIndexed(char* destination, size_t destination_size, uint32_t index, const char* haystack) { // Returns empty string if not found // Returns text of found char* write = destination; const char* read = haystack; index++; while (index--) { size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } if (0 == ch) { if (index) { write = destination; } break; } } *write = '\0'; return destination; } int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack) { // Returns -1 of not found // Returns index and command if found int result = -1; const char* read = haystack; char* write = destination; while (true) { result++; size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } *write = '\0'; if (!strcasecmp(needle, destination)) { break; } if (0 == ch) { result = -1; break; } } return result; } bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms = nullptr); bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms) { GetTextIndexed(XdrvMailbox.command, CMDSZ, 0, haystack); // Get prefix if available int prefix_length = strlen(XdrvMailbox.command); if (prefix_length) { char prefix[prefix_length +1]; snprintf_P(prefix, sizeof(prefix), XdrvMailbox.topic); // Copy prefix part only if (strcasecmp(prefix, XdrvMailbox.command)) { return false; // Prefix not in command } } size_t syn_count = synonyms ? pgm_read_byte(synonyms) : 0; int command_code = GetCommandCode(XdrvMailbox.command + prefix_length, CMDSZ, XdrvMailbox.topic + prefix_length, haystack); if (command_code > 0) { // Skip prefix if (command_code > syn_count) { // We passed the synonyms zone, it's a regular command XdrvMailbox.command_code = command_code - 1 - syn_count; MyCommand[XdrvMailbox.command_code](); } else { // We have a SetOption synonym XdrvMailbox.index = pgm_read_byte(synonyms + command_code); CmndSetoptionBase(0); } return true; } return false; } const char kOptions[] PROGMEM = "OFF|" D_OFF "|FALSE|" D_FALSE "|STOP|" D_STOP "|" D_CELSIUS "|" // 0 "ON|" D_ON "|TRUE|" D_TRUE "|START|" D_START "|" D_FAHRENHEIT "|" D_USER "|" // 1 "TOGGLE|" D_TOGGLE "|" D_ADMIN "|" // 2 "BLINK|" D_BLINK "|" // 3 "BLINKOFF|" D_BLINKOFF "|" // 4 "ALL" ; // 255 const uint8_t sNumbers[] PROGMEM = { 0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1, 2,2,2, 3,3, 4,4, 255 }; int GetStateNumber(char *state_text) { char command[CMDSZ]; int state_number = GetCommandCode(command, sizeof(command), state_text, kOptions); if (state_number >= 0) { state_number = pgm_read_byte(sNumbers + state_number); } return state_number; } String GetSerialConfig(void) { // Settings.serial_config layout // b000000xx - 5, 6, 7 or 8 data bits // b00000x00 - 1 or 2 stop bits // b000xx000 - None, Even or Odd parity const static char kParity[] PROGMEM = "NEOI"; char config[4]; config[0] = '5' + (Settings.serial_config & 0x3); config[1] = pgm_read_byte(&kParity[(Settings.serial_config >> 3) & 0x3]); config[2] = '1' + ((Settings.serial_config >> 2) & 0x1); config[3] = '\0'; return String(config); } uint32_t GetSerialBaudrate(void) { return (Serial.baudRate() / 300) * 300; // Fix ESP32 strange results like 115201 } void SetSerialBegin(void) { TasmotaGlobal.baudrate = Settings.baudrate * 300; AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), TasmotaGlobal.baudrate); Serial.flush(); #ifdef ESP8266 Serial.begin(TasmotaGlobal.baudrate, (SerialConfig)pgm_read_byte(kTasmotaSerialConfig + Settings.serial_config)); #endif // ESP8266 #ifdef ESP32 delay(10); // Allow time to cleanup queues - if not used hangs ESP32 Serial.end(); delay(10); // Allow time to cleanup queues - if not used hangs ESP32 uint32_t config = pgm_read_dword(kTasmotaSerialConfig + Settings.serial_config); Serial.begin(TasmotaGlobal.baudrate, config); #endif // ESP32 } void SetSerialConfig(uint32_t serial_config) { if (serial_config > TS_SERIAL_8O2) { serial_config = TS_SERIAL_8N1; } if (serial_config != Settings.serial_config) { Settings.serial_config = serial_config; SetSerialBegin(); } } void SetSerialBaudrate(uint32_t baudrate) { TasmotaGlobal.baudrate = baudrate; Settings.baudrate = TasmotaGlobal.baudrate / 300; if (GetSerialBaudrate() != TasmotaGlobal.baudrate) { SetSerialBegin(); } } void SetSerial(uint32_t baudrate, uint32_t serial_config) { Settings.flag.mqtt_serial = 0; // CMND_SERIALSEND and CMND_SERIALLOG Settings.serial_config = serial_config; TasmotaGlobal.baudrate = baudrate; Settings.baudrate = TasmotaGlobal.baudrate / 300; SetSeriallog(LOG_LEVEL_NONE); SetSerialBegin(); } void ClaimSerial(void) { TasmotaGlobal.serial_local = true; AddLog(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial")); SetSeriallog(LOG_LEVEL_NONE); TasmotaGlobal.baudrate = GetSerialBaudrate(); Settings.baudrate = TasmotaGlobal.baudrate / 300; } void SerialSendRaw(char *codes) { char *p; char stemp[3]; uint8_t code; int size = strlen(codes); while (size > 1) { strlcpy(stemp, codes, sizeof(stemp)); code = strtol(stemp, &p, 16); Serial.write(code); size -= 2; codes += 2; } } // values is a comma-delimited string: e.g. "72,101,108,108,111,32,87,111,114,108,100,33,10" void SerialSendDecimal(char *values) { char *p; uint8_t code; for (char* str = strtok_r(values, ",", &p); str; str = strtok_r(nullptr, ",", &p)) { code = (uint8_t)atoi(str); Serial.write(code); } } uint32_t GetHash(const char *buffer, size_t size) { uint32_t hash = 0; for (uint32_t i = 0; i <= size; i++) { hash += (uint8_t)*buffer++ * (i +1); } return hash; } void ShowSource(uint32_t source) { if ((source > 0) && (source < SRC_MAX)) { char stemp1[20]; AddLog(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource)); } } void WebHexCode(uint32_t i, const char* code) { char scolor[10]; strlcpy(scolor, code, sizeof(scolor)); char* p = scolor; if ('#' == p[0]) { p++; } // Skip if (3 == strlen(p)) { // Convert 3 character to 6 character color code p[6] = p[3]; // \0 p[5] = p[2]; // 3 p[4] = p[2]; // 3 p[3] = p[1]; // 2 p[2] = p[1]; // 2 p[1] = p[0]; // 1 } uint32_t color = strtol(p, nullptr, 16); /* if (3 == strlen(p)) { // Convert 3 character to 6 character color code uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203 color = w | (w << 4); // 00112233 } */ uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors /* if (i < j) { Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green Settings.web_color[i][2] = color & 0xFF; // Blue } else { Settings.web_color2[i-j][0] = (color >> 16) & 0xFF; // Red Settings.web_color2[i-j][1] = (color >> 8) & 0xFF; // Green Settings.web_color2[i-j][2] = color & 0xFF; // Blue } */ if (i >= j) { // Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j); } Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green Settings.web_color[i][2] = color & 0xFF; // Blue } uint32_t WebColor(uint32_t i) { uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors /* uint32_t tcolor = (i= j) { // Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j); } uint32_t tcolor = (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2]; return tcolor; } /*********************************************************************************************\ * Response data handling \*********************************************************************************************/ const uint16_t TIMESZ = 100; // Max number of characters in time string char* ResponseGetTime(uint32_t format, char* time_str) { switch (format) { case 1: snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\",\"Epoch\":%u"), GetDateAndTime(DT_LOCAL).c_str(), UtcTime()); break; case 2: snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":%u"), UtcTime()); break; case 3: snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL_MILLIS).c_str()); break; default: snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str()); } return time_str; } void ResponseClear(void) { TasmotaGlobal.mqtt_data[0] = '\0'; } int Response_P(const char* format, ...) // Content send snprintf_P char data { // This uses char strings. Be aware of sending %% if % is needed va_list args; va_start(args, format); int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data, sizeof(TasmotaGlobal.mqtt_data), format, args); va_end(args); return len; } int ResponseTime_P(const char* format, ...) // Content send snprintf_P char data { // This uses char strings. Be aware of sending %% if % is needed va_list args; va_start(args, format); ResponseGetTime(Settings.flag2.time_format, TasmotaGlobal.mqtt_data); int mlen = strlen(TasmotaGlobal.mqtt_data); int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args); va_end(args); return len + mlen; } int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data { // This uses char strings. Be aware of sending %% if % is needed va_list args; va_start(args, format); int mlen = strlen(TasmotaGlobal.mqtt_data); int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args); va_end(args); return len + mlen; } int ResponseAppendTimeFormat(uint32_t format) { char time_str[TIMESZ]; return ResponseAppend_P(ResponseGetTime(format, time_str)); } int ResponseAppendTime(void) { return ResponseAppendTimeFormat(Settings.flag2.time_format); } int ResponseAppendTHD(float f_temperature, float f_humidity) { float dewpoint = CalcTempHumToDew(f_temperature, f_humidity); return ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%*_f,\"" D_JSON_HUMIDITY "\":%*_f,\"" D_JSON_DEWPOINT "\":%*_f"), Settings.flag2.temperature_resolution, &f_temperature, Settings.flag2.humidity_resolution, &f_humidity, Settings.flag2.temperature_resolution, &dewpoint); } int ResponseJsonEnd(void) { return ResponseAppend_P(PSTR("}")); } int ResponseJsonEndEnd(void) { return ResponseAppend_P(PSTR("}}")); } /*********************************************************************************************\ * GPIO Module and Template management \*********************************************************************************************/ #ifdef ESP8266 uint16_t GpioConvert(uint8_t gpio) { if (gpio >= ARRAY_SIZE(kGpioConvert)) { return AGPIO(GPIO_USER); } return pgm_read_word(kGpioConvert + gpio); } uint16_t Adc0Convert(uint8_t adc0) { if (adc0 > 7) { return AGPIO(GPIO_USER); } else if (0 == adc0) { return GPIO_NONE; } return AGPIO(GPIO_ADC_INPUT + adc0 -1); } void TemplateConvert(uint8_t template8[], uint16_t template16[]) { for (uint32_t i = 0; i < (sizeof(mytmplt) / 2) -2; i++) { template16[i] = GpioConvert(template8[i]); } template16[(sizeof(mytmplt) / 2) -2] = Adc0Convert(template8[sizeof(mytmplt8285) -1]); // AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: TemplateConvert")); // AddLogBuffer(LOG_LEVEL_DEBUG, template8, sizeof(mytmplt8285)); // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)template16, sizeof(mytmplt) / 2, 2); } void ConvertGpios(void) { if (Settings.gpio16_converted != 0xF5A0) { // Convert 8-bit user template TemplateConvert((uint8_t*)&Settings.ex_user_template8, (uint16_t*)&Settings.user_template); for (uint32_t i = 0; i < sizeof(Settings.ex_my_gp8.io); i++) { Settings.my_gp.io[i] = GpioConvert(Settings.ex_my_gp8.io[i]); } Settings.my_gp.io[(sizeof(myio) / 2) -1] = Adc0Convert(Settings.ex_my_adc0); Settings.gpio16_converted = 0xF5A0; // AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: ConvertGpios")); // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.ex_my_gp8.io, sizeof(myio8)); // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.my_gp.io, sizeof(myio) / 2, 2); } } /* void DumpConvertTable(void) { bool jsflg = false; uint32_t lines = 1; for (uint32_t i = 0; i < ARRAY_SIZE(kGpioConvert); i++) { uint32_t data = pgm_read_word(kGpioConvert + i); if (!jsflg) { Response_P(PSTR("{\"GPIOConversion%d\":{"), lines); } else { ResponseAppend_P(PSTR(",")); } jsflg = true; if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (MAX_LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kGpioConvert) -1)) { ResponseJsonEndEnd(); MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command); jsflg = false; lines++; } } for (uint32_t i = 0; i < ARRAY_SIZE(kAdcNiceList); i++) { uint32_t data = pgm_read_word(kAdcNiceList + i); if (!jsflg) { Response_P(PSTR("{\"ADC0Conversion%d\":{"), lines); } else { ResponseAppend_P(PSTR(",")); } jsflg = true; if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (MAX_LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kAdcNiceList) -1)) { ResponseJsonEndEnd(); MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command); jsflg = false; lines++; } } ResponseClear(); } */ #endif // ESP8266 uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index = 0); uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index) { uint16_t real_gpio = gpio << 5; uint16_t mask = 0xFFE0; if (index < GPIO_ANY) { real_gpio += index; mask = 0xFFFF; } for (uint32_t i = 0; i < ARRAY_SIZE(TasmotaGlobal.gpio_pin); i++) { if ((TasmotaGlobal.gpio_pin[i] & mask) == real_gpio) { return i; // Pin number configured for gpio } } return 99; // No pin used for gpio } bool PinUsed(uint32_t gpio, uint32_t index = 0); bool PinUsed(uint32_t gpio, uint32_t index) { return (Pin(gpio, index) < 99); } uint32_t GetPin(uint32_t lpin) { if (lpin < ARRAY_SIZE(TasmotaGlobal.gpio_pin)) { return TasmotaGlobal.gpio_pin[lpin]; } else { return GPIO_NONE; } } void SetPin(uint32_t lpin, uint32_t gpio) { TasmotaGlobal.gpio_pin[lpin] = gpio; } void DigitalWrite(uint32_t gpio_pin, uint32_t index, uint32_t state) { if (PinUsed(gpio_pin, index)) { digitalWrite(Pin(gpio_pin, index), state &1); } } uint8_t ModuleNr(void) { // 0 = User module (255) // 1 up = Template module 0 up return (USER_MODULE == Settings.module) ? 0 : Settings.module +1; } uint32_t ModuleTemplate(uint32_t module) { uint32_t i = 0; for (i = 0; i < sizeof(kModuleNiceList); i++) { if (module == pgm_read_byte(kModuleNiceList + i)) { break; } } if (i == sizeof(kModuleNiceList)) { i = 0; } return i; } bool ValidTemplateModule(uint32_t index) { for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) { if (index == pgm_read_byte(kModuleNiceList + i)) { return true; } } return false; } bool ValidModule(uint32_t index) { if (index == USER_MODULE) { return true; } return ValidTemplateModule(index); } bool ValidTemplate(const char *search) { char template_name[strlen(SettingsText(SET_TEMPLATE_NAME)) +1]; char search_name[strlen(search) +1]; LowerCase(template_name, SettingsText(SET_TEMPLATE_NAME)); LowerCase(search_name, search); return (strstr(template_name, search_name) != nullptr); } String AnyModuleName(uint32_t index) { if (USER_MODULE == index) { return String(SettingsText(SET_TEMPLATE_NAME)); } else { #ifdef ESP32 index = ModuleTemplate(index); #endif char name[TOPSZ]; return String(GetTextIndexed(name, sizeof(name), index, kModuleNames)); } } String ModuleName(void) { return AnyModuleName(Settings.module); } #ifdef ESP8266 void GetInternalTemplate(void* ptr, uint32_t module, uint32_t option) { uint8_t module_template = pgm_read_byte(kModuleTemplateList + module); // AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Template %d, Option %d"), module_template, option); // template8 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE }; if (module_template < TMP_WEMOS) { memcpy_P(&template8, &kModules8266[module_template], 6); memcpy_P(&template8[8], &kModules8266[module_template].gp.io[6], 6); } else { memcpy_P(&template8, &kModules8285[module_template - TMP_WEMOS], sizeof(template8)); } // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&template8, sizeof(mytmplt8285)); // template16 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc,Flg uint16_t template16[(sizeof(mytmplt) / 2)] = { GPIO_NONE }; TemplateConvert(template8, template16); uint32_t index = 0; uint32_t size = sizeof(mycfgio); // template16[module_template].gp switch (option) { case 2: { index = (sizeof(mytmplt) / 2) -1; // template16[module_template].flag size = 2; break; } case 3: { size = sizeof(mytmplt); // template16[module_template] break; } } memcpy(ptr, &template16[index], size); // AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: GetInternalTemplate option %d"), option); // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size / 2, 2); } #endif // ESP8266 void TemplateGpios(myio *gp) { uint16_t *dest = (uint16_t *)gp; uint16_t src[ARRAY_SIZE(Settings.user_template.gp.io)]; memset(dest, GPIO_NONE, sizeof(myio)); if (USER_MODULE == Settings.module) { memcpy(&src, &Settings.user_template.gp, sizeof(mycfgio)); } else { #ifdef ESP8266 GetInternalTemplate(&src, Settings.module, 1); #endif // ESP8266 #ifdef ESP32 memcpy_P(&src, &kModules[ModuleTemplate(Settings.module)].gp, sizeof(mycfgio)); #endif // ESP32 } // 11 85 00 85 85 00 00 00 15 38 85 00 00 81 // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio)); uint32_t j = 0; for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) { if (6 == i) { j = 9; } if (8 == i) { j = 12; } dest[j] = src[i]; j++; } // 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81 // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio)); } gpio_flag ModuleFlag(void) { gpio_flag flag; if (USER_MODULE == Settings.module) { flag = Settings.user_template.flag; } else { #ifdef ESP8266 GetInternalTemplate(&flag, Settings.module, 2); #endif // ESP8266 #ifdef ESP32 memcpy_P(&flag, &kModules[ModuleTemplate(Settings.module)].flag, sizeof(gpio_flag)); #endif // ESP32 } return flag; } void ModuleDefault(uint32_t module) { if (USER_MODULE == module) { module = WEMOS; } // Generic Settings.user_template_base = module; #ifdef ESP32 module = ModuleTemplate(module); #endif char name[TOPSZ]; SettingsUpdateText(SET_TEMPLATE_NAME, GetTextIndexed(name, sizeof(name), module, kModuleNames)); #ifdef ESP8266 GetInternalTemplate(&Settings.user_template, module, 3); #endif // ESP8266 #ifdef ESP32 memcpy_P(&Settings.user_template, &kModules[module], sizeof(mytmplt)); #endif // ESP32 } void SetModuleType(void) { TasmotaGlobal.module_type = (USER_MODULE == Settings.module) ? Settings.user_template_base : Settings.module; } bool FlashPin(uint32_t pin) { return (((pin > 5) && (pin < 9)) || (11 == pin)); } uint32_t ValidPin(uint32_t pin, uint32_t gpio) { if (FlashPin(pin)) { return GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11 } // if (!TasmotaGlobal.is_8285 && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's if ((WEMOS == Settings.module) && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's if ((9 == pin) || (10 == pin)) { return GPIO_NONE; // Disable possible flash GPIO9 and GPIO10 } } return gpio; } bool ValidGPIO(uint32_t pin, uint32_t gpio) { #ifdef ESP8266 #ifdef USE_ADC_VCC if (ADC0_PIN == pin) { return false; } // ADC0 = GPIO17 #endif #endif return (GPIO_USER == ValidPin(pin, BGPIO(gpio))); // Only allow GPIO_USER pins } bool ValidSpiPinUsed(uint32_t gpio) { // ESP8266: If SPI pin selected chk if it's not one of the three Hardware SPI pins (12..14) bool result = false; if (PinUsed(gpio)) { uint32_t pin = Pin(gpio); result = ((pin < 12) || (pin > 14)); } return result; } bool JsonTemplate(char* dataBuf) { // Old: {"NAME":"Shelly 2.5","GPIO":[56,0,17,0,21,83,0,0,6,82,5,22,156],"FLAG":2,"BASE":18} // New: {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18} // AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: |%s|"), dataBuf); if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks JsonParser parser((char*) dataBuf); JsonParserObject root = parser.getRootObject(); if (!root) { return false; } // All parameters are optional allowing for partial changes JsonParserToken val = root[PSTR(D_JSON_NAME)]; if (val) { SettingsUpdateText(SET_TEMPLATE_NAME, val.getStr()); } JsonParserArray arr = root[PSTR(D_JSON_GPIO)]; if (arr) { #ifdef ESP8266 bool old_template = false; uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE }; if (13 == arr.size()) { // Possible old template uint32_t gpio = 0; for (uint32_t i = 0; i < ARRAY_SIZE(template8) -1; i++) { gpio = arr[i].getUInt(); if (gpio > 255) { // New templates might have values above 255 break; } template8[i] = gpio; } old_template = (gpio < 256); } if (old_template) { AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converting template ...")); val = root[PSTR(D_JSON_FLAG)]; if (val) { template8[ARRAY_SIZE(template8) -1] = val.getUInt() & 0x0F; } TemplateConvert(template8, Settings.user_template.gp.io); Settings.user_template.flag.data = 0; } else { #endif for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) { JsonParserToken val = arr[i]; if (!val) { break; } uint16_t gpio = val.getUInt(); if (gpio == (AGPIO(GPIO_NONE) +1)) { gpio = AGPIO(GPIO_USER); } Settings.user_template.gp.io[i] = gpio; } val = root[PSTR(D_JSON_FLAG)]; if (val) { Settings.user_template.flag.data = val.getUInt(); } } #ifdef ESP8266 } #endif val = root[PSTR(D_JSON_BASE)]; if (val) { uint32_t base = val.getUInt(); if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; } Settings.user_template_base = base -1; // Default WEMOS } // AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converted")); // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2); return true; } void TemplateJson(void) { // AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Show")); // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2); Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), SettingsText(SET_TEMPLATE_NAME)); for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) { uint16_t gpio = Settings.user_template.gp.io[i]; if (gpio == AGPIO(GPIO_USER)) { gpio = AGPIO(GPIO_NONE) +1; } ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", gpio); } ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1); } /*********************************************************************************************\ * Sleep aware time scheduler functions borrowed from ESPEasy \*********************************************************************************************/ inline int32_t TimeDifference(uint32_t prev, uint32_t next) { return ((int32_t) (next - prev)); } int32_t TimePassedSince(uint32_t timestamp) { // Compute the number of milliSeconds passed since timestamp given. // Note: value can be negative if the timestamp has not yet been reached. return TimeDifference(timestamp, millis()); } bool TimeReached(uint32_t timer) { // Check if a certain timeout has been reached. const long passed = TimePassedSince(timer); return (passed >= 0); } void SetNextTimeInterval(uint32_t& timer, const uint32_t step) { timer += step; const long passed = TimePassedSince(timer); if (passed < 0) { return; } // Event has not yet happened, which is fine. if (static_cast(passed) > step) { // No need to keep running behind, start again. timer = millis() + step; return; } // Try to get in sync again. timer = millis() + (step - passed); } int32_t TimePassedSinceUsec(uint32_t timestamp) { return TimeDifference(timestamp, micros()); } bool TimeReachedUsec(uint32_t timer) { // Check if a certain timeout has been reached. const long passed = TimePassedSinceUsec(timer); return (passed >= 0); } /*********************************************************************************************\ * Basic I2C routines \*********************************************************************************************/ #ifdef USE_I2C const uint8_t I2C_RETRY_COUNTER = 3; uint32_t i2c_active[4] = { 0 }; uint32_t i2c_buffer = 0; bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size) { uint8_t retry = I2C_RETRY_COUNTER; bool status = false; i2c_buffer = 0; while (!status && retry) { Wire.beginTransmission(addr); // start transmission to device Wire.write(reg); // sends register address to read from if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request... Wire.requestFrom((int)addr, (int)size); // send data n-bytes read if (Wire.available() == size) { for (uint32_t i = 0; i < size; i++) { i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA } status = true; } } retry--; } if (!retry) Wire.endTransmission(); return status; } bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 1); *data = (uint8_t)i2c_buffer; return status; } bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (uint16_t)i2c_buffer; return status; } bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (int16_t)i2c_buffer; return status; } bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16(&ldata, addr, reg); *data = (ldata >> 8) | (ldata << 8); return status; } bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16LE(&ldata, addr, reg); *data = (int16_t)ldata; return status; } bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 3); *data = i2c_buffer; return status; } uint8_t I2cRead8(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 1); return (uint8_t)i2c_buffer; } uint16_t I2cRead16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (uint16_t)i2c_buffer; } int16_t I2cReadS16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (int16_t)i2c_buffer; } uint16_t I2cRead16LE(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); uint16_t temp = (uint16_t)i2c_buffer; return (temp >> 8) | (temp << 8); } int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg) { return (int16_t)I2cRead16LE(addr, reg); } int32_t I2cRead24(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 3); return i2c_buffer; } bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size) { uint8_t x = I2C_RETRY_COUNTER; do { Wire.beginTransmission((uint8_t)addr); // start transmission to device Wire.write(reg); // sends register address to write to uint8_t bytes = size; while (bytes--) { Wire.write((val >> (8 * bytes)) & 0xFF); // write data } x--; } while (Wire.endTransmission(true) != 0 && x != 0); // end transmission return (x); } bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 1); } bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 2); } int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); Wire.endTransmission(); if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) { return 1; } while (len--) { *reg_data = (uint8_t)Wire.read(); reg_data++; } return 0; } int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); while (len--) { Wire.write(*reg_data); reg_data++; } Wire.endTransmission(); return 0; } void I2cScan(char *devs, unsigned int devs_len) { // Return error codes defined in twi.h and core_esp8266_si2c.c // I2C_OK 0 // I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover // I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond client clock stretch time // I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by client/another_master after n bits // I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master? uint8_t error = 0; uint8_t address = 0; uint8_t any = 0; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT)); for (address = 1; address <= 127; address++) { Wire.beginTransmission(address); error = Wire.endTransmission(); if (0 == error) { any = 1; snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address); } else if (error != 2) { // Seems to happen anyway using this scan any = 2; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address); break; } } if (any) { strncat(devs, "\"}", devs_len - strlen(devs) -1); } else { snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}")); } } void I2cResetActive(uint32_t addr, uint32_t count = 1) { addr &= 0x7F; // Max I2C address is 127 count &= 0x7F; // Max 4 x 32 bits available while (count-- && (addr < 128)) { i2c_active[addr / 32] &= ~(1 << (addr % 32)); addr++; } // AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]); } void I2cSetActive(uint32_t addr, uint32_t count = 1) { addr &= 0x7F; // Max I2C address is 127 count &= 0x7F; // Max 4 x 32 bits available while (count-- && (addr < 128)) { i2c_active[addr / 32] |= (1 << (addr % 32)); addr++; } // AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]); } void I2cSetActiveFound(uint32_t addr, const char *types) { I2cSetActive(addr); AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr); } bool I2cActive(uint32_t addr) { addr &= 0x7F; // Max I2C address is 127 if (i2c_active[addr / 32] & (1 << (addr % 32))) { return true; } return false; } bool I2cSetDevice(uint32_t addr) { addr &= 0x7F; // Max I2C address is 127 if (I2cActive(addr)) { return false; // If already active report as not present; } Wire.beginTransmission((uint8_t)addr); return (0 == Wire.endTransmission()); } #endif // USE_I2C /*********************************************************************************************\ * Syslog * * Example: * AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value); * \*********************************************************************************************/ void SetSeriallog(uint32_t loglevel) { Settings.seriallog_level = loglevel; TasmotaGlobal.seriallog_level = loglevel; TasmotaGlobal.seriallog_timer = 0; } void SetSyslog(uint32_t loglevel) { Settings.syslog_level = loglevel; TasmotaGlobal.syslog_level = loglevel; TasmotaGlobal.syslog_timer = 0; } void SyslogAsync(bool refresh) { static IPAddress syslog_host_addr; // Syslog host IP address static uint32_t syslog_host_hash = 0; // Syslog host name hash static uint32_t index = 1; if (!TasmotaGlobal.syslog_level) { return; } if (refresh && !NeedLogRefresh(TasmotaGlobal.syslog_level, index)) { return; } char* line; size_t len; while (GetLog(TasmotaGlobal.syslog_level, &index, &line, &len)) { // 00:00:02.096 HTP: Web server active on wemos5 with IP address 192.168.2.172 // HTP: Web server active on wemos5 with IP address 192.168.2.172 uint32_t mxtime = strchr(line, ' ') - line +1; // Remove mxtime if (mxtime > 0) { uint32_t current_hash = GetHash(SettingsText(SET_SYSLOG_HOST), strlen(SettingsText(SET_SYSLOG_HOST))); if (syslog_host_hash != current_hash) { syslog_host_hash = current_hash; WiFi.hostByName(SettingsText(SET_SYSLOG_HOST), syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash } if (!PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) { TasmotaGlobal.syslog_level = 0; TasmotaGlobal.syslog_timer = SYSLOG_TIMER; AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER); return; } char log_data[len +72]; // Hostname + Id + log data snprintf_P(log_data, sizeof(log_data), PSTR("%s ESP-"), NetworkHostname()); uint32_t preamble_len = strlen(log_data); len -= mxtime; strlcpy(log_data +preamble_len, line +mxtime, len); // wemos5 ESP-HTP: Web server active on wemos5 with IP address 192.168.2.172 PortUdp_write(log_data, preamble_len + len); PortUdp.endPacket(); delay(1); // Add time for UDP handling (#5512) } } } bool NeedLogRefresh(uint32_t req_loglevel, uint32_t index) { #ifdef ESP32 // this takes the mutex, and will be release when the class is destroyed - // i.e. when the functon leaves You CAN call mutex.give() to leave early. TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex); #endif // ESP32 // Skip initial buffer fill if (strlen(TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE - MAX_LOGSZ) { return false; } char* line; size_t len; if (!GetLog(req_loglevel, &index, &line, &len)) { return false; } return ((line - TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE / 4); } bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) { uint32_t index = *index_p; if (TasmotaGlobal.uptime < 3) { return false; } // Allow time to setup correct log level if (!req_loglevel || (index == TasmotaGlobal.log_buffer_pointer)) { return false; } #ifdef ESP32 // this takes the mutex, and will be release when the class is destroyed - // i.e. when the functon leaves You CAN call mutex.give() to leave early. TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex); #endif // ESP32 if (!index) { // Dump all index = TasmotaGlobal.log_buffer_pointer +1; if (index > 255) { index = 1; } } do { size_t len = 0; uint32_t loglevel = 0; char* entry_p = TasmotaGlobal.log_buffer; do { uint32_t cur_idx = *entry_p; entry_p++; size_t tmp = strchrspn(entry_p, '\1'); tmp++; // Skip terminating '\1' if (cur_idx == index) { // Found the requested entry loglevel = *entry_p - '0'; entry_p++; // Skip loglevel len = tmp -1; break; } entry_p += tmp; } while (entry_p < TasmotaGlobal.log_buffer + LOG_BUFFER_SIZE && *entry_p != '\0'); index++; if (index > 255) { index = 1; } // Skip 0 as it is not allowed *index_p = index; if ((len > 0) && (loglevel <= req_loglevel) && (TasmotaGlobal.masterlog_level <= req_loglevel)) { *entry_pp = entry_p; *len_p = len; return true; } delay(0); } while (index != TasmotaGlobal.log_buffer_pointer); return false; } void AddLogData(uint32_t loglevel, const char* log_data) { #ifdef ESP32 // this takes the mutex, and will be release when the class is destroyed - // i.e. when the functon leaves You CAN call mutex.give() to leave early. TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex); #endif // ESP32 char mxtime[14]; // "13:45:21.999 " snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d.%03d "), RtcTime.hour, RtcTime.minute, RtcTime.second, RtcMillis()); if ((loglevel <= TasmotaGlobal.seriallog_level) && (TasmotaGlobal.masterlog_level <= TasmotaGlobal.seriallog_level)) { Serial.printf("%s%s\r\n", mxtime, log_data); } uint32_t highest_loglevel = Settings.weblog_level; if (Settings.mqttlog_level > highest_loglevel) { highest_loglevel = Settings.mqttlog_level; } if (TasmotaGlobal.syslog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.syslog_level; } if (TasmotaGlobal.templog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.templog_level; } if (TasmotaGlobal.uptime < 3) { highest_loglevel = LOG_LEVEL_DEBUG_MORE; } // Log all before setup correct log level if ((loglevel <= highest_loglevel) && // Log only when needed (TasmotaGlobal.masterlog_level <= highest_loglevel)) { // Delimited, zero-terminated buffer of log lines. // Each entry has this format: [index][loglevel][log data]['\1'] TasmotaGlobal.log_buffer_pointer &= 0xFF; if (!TasmotaGlobal.log_buffer_pointer) { TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string } while (TasmotaGlobal.log_buffer_pointer == TasmotaGlobal.log_buffer[0] || // If log already holds the next index, remove it strlen(TasmotaGlobal.log_buffer) + strlen(log_data) + strlen(mxtime) + 4 > LOG_BUFFER_SIZE) // 4 = log_buffer_pointer + '\1' + '\0' { char* it = TasmotaGlobal.log_buffer; it++; // Skip log_buffer_pointer it += strchrspn(it, '\1'); // Skip log line it++; // Skip delimiting "\1" memmove(TasmotaGlobal.log_buffer, it, LOG_BUFFER_SIZE -(it-TasmotaGlobal.log_buffer)); // Move buffer forward to remove oldest log line } snprintf_P(TasmotaGlobal.log_buffer, sizeof(TasmotaGlobal.log_buffer), PSTR("%s%c%c%s%s\1"), TasmotaGlobal.log_buffer, TasmotaGlobal.log_buffer_pointer++, '0'+loglevel, mxtime, log_data); TasmotaGlobal.log_buffer_pointer &= 0xFF; if (!TasmotaGlobal.log_buffer_pointer) { TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string } } } void AddLog(uint32_t loglevel, PGM_P formatP, ...) { // To save stack space support logging for max text length of 128 characters char log_data[LOGSZ +4]; va_list arg; va_start(arg, formatP); uint32_t len = ext_vsnprintf_P(log_data, LOGSZ +1, formatP, arg); va_end(arg); if (len > LOGSZ) { strcat(log_data, "..."); } // Actual data is more #ifdef DEBUG_TASMOTA_CORE // Profile max_len static uint32_t max_len = 0; if (len > max_len) { max_len = len; Serial.printf("PRF: AddLog %d\n", max_len); } #endif AddLogData(loglevel, log_data); } void AddLog_P(uint32_t loglevel, PGM_P formatP, ...) { // Use more stack space to support logging for max text length of 700 characters char log_data[MAX_LOGSZ]; va_list arg; va_start(arg, formatP); uint32_t len = ext_vsnprintf_P(log_data, sizeof(log_data), formatP, arg); va_end(arg); AddLogData(loglevel, log_data); } void AddLog_Debug(PGM_P formatP, ...) { char log_data[MAX_LOGSZ]; va_list arg; va_start(arg, formatP); uint32_t len = ext_vsnprintf_P(log_data, sizeof(log_data), formatP, arg); va_end(arg); AddLogData(LOG_LEVEL_DEBUG, log_data); } void AddLogBuffer(uint32_t loglevel, uint8_t *buffer, uint32_t count) { char hex_char[(count * 3) + 2]; AddLog_P(loglevel, PSTR("DMP: %s"), ToHex_P(buffer, count, hex_char, sizeof(hex_char), ' ')); } void AddLogSerial(uint32_t loglevel) { AddLogBuffer(loglevel, (uint8_t*)TasmotaGlobal.serial_in_buffer, TasmotaGlobal.serial_in_byte_counter); } void AddLogMissed(const char *sensor, uint32_t misses) { AddLog(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses); } void AddLogBufferSize(uint32_t loglevel, uint8_t *buffer, uint32_t count, uint32_t size) { char log_data[4 + (count * size * 3)]; snprintf_P(log_data, sizeof(log_data), PSTR("DMP:")); for (uint32_t i = 0; i < count; i++) { if (1 == size) { // uint8_t snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer)); } else { // uint16_t snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X%02X"), log_data, *(buffer +1), *(buffer)); } buffer += size; } AddLogData(loglevel, log_data); } void AddLogSpi(bool hardware, uint32_t clk, uint32_t mosi, uint32_t miso) { // Needs optimization uint32_t enabled = (hardware) ? TasmotaGlobal.spi_enabled : TasmotaGlobal.soft_spi_enabled; switch(enabled) { case SPI_MOSI: AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MOSI)"), (hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi); break; case SPI_MISO: AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MISO)"), (hardware) ? PSTR("Hardware") : PSTR("Software"), clk, miso); break; case SPI_MOSI_MISO: AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK), GPIO%02d(MOSI) and GPIO%02d(MISO)"), (hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi, miso); break; } } /*********************************************************************************************\ * Uncompress static PROGMEM strings \*********************************************************************************************/ #ifdef USE_UNISHOX_COMPRESSION #include Unishox compressor; // New variant where you provide the String object yourself int32_t DecompressNoAlloc(const char * compressed, size_t uncompressed_size, String & content) { uncompressed_size += 2; // take a security margin // We use a nasty trick here. To avoid allocating twice the buffer, // we first extend the buffer of the String object to the target size (maybe overshooting by 7 bytes) // then we decompress in this buffer, // and finally assign the raw string to the String, which happens to work: String uses memmove(), so overlapping works content.reserve(uncompressed_size); char * buffer = content.begin(); int32_t len = compressor.unishox_decompress(compressed, strlen_P(compressed), buffer, uncompressed_size); if (len > 0) { buffer[len] = 0; // terminate string with NULL content = buffer; // copy in place } return len; } String Decompress(const char * compressed, size_t uncompressed_size) { String content(""); DecompressNoAlloc(compressed, uncompressed_size, content); return content; } #endif // USE_UNISHOX_COMPRESSION /*********************************************************************************************\ * High entropy hardware random generator * Thanks to DigitalAlchemist \*********************************************************************************************/ // Based on code from https://raw.githubusercontent.com/espressif/esp-idf/master/components/esp32/hw_random.c uint32_t HwRandom(void) { #if ESP8266 // https://web.archive.org/web/20160922031242/http://esp8266-re.foogod.com/wiki/Random_Number_Generator #define _RAND_ADDR 0x3FF20E44UL #endif // ESP8266 #ifdef ESP32 #define _RAND_ADDR 0x3FF75144UL #endif // ESP32 static uint32_t last_ccount = 0; uint32_t ccount; uint32_t result = 0; do { ccount = ESP.getCycleCount(); result ^= *(volatile uint32_t *)_RAND_ADDR; } while (ccount - last_ccount < 64); last_ccount = ccount; return result ^ *(volatile uint32_t *)_RAND_ADDR; #undef _RAND_ADDR }