/* xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_BERRY #include #include const uint32_t BERRY_MAX_LOGS = 16; // max number of print output recorded when outside of REPL, used to avoid infinite grow of logs /*********************************************************************************************\ * Native functions mapped to Berry functions * * log(msg:string [,log_level:int]) ->nil * * import tasmota * * tasmota.get_free_heap() -> int * tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil * tasmota.cmd(command:string) -> string * tasmota.get_option(index:int) -> int * tasmota.millis([delay:int]) -> int * tasmota.time_reached(timer:int) -> bool * tasmota.yield() -> nil * * tasmota.get_light([index:int = 0]) -> map * tasmota.get_power([index:int = 0]) -> bool * tasmota.set_power(idx:int, power:bool) -> bool or nil * tasmota.set_light(idx:int, values:map) -> map * \*********************************************************************************************/ extern "C" { // Berry: `tasmota.publish(topic, payload [,retain]) -> nil`` // int32_t l_publish(struct bvm *vm); int32_t l_publish(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { // 2 mandatory string arguments if (top == 3 || (top == 4 && be_isbool(vm, 4))) { // 3rd optional argument must be bool const char * topic = be_tostring(vm, 2); const char * payload = be_tostring(vm, 3); bool retain = false; if (top == 4) { retain = be_tobool(vm, 4); } strlcpy(TasmotaGlobal.mqtt_data, payload, sizeof(TasmotaGlobal.mqtt_data)); MqttPublish(topic, retain); be_return(vm); // Return } } be_raise(vm, kTypeError, nullptr); } // Berry: `tasmota.cmd(command:string) -> string` // int32_t l_cmd(struct bvm *vm); int32_t l_cmd(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted const char * command = be_tostring(vm, 2); be_pop(vm, 2); // clear the stack before calling, because of re-entrant call to Berry in a Rule ExecuteCommand(command, SRC_BERRY); be_pushstring(vm, TasmotaGlobal.mqtt_data); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.millis([delay:int]) -> int // int32_t l_millis(struct bvm *vm); int32_t l_millis(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 1 || (top == 2 && be_isint(vm, 2))) { // only 1 argument of type string accepted uint32_t delay = 0; if (top == 2) { delay = be_toint(vm, 2); } uint32_t ret_millis = millis() + delay; be_pushint(vm, ret_millis); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.get_option(index:int) -> int // int32_t l_getoption(struct bvm *vm); int32_t l_getoption(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { uint32_t opt = GetOption(be_toint(vm, 2)); be_pushint(vm, opt); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.time_reached(timer:int) -> bool // int32_t l_timereached(struct bvm *vm); int32_t l_timereached(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted uint32_t timer = be_toint(vm, 2); bool reached = TimeReached(timer); be_pushbool(vm, reached); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.delay(timer:int) -> nil // int32_t l_delay(struct bvm *vm); int32_t l_delay(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted uint32_t timer = be_toint(vm, 2); delay(timer); be_return_nil(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: `yield() -> nil` // ESP object int32_t l_yield(bvm *vm); int32_t l_yield(bvm *vm) { optimistic_yield(10); be_return_nil(vm); } // Berry: tasmota.scale_uint(int * 5) -> int // int32_t l_scaleuint(struct bvm *vm); int32_t l_scaleuint(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 6 && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5) && be_isint(vm, 6)) { // only 1 argument of type string accepted int32_t v = be_toint(vm, 2); int32_t from1 = be_toint(vm, 3); int32_t from2 = be_toint(vm, 4); int32_t to1 = be_toint(vm, 5); int32_t to2 = be_toint(vm, 6); int32_t ret = changeUIntScale(v, from1, from2, to1, to2); be_pushint(vm, ret); be_return(vm); } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmnd(bvm *vm); int32_t l_respCmnd(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2) { const char *msg = be_tostring(vm, 2); Response_P("%s", msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmndStr(bvm *vm); int32_t l_respCmndStr(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2) { const char *msg = be_tostring(vm, 2); ResponseCmndChar(msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmndDone(bvm *vm); int32_t l_respCmndDone(bvm *vm) { ResponseCmndDone(); be_return_nil(vm); } int32_t l_respCmndError(bvm *vm); int32_t l_respCmndError(bvm *vm) { ResponseCmndError(); be_return_nil(vm); } int32_t l_respCmndFailed(bvm *vm); int32_t l_respCmndFailed(bvm *vm) { ResponseCmndFailed(); be_return_nil(vm); } // update XdrvMailbox.command with actual command int32_t l_resolveCmnd(bvm *vm); int32_t l_resolveCmnd(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); strlcpy(XdrvMailbox.command, msg, CMDSZ); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } // Response_append int32_t l_respAppend(bvm *vm); int32_t l_respAppend(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); ResponseAppend_P(PSTR("%s"), msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } // web append with decimal conversion int32_t l_webSendDecimal(bvm *vm); int32_t l_webSendDecimal(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); WSContentSend_PD(PSTR("%s"), msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } // push the light status object on the vm stack void push_getlight(bvm *vm, uint32_t light_num) { bool data_present = false; // do we have relevant data be_newobject(vm, "map"); // check if the light exist // TasmotaGlobal.devices_present // Light.device // Light.subtype // Light.pwm_multi_channels // light_controller.isCTRGBLinked() if (Light.device > 0) { // we have a light uint8_t channels[LST_MAX]; char s_rgb[8] = {0}; // RGB raw levels light_controller.calcLevels(channels); uint8_t bri = light_state.getBri(); // map_insert_int(vm, "_devices_present", TasmotaGlobal.devices_present); // map_insert_int(vm, "_light_device", Light.device); // map_insert_int(vm, "_light_subtype", Light.subtype); // map_insert_int(vm, "_light_multi", Light.pwm_multi_channels); // map_insert_int(vm, "_light_linked", light_controller.isCTRGBLinked()); if (!Light.pwm_multi_channels) { uint32_t subtype = Light.subtype; // virtual sub-type, for SO37 128 uint32_t chanidx = 0; // channel offset, for SO37 128 if (light_controller.isCTRGBLinked() && (light_num == 0)) { data_present = true; // valid combination if (subtype >= LST_RGBW) { map_insert_str(vm, "colormode", (light_state.getColorMode() & LCM_RGB ? "rgb" : "ct")); } } if (!light_controller.isCTRGBLinked()) { if (light_num == 0) { data_present = true; // valid combination if (subtype > LST_RGB) { subtype = LST_RGB; } // limit to RGB bri = light_state.getBriRGB(); } if ((light_num == 1) && subtype > LST_RGB) { data_present = true; // valid combination subtype = subtype - LST_RGB; chanidx = 3; // skip first 3 channels bri = light_state.getBriCT(); } } if (data_present) { // see ResponseLightState() map_insert_bool(vm, "power", bitRead(TasmotaGlobal.power, light_num + Light.device - 1)); map_insert_int(vm, "bri", bri); if (subtype >= LST_RGB) { uint16_t hue; uint8_t sat, bri; light_state.getHSB(&hue, &sat, &bri); map_insert_int(vm, "hue", hue); map_insert_int(vm, "sat", sat); } if ((LST_COLDWARM == subtype) || (LST_RGBW <= subtype)) { map_insert_int(vm, "ct", light_state.getCT()); } if (subtype >= LST_RGB) { snprintf(s_rgb, sizeof(s_rgb), PSTR("%02X%02X%02X"), channels[0], channels[1], channels[2]); map_insert_str(vm, "rgb", s_rgb); } if (subtype > LST_NONE) { map_insert_list_uint8(vm, "channels", &channels[chanidx], subtype); } } } else { // Light.pwm_multi_channels if ((light_num >= 0) && (light_num < LST_MAX)) { data_present = true; map_insert_bool(vm, "power", Light.power & (1 << light_num)); map_insert_int(vm, "bri", Light.current_color[light_num]); map_insert_list_uint8(vm, "channels", &channels[light_num], 1); } } be_pop(vm, 1); if (!data_present) { be_pop(vm, 1); be_pushnil(vm); } } else { be_pop(vm, 1); be_pushnil(vm); } } // get light int32_t l_getlight(bvm *vm); int32_t l_getlight(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 1 || (top == 2 && be_isint(vm, 2))) { int32_t light_num = 0; if (top > 1) { light_num = be_toint(vm, 2); } push_getlight(vm, light_num); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // set light int32_t l_setlight(bvm *vm); int32_t l_setlight(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 2 && be_isinstance(vm, 2) && (top != 3 || be_isint(vm, 3))) { int32_t idx = 0; if (top >= 3) { idx = be_toint(vm, 3); be_pop(vm, 1); // remove last argument to have the map at the top of stack } // power if (map_find(vm, "power")) { bool power = be_tobool(vm, -1); bool current_power = bitRead(TasmotaGlobal.power, idx + Light.device - 1); if (power != current_power) { // only send command if needed ExecuteCommandPower(idx + Light.device, (power) ? POWER_ON : POWER_OFF, SRC_BERRY); } } be_pop(vm, 1); // ct if (map_find(vm, "ct")) { int32_t ct = be_toint(vm, -1); light_controller.changeCTB(ct, light_state.getBriCT()); } be_pop(vm, 1); // hue if (map_find(vm, "hue")) { int32_t hue = be_toint(vm, -1); uint8_t sat; uint8_t bri; light_state.getHSB(nullptr, &sat, &bri); light_controller.changeHSB(hue, sat, bri); } be_pop(vm, 1); // sat if (map_find(vm, "sat")) { int32_t sat = be_toint(vm, -1); uint16_t hue; uint8_t bri; light_state.getHSB(&hue, nullptr, &bri); light_controller.changeHSB(hue, sat, bri); } be_pop(vm, 1); // rgb if (map_find(vm, "rgb")) { const char * rgb_s = be_tostring(vm, -1); SBuffer buf = SBuffer::SBufferFromHex(rgb_s, strlen(rgb_s)); uint8_t channels[LST_MAX] = {}; memcpy(channels, buf.buf(), buf.len() > LST_MAX ? LST_MAX : buf.len()); bool on = false; // if all are zero, then only set power off for (uint32_t i = 0; i < LST_MAX; i++) { if (channels[i] != 0) { on = true; } } if (on) { light_controller.changeChannels(channels); } else { ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY); } } be_pop(vm, 1); // channels if (map_find(vm, "channels")) { if (be_isinstance(vm, -1)) { be_getbuiltin(vm, "list"); // add "list" class if (be_isderived(vm, -2)) { be_pop(vm, 1); // remove "list" class from top int32_t list_size = get_list_size(vm); // AddLog(LOG_LEVEL_INFO, "Instance is list size = %d", list_size); uint8_t channels[LST_MAX] = {}; // initialized with all zeroes if (list_size > LST_MAX) { list_size = LST_MAX; } // no more than 5 channels, no need to test for positive, any negative will be discarded by loop for (uint32_t i = 0; i < list_size; i++) { // be_dumpstack(vm); get_list_item(vm, i); // be_dumpstack(vm); int32_t val = be_toint(vm, -1); be_pop(vm, 1); // remove result from stack channels[i] = to_u8(val); bool on = false; // if all are zero, then only set power off for (uint32_t i = 0; i < LST_MAX; i++) { if (channels[i] != 0) { on = true; } } if (on) { light_controller.changeChannels(channels); } else { ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY); } } } else { be_pop(vm, 1); // remove "list" class from top } } } be_pop(vm, 1); // bri is done after channels and rgb // bri if (map_find(vm, "bri")) { int32_t bri = be_toint(vm, -1); light_controller.changeBri(bri); } be_pop(vm, 1); push_getlight(vm, idx); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // TODO // get power int32_t l_getpower(bvm *vm); int32_t l_getpower(bvm *vm) { be_newobject(vm, "list"); for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { be_pushbool(vm, bitRead(TasmotaGlobal.power, i)); be_data_push(vm, -2); be_pop(vm, 1); } be_pop(vm, 1); be_return(vm); // Return } int32_t l_setpower(bvm *vm); int32_t l_setpower(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 3 && be_isint(vm, 2) && be_isbool(vm, 3)) { int32_t idx = be_toint(vm, 2); bool power = be_tobool(vm, 3); if ((idx >= 0) && (idx < TasmotaGlobal.devices_present)) { ExecuteCommandPower(idx + 1, (power) ? POWER_ON : POWER_OFF, SRC_BERRY); be_pushbool(vm, power); be_return(vm); // Return } else { be_return_nil(vm); } } be_raise(vm, kTypeError, nullptr); } #ifdef USE_I2C // I2C specific // Berry: `i2c_enabled(index:int) -> bool` is I2C device enabled int32_t l_i2cenabled(struct bvm *vm); int32_t l_i2cenabled(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { int32_t index = be_toint(vm, 2); bool enabled = I2cEnabled(index); be_pushbool(vm, enabled); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } #else // USE_I2C int32_t l_i2cenabled(struct bvm *vm) __attribute__ ((weak, alias ("b_wire_i2cmissing"))); #endif // USE_I2C } /*********************************************************************************************\ * Native functions mapped to Berry functions * * log(msg:string [,log_level:int]) ->nil * \*********************************************************************************************/ extern "C" { // Berry: `log(msg:string [,log_level:int]) ->nil` // Logs the string at LOG_LEVEL_INFO (loglevel=2) // We allow this function to be called as a method or a direct function // if the first argument is an instance, we remove it int32_t l_logInfo(struct bvm *vm); int32_t l_logInfo(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted const char * msg = be_tostring(vm, 2); uint32_t log_level = LOG_LEVEL_INFO; if (top >= 3 && be_isint(vm, 3)) { log_level = be_toint(vm, 3); if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; } } AddLog_P(log_level, PSTR("%s"), msg); be_return(vm); // Return } be_return_nil(vm); // Return nil when something goes wrong } // Berry: `getFreeHeap() -> int` // ESP object int32_t l_getFreeHeap(bvm *vm); int32_t l_getFreeHeap(bvm *vm) { be_pushint(vm, ESP.getFreeHeap()); be_return(vm); } // Berry: `save(file:string, f:closure) -> bool` int32_t l_save(struct bvm *vm); int32_t l_save(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 3 && be_isstring(vm, 2) && be_isclosure(vm, 3)) { // only 1 argument of type string accepted const char *fname = be_tostring(vm, 2); int32_t ret = be_savecode(vm, fname); be_pushint(vm, ret); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } } // called as a replacement to Berry `print()` void berry_log(const char * berry_buf); void berry_log(const char * berry_buf) { const char * pre_delimiter = nullptr; // do we need to prepend a delimiter if no REPL command if (!berry.repl_active) { // if no REPL in flight, we limit the number of logs if (berry.log.log.length() == 0) { pre_delimiter = BERRY_CONSOLE_CMD_DELIMITER; } if (berry.log.log.length() >= BERRY_MAX_LOGS) { berry.log.log.remove(berry.log.log.head()); } } // AddLog(LOG_LEVEL_INFO, PSTR("[Add to log] %s"), berry_buf); berry.log.addString(berry_buf, pre_delimiter, "\n"); AddLog_P(LOG_LEVEL_INFO, PSTR("%s"), berry_buf); } #endif // USE_BERRY