/*
xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_BERRY
#include
#include
const uint32_t BERRY_MAX_LOGS = 16; // max number of print output recorded when outside of REPL, used to avoid infinite grow of logs
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
* import tasmota
*
* tasmota.get_free_heap() -> int
* tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil
* tasmota.cmd(command:string) -> string
* tasmota.get_option(index:int) -> int
* tasmota.millis([delay:int]) -> int
* tasmota.time_reached(timer:int) -> bool
* tasmota.yield() -> nil
*
* tasmota.get_light([index:int = 0]) -> map
* tasmota.get_power([index:int = 0]) -> bool
* tasmota.set_power(idx:int, power:bool) -> bool or nil
* tasmota.set_light(idx:int, values:map) -> map
*
\*********************************************************************************************/
extern "C" {
// Berry: `tasmota.publish(topic, payload [,retain]) -> nil``
//
int32_t l_publish(struct bvm *vm);
int32_t l_publish(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { // 2 mandatory string arguments
if (top == 3 || (top == 4 && be_isbool(vm, 4))) { // 3rd optional argument must be bool
const char * topic = be_tostring(vm, 2);
const char * payload = be_tostring(vm, 3);
bool retain = false;
if (top == 4) {
retain = be_tobool(vm, 4);
}
strlcpy(TasmotaGlobal.mqtt_data, payload, sizeof(TasmotaGlobal.mqtt_data));
MqttPublish(topic, retain);
be_return(vm); // Return
}
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.cmd(command:string) -> string`
//
int32_t l_cmd(struct bvm *vm);
int32_t l_cmd(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * command = be_tostring(vm, 2);
be_pop(vm, 2); // clear the stack before calling, because of re-entrant call to Berry in a Rule
ExecuteCommand(command, SRC_BERRY);
be_pushstring(vm, TasmotaGlobal.mqtt_data);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.millis([delay:int]) -> int
//
int32_t l_millis(struct bvm *vm);
int32_t l_millis(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 || (top == 2 && be_isint(vm, 2))) { // only 1 argument of type string accepted
uint32_t delay = 0;
if (top == 2) {
delay = be_toint(vm, 2);
}
uint32_t ret_millis = millis() + delay;
be_pushint(vm, ret_millis);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.get_option(index:int) -> int
//
int32_t l_getoption(struct bvm *vm);
int32_t l_getoption(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
uint32_t opt = GetOption(be_toint(vm, 2));
be_pushint(vm, opt);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.time_reached(timer:int) -> bool
//
int32_t l_timereached(struct bvm *vm);
int32_t l_timereached(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
bool reached = TimeReached(timer);
be_pushbool(vm, reached);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.delay(timer:int) -> nil
//
int32_t l_delay(struct bvm *vm);
int32_t l_delay(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
delay(timer);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `yield() -> nil`
// ESP object
int32_t l_yield(bvm *vm);
int32_t l_yield(bvm *vm) {
optimistic_yield(10);
be_return_nil(vm);
}
// Berry: tasmota.scale_uint(int * 5) -> int
//
int32_t l_scaleuint(struct bvm *vm);
int32_t l_scaleuint(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 6 && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5) && be_isint(vm, 6)) { // only 1 argument of type string accepted
int32_t v = be_toint(vm, 2);
int32_t from1 = be_toint(vm, 3);
int32_t from2 = be_toint(vm, 4);
int32_t to1 = be_toint(vm, 5);
int32_t to2 = be_toint(vm, 6);
int32_t ret = changeUIntScale(v, from1, from2, to1, to2);
be_pushint(vm, ret);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmnd(bvm *vm);
int32_t l_respCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
Response_P("%s", msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndStr(bvm *vm);
int32_t l_respCmndStr(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
ResponseCmndChar(msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndDone(bvm *vm);
int32_t l_respCmndDone(bvm *vm) {
ResponseCmndDone();
be_return_nil(vm);
}
int32_t l_respCmndError(bvm *vm);
int32_t l_respCmndError(bvm *vm) {
ResponseCmndError();
be_return_nil(vm);
}
int32_t l_respCmndFailed(bvm *vm);
int32_t l_respCmndFailed(bvm *vm) {
ResponseCmndFailed();
be_return_nil(vm);
}
// update XdrvMailbox.command with actual command
int32_t l_resolveCmnd(bvm *vm);
int32_t l_resolveCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
strlcpy(XdrvMailbox.command, msg, CMDSZ);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// Response_append
int32_t l_respAppend(bvm *vm);
int32_t l_respAppend(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
ResponseAppend_P(PSTR("%s"), msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// web append with decimal conversion
int32_t l_webSendDecimal(bvm *vm);
int32_t l_webSendDecimal(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
WSContentSend_PD(PSTR("%s"), msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// push the light status object on the vm stack
void push_getlight(bvm *vm, uint32_t light_num) {
bool data_present = false; // do we have relevant data
be_newobject(vm, "map");
// check if the light exist
// TasmotaGlobal.devices_present
// Light.device
// Light.subtype
// Light.pwm_multi_channels
// light_controller.isCTRGBLinked()
if (Light.device > 0) {
// we have a light
uint8_t channels[LST_MAX];
char s_rgb[8] = {0}; // RGB raw levels
light_controller.calcLevels(channels);
uint8_t bri = light_state.getBri();
// map_insert_int(vm, "_devices_present", TasmotaGlobal.devices_present);
// map_insert_int(vm, "_light_device", Light.device);
// map_insert_int(vm, "_light_subtype", Light.subtype);
// map_insert_int(vm, "_light_multi", Light.pwm_multi_channels);
// map_insert_int(vm, "_light_linked", light_controller.isCTRGBLinked());
if (!Light.pwm_multi_channels) {
uint32_t subtype = Light.subtype; // virtual sub-type, for SO37 128
uint32_t chanidx = 0; // channel offset, for SO37 128
if (light_controller.isCTRGBLinked() && (light_num == 0)) {
data_present = true; // valid combination
if (subtype >= LST_RGBW) {
map_insert_str(vm, "colormode", (light_state.getColorMode() & LCM_RGB ? "rgb" : "ct"));
}
}
if (!light_controller.isCTRGBLinked()) {
if (light_num == 0) {
data_present = true; // valid combination
if (subtype > LST_RGB) { subtype = LST_RGB; } // limit to RGB
bri = light_state.getBriRGB();
}
if ((light_num == 1) && subtype > LST_RGB) {
data_present = true; // valid combination
subtype = subtype - LST_RGB;
chanidx = 3; // skip first 3 channels
bri = light_state.getBriCT();
}
}
if (data_present) {
// see ResponseLightState()
map_insert_bool(vm, "power", bitRead(TasmotaGlobal.power, light_num + Light.device - 1));
map_insert_int(vm, "bri", bri);
if (subtype >= LST_RGB) {
uint16_t hue;
uint8_t sat, bri;
light_state.getHSB(&hue, &sat, &bri);
map_insert_int(vm, "hue", hue);
map_insert_int(vm, "sat", sat);
}
if ((LST_COLDWARM == subtype) || (LST_RGBW <= subtype)) {
map_insert_int(vm, "ct", light_state.getCT());
}
if (subtype >= LST_RGB) {
snprintf(s_rgb, sizeof(s_rgb), PSTR("%02X%02X%02X"), channels[0], channels[1], channels[2]);
map_insert_str(vm, "rgb", s_rgb);
}
if (subtype > LST_NONE) {
map_insert_list_uint8(vm, "channels", &channels[chanidx], subtype);
}
}
} else { // Light.pwm_multi_channels
if ((light_num >= 0) && (light_num < LST_MAX)) {
data_present = true;
map_insert_bool(vm, "power", Light.power & (1 << light_num));
map_insert_int(vm, "bri", Light.current_color[light_num]);
map_insert_list_uint8(vm, "channels", &channels[light_num], 1);
}
}
be_pop(vm, 1);
if (!data_present) {
be_pop(vm, 1);
be_pushnil(vm);
}
} else {
be_pop(vm, 1);
be_pushnil(vm);
}
}
// get light
int32_t l_getlight(bvm *vm);
int32_t l_getlight(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 || (top == 2 && be_isint(vm, 2))) {
int32_t light_num = 0;
if (top > 1) {
light_num = be_toint(vm, 2);
}
push_getlight(vm, light_num);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// set light
int32_t l_setlight(bvm *vm);
int32_t l_setlight(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isinstance(vm, 2) && (top != 3 || be_isint(vm, 3))) {
int32_t idx = 0;
if (top >= 3) {
idx = be_toint(vm, 3);
be_pop(vm, 1); // remove last argument to have the map at the top of stack
}
// power
if (map_find(vm, "power")) {
bool power = be_tobool(vm, -1);
bool current_power = bitRead(TasmotaGlobal.power, idx + Light.device - 1);
if (power != current_power) { // only send command if needed
ExecuteCommandPower(idx + Light.device, (power) ? POWER_ON : POWER_OFF, SRC_BERRY);
}
}
be_pop(vm, 1);
// ct
if (map_find(vm, "ct")) {
int32_t ct = be_toint(vm, -1);
light_controller.changeCTB(ct, light_state.getBriCT());
}
be_pop(vm, 1);
// hue
if (map_find(vm, "hue")) {
int32_t hue = be_toint(vm, -1);
uint8_t sat;
uint8_t bri;
light_state.getHSB(nullptr, &sat, &bri);
light_controller.changeHSB(hue, sat, bri);
}
be_pop(vm, 1);
// sat
if (map_find(vm, "sat")) {
int32_t sat = be_toint(vm, -1);
uint16_t hue;
uint8_t bri;
light_state.getHSB(&hue, nullptr, &bri);
light_controller.changeHSB(hue, sat, bri);
}
be_pop(vm, 1);
// rgb
if (map_find(vm, "rgb")) {
const char * rgb_s = be_tostring(vm, -1);
SBuffer buf = SBuffer::SBufferFromHex(rgb_s, strlen(rgb_s));
uint8_t channels[LST_MAX] = {};
memcpy(channels, buf.buf(), buf.len() > LST_MAX ? LST_MAX : buf.len());
bool on = false; // if all are zero, then only set power off
for (uint32_t i = 0; i < LST_MAX; i++) {
if (channels[i] != 0) { on = true; }
}
if (on) {
light_controller.changeChannels(channels);
} else {
ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY);
}
}
be_pop(vm, 1);
// channels
if (map_find(vm, "channels")) {
if (be_isinstance(vm, -1)) {
be_getbuiltin(vm, "list"); // add "list" class
if (be_isderived(vm, -2)) {
be_pop(vm, 1); // remove "list" class from top
int32_t list_size = get_list_size(vm);
// AddLog(LOG_LEVEL_INFO, "Instance is list size = %d", list_size);
uint8_t channels[LST_MAX] = {}; // initialized with all zeroes
if (list_size > LST_MAX) { list_size = LST_MAX; } // no more than 5 channels, no need to test for positive, any negative will be discarded by loop
for (uint32_t i = 0; i < list_size; i++) {
// be_dumpstack(vm);
get_list_item(vm, i);
// be_dumpstack(vm);
int32_t val = be_toint(vm, -1);
be_pop(vm, 1); // remove result from stack
channels[i] = to_u8(val);
bool on = false; // if all are zero, then only set power off
for (uint32_t i = 0; i < LST_MAX; i++) {
if (channels[i] != 0) { on = true; }
}
if (on) {
light_controller.changeChannels(channels);
} else {
ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY);
}
}
} else {
be_pop(vm, 1); // remove "list" class from top
}
}
}
be_pop(vm, 1);
// bri is done after channels and rgb
// bri
if (map_find(vm, "bri")) {
int32_t bri = be_toint(vm, -1);
light_controller.changeBri(bri);
}
be_pop(vm, 1);
push_getlight(vm, idx);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
} // TODO
// get power
int32_t l_getpower(bvm *vm);
int32_t l_getpower(bvm *vm) {
be_newobject(vm, "list");
for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) {
be_pushbool(vm, bitRead(TasmotaGlobal.power, i));
be_data_push(vm, -2);
be_pop(vm, 1);
}
be_pop(vm, 1);
be_return(vm); // Return
}
int32_t l_setpower(bvm *vm);
int32_t l_setpower(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isint(vm, 2) && be_isbool(vm, 3)) {
int32_t idx = be_toint(vm, 2);
bool power = be_tobool(vm, 3);
if ((idx >= 0) && (idx < TasmotaGlobal.devices_present)) {
ExecuteCommandPower(idx + 1, (power) ? POWER_ON : POWER_OFF, SRC_BERRY);
be_pushbool(vm, power);
be_return(vm); // Return
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
#ifdef USE_I2C
// I2C specific
// Berry: `i2c_enabled(index:int) -> bool` is I2C device enabled
int32_t l_i2cenabled(struct bvm *vm);
int32_t l_i2cenabled(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
int32_t index = be_toint(vm, 2);
bool enabled = I2cEnabled(index);
be_pushbool(vm, enabled);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
#else // USE_I2C
int32_t l_i2cenabled(struct bvm *vm) __attribute__ ((weak, alias ("b_wire_i2cmissing")));
#endif // USE_I2C
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
\*********************************************************************************************/
extern "C" {
// Berry: `log(msg:string [,log_level:int]) ->nil`
// Logs the string at LOG_LEVEL_INFO (loglevel=2)
// We allow this function to be called as a method or a direct function
// if the first argument is an instance, we remove it
int32_t l_logInfo(struct bvm *vm);
int32_t l_logInfo(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * msg = be_tostring(vm, 2);
uint32_t log_level = LOG_LEVEL_INFO;
if (top >= 3 && be_isint(vm, 3)) {
log_level = be_toint(vm, 3);
if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; }
}
AddLog_P(log_level, PSTR("%s"), msg);
be_return(vm); // Return
}
be_return_nil(vm); // Return nil when something goes wrong
}
// Berry: `getFreeHeap() -> int`
// ESP object
int32_t l_getFreeHeap(bvm *vm);
int32_t l_getFreeHeap(bvm *vm) {
be_pushint(vm, ESP.getFreeHeap());
be_return(vm);
}
// Berry: `save(file:string, f:closure) -> bool`
int32_t l_save(struct bvm *vm);
int32_t l_save(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isstring(vm, 2) && be_isclosure(vm, 3)) { // only 1 argument of type string accepted
const char *fname = be_tostring(vm, 2);
int32_t ret = be_savecode(vm, fname);
be_pushint(vm, ret);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
}
// called as a replacement to Berry `print()`
void berry_log(const char * berry_buf);
void berry_log(const char * berry_buf) {
const char * pre_delimiter = nullptr; // do we need to prepend a delimiter if no REPL command
if (!berry.repl_active) {
// if no REPL in flight, we limit the number of logs
if (berry.log.log.length() == 0) {
pre_delimiter = BERRY_CONSOLE_CMD_DELIMITER;
}
if (berry.log.log.length() >= BERRY_MAX_LOGS) {
berry.log.log.remove(berry.log.log.head());
}
}
// AddLog(LOG_LEVEL_INFO, PSTR("[Add to log] %s"), berry_buf);
berry.log.addString(berry_buf, pre_delimiter, "\n");
AddLog_P(LOG_LEVEL_INFO, PSTR("%s"), berry_buf);
}
#endif // USE_BERRY