/* xdrv_27_shutter.ino - Shutter/Blind support for Tasmota Copyright (C) 2019 Stefan Bode This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SHUTTER /*********************************************************************************************\ * Shutter or Blind support using two consecutive relays \*********************************************************************************************/ #define XDRV_27 27 #define D_PRFX_SHUTTER "Shutter" #define D_CMND_SHUTTER_OPEN "Open" #define D_CMND_SHUTTER_CLOSE "Close" #define D_CMND_SHUTTER_STOP "Stop" #define D_CMND_SHUTTER_POSITION "Position" #define D_CMND_SHUTTER_OPENTIME "OpenDuration" #define D_CMND_SHUTTER_CLOSETIME "CloseDuration" #define D_CMND_SHUTTER_RELAY "Relay" #define D_CMND_SHUTTER_SETHALFWAY "SetHalfway" #define D_CMND_SHUTTER_SETCLOSE "SetClose" #define D_CMND_SHUTTER_INVERT "Invert" #define D_CMND_SHUTTER_CLIBRATION "Calibration" #define D_SHUTTER "SHUTTER" const uint16_t MOTOR_STOP_TIME = 500; // in mS uint8_t calibrate_pos[6] = {0,30,50,70,90,100}; uint16_t messwerte[5] = {30,50,70,90,100}; enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE }; const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|" D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|" D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION; void (* const ShutterCommand[])(void) PROGMEM = { &CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition, &CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration }; const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"direction\":%d}"; #include Ticker TickerShutter; struct SHUTTER { power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes. power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed. uint32_t time[MAX_SHUTTERS]; int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated int32_t target_position[MAX_SHUTTERS]; // position to go to int32_t start_position[MAX_SHUTTERS]; int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster uint16_t operations[MAX_SHUTTERS]; int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE } Shutter; void ShutterRtc50mS(void) { for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { Shutter.time[i]++; } } int32_t ShutterPercentToRealPosition(uint8_t percent,uint8_t index) { if (Settings.shutter_set50percent[index] != 50) { return percent <= 5 ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index]; } else { uint32_t realpos; // check against DIV 0 for (uint8_t j=0 ; j < 5 ; j++) { if (Settings.shuttercoeff[j][index] == 0) { AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0")); for (uint8_t k=0 ; k < 5 ; k++) { Settings.shuttercoeff[k][index] = messwerte[k] * 1000 / messwerte[4]; } } } for (uint8_t i=0 ; i < 5 ; i++) { if (percent*10 > Settings.shuttercoeff[i][index]) { realpos = Shutter.open_max[index] * calibrate_pos[i+1] / 100; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP1: %d, %% %d, coeff %d"), realpos, percent, Settings.shuttercoeff[i][index]); } else { if ( i == 0) { realpos = percent * Shutter.open_max[index] * calibrate_pos[i+1] / Settings.shuttercoeff[i][index] / 10; } else { //uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP2: %d, %% %d, coeff %d"), addon, (calibrate_pos[i+1] - calibrate_pos[i]), (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index])); realpos += ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter.open_max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100; } break; } } return realpos; } } uint8_t ShutterRealToPercentPosition(int32_t realpos, uint8_t index) { if (Settings.shutter_set50percent[index] != 50) { return Settings.shuttercoeff[2][index] * 5 > realpos ? realpos / Settings.shuttercoeff[2][index] : (realpos-Settings.shuttercoeff[0][index]) / Settings.shuttercoeff[1][index]; } else { uint16_t realpercent; for (uint8_t i=0 ; i < 5 ; i++) { if (realpos > Shutter.open_max[index] * calibrate_pos[i+1] / 100) { realpercent = Settings.shuttercoeff[i][index] /10; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP1: %d, %% %d, coeff %d"), realpercent, realpos, Shutter_Open_Max[index] * calibrate_pos[i+1] / 100); } else { if ( i == 0) { realpercent = ( realpos - (Shutter.open_max[index] * calibrate_pos[i] / 100) ) * 10 * Settings.shuttercoeff[i][index] / calibrate_pos[i+1] / Shutter.open_max[index]; } else { //uint16_t addon = ( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i])/ Shutter_Open_Max[index]; //uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP2: %d, delta %d, %% %d, coeff %d"), addon,( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) , (calibrate_pos[i+1] - calibrate_pos[i])* Shutter_Open_Max[index]/100, (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index])); realpercent += ( realpos - (Shutter.open_max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i]) / Shutter.open_max[index] ; } break; } } return realpercent; } } void ShutterInit(void) { shutters_present = 0; Shutter.mask = 0; //Initialize to get relay that changed Shutter.old_power = power; bool relay_in_interlock = false; AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Accuracy digits: %d"), Settings.shutter_accuracy); for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { // upgrade to 0.1sec calculation base. if ( Settings.shutter_accuracy == 0) { Settings.shutter_closetime[i] = Settings.shutter_closetime[i] * 10; Settings.shutter_opentime[i] = Settings.shutter_opentime[i] * 10; } // set startrelay to 1 on first init, but only to shutter 1. 90% usecase Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]); if (Settings.shutter_startrelay[i] && Settings.shutter_startrelay[i] <9) { shutters_present++; // Determine shutter types Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ; for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask); if (Settings.interlock[j] && Settings.interlock[j] & Shutter.mask) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay in Interlock group")); relay_in_interlock = true; } } if (relay_in_interlock) { if (Settings.pulse_timer[i] > 0) { Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE; } else { Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE; } } else { Shutter.mode = SHT_OFF_ON__OPEN_CLOSE; } TickerShutter.attach_ms(50, ShutterRtc50mS ); // default the 50 percent should not have any impact without changing it. set to 60 Settings.shutter_set50percent[i] = Settings.shutter_set50percent[i] > 0 ? Settings.shutter_set50percent[i] : 50; // use 10 sec. as default to allow everybody to play without deep initialize Shutter.open_time[i] = Settings.shutter_opentime[i] > 0 ? Settings.shutter_opentime[i] : 100; Shutter.close_time[i] = Settings.shutter_closetime[i] > 0 ? Settings.shutter_closetime[i] : 100; // Update Calculation 20 because time interval is 0.05 sec Shutter.open_max[i] = 200 * Shutter.open_time[i]; Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ; // calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part if (Settings.shutter_set50percent[i] != 50) { Settings.shuttercoeff[1][i] = Shutter.open_max[i] * (100 - Settings.shutter_set50percent[i] ) / 5000; Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100); Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5; } Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ; Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i); //Shutter.real_position[i] = Settings.shutter_position[i] <= 5 ? Settings.shuttercoeff[2][i] * Settings.shutter_position[i] : Settings.shuttercoeff[1][i] * Settings.shutter_position[i] + Settings.shuttercoeff[0,i]; Shutter.start_position[i] = Shutter.real_position[i]; char shutter_open_chr[10]; dtostrfd((float)Shutter.open_time[i] / 10 , 1, shutter_open_chr); char shutter_close_chr[10]; dtostrfd((float)Shutter.close_time[i] / 10, 1, shutter_close_chr); AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d (Relay:%d): Init. Pos: %d [%d %%], Open Vel.: 100 Close Vel.: %d , Max Way: %d, Opentime %s [s], Closetime %s [s], CoedffCalc: c0: %d, c1 %d, c2: %d, c3: %d, c4: %d, binmask %d, is inverted %d, shuttermode %d"), i, Settings.shutter_startrelay[i], Shutter.real_position[i], Settings.shutter_position[i], Shutter.close_velocity[i], Shutter.open_max[i], shutter_open_chr, shutter_close_chr, Settings.shuttercoeff[0][i], Settings.shuttercoeff[1][i], Settings.shuttercoeff[2][i], Settings.shuttercoeff[3][i], Settings.shuttercoeff[4][i], Shutter.mask, Settings.shutter_invert[i], Shutter.mode); } else { // terminate loop at first INVALID shutter. break; } Settings.shutter_accuracy = 1; } } void ShutterUpdatePosition(void) { char scommand[CMDSZ]; char stopic[TOPSZ]; for (uint32_t i = 0; i < shutters_present; i++) { if (Shutter.direction[i] != 0) { //char stemp1[20]; Shutter.real_position[i] = Shutter.start_position[i] + ( Shutter.time[i] * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i])); // avoid real position leaving the boundaries. Shutter.real_position[i] = Shutter.real_position[i] < 0 ? 0 : (Shutter.real_position[i] > Shutter.open_max[i] ? Shutter.open_max[i] : Shutter.real_position[i]) ; // Add additional runtime, if shutter did not reach the endstop for some time. if (Shutter.target_position[i] == Shutter.real_position[i] && Shutter.target_position[i] == 0) { // for every operation add 5x50ms = 250ms to stop position //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Adding additional runtime")); Shutter.real_position[i] += 500 * Shutter.operations[i] ; Shutter.operations[i] = 0; } if (Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] ) { // calculate relay number responsible for current movement. //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]); uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ; char stemp2[10]; Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i); //Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? (Shutter.real_position[i] * 10 / Settings.shuttercoeff[2][i] + 4)/10 : ((Shutter.real_position[i]-Settings.shuttercoeff[0,i]) *10 / Settings.shuttercoeff[1][i] +4) / 10; if (0 < Settings.shutter_position[i] && Settings.shutter_position[i] < 100) { Shutter.operations[i]++; } else { Shutter.operations[i] = 0; } dtostrfd((float)Shutter.time[i] / 20, 1, stemp2); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Real Pos. %d, Stoppos: %ld, relay: %d, direction %d, pulsetimer: %d, rtcshutter: %s [s], operationtime %d"), i, Shutter.real_position[i], Settings.shutter_position[i], cur_relay -1, Shutter.direction[i], Settings.pulse_timer[cur_relay -1], stemp2, Shutter.operations[i]); Shutter.start_position[i] = Shutter.real_position[i]; // sending MQTT result to broker snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1); GetTopic_P(stopic, STAT, mqtt_topic, scommand); Response_P("%d", Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]); MqttPublish(stopic, Settings.flag.mqtt_power_retain); switch (Shutter.mode) { case SHT_PULSE_OPEN__PULSE_CLOSE: // we have a momentary switch here. Needs additional pulse on same relay after the end if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) { ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER); } else { last_source = SRC_SHUTTER; } break; case SHT_OFF_ON__OPEN_CLOSE: // This is a failsafe configuration. Relay1 ON/OFF Relay2 -1/1 direction if ((1 << (Settings.shutter_startrelay[i]-1)) & power) { ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); } break; case SHT_OFF_OPEN__OFF_CLOSE: // avoid switching OFF a relay already OFF if ((1 << (cur_relay-1)) & power) { // Relay is on and need to be switched off. ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER); } break; } Shutter.direction[i] = 0; uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]; Response_P(PSTR("{")); ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, 0 /*Shutter.direction[i]*/); ResponseJsonEnd(); MqttPublishPrefixTopic_P(RESULT_OR_TELE, mqtt_data); XdrvRulesProcess(); } } } } bool ShutterState(uint8_t device) { device--; device &= 3; return (Settings.flag3.shutter_mode && (Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) ); } void ShutterStartInit(uint8_t index, uint8_t direction, int32_t target_pos) { Shutter.direction[index] = direction; Shutter.target_position[index] = target_pos; Shutter.start_position[index] = Shutter.real_position[index]; Shutter.time[index] = 0; //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), index, Shutter.start_position[index], Shutter.target_position[index], Shutter.direction[index]); } void ShutterDelayForMotorStop(void) { AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Wait for Motorstop %d"), MOTOR_STOP_TIME); delay(MOTOR_STOP_TIME); } void ShutterReportPosition(void) { uint16_t shutter_moving = 0; for (uint32_t i = 0; i < shutters_present; i++) { if (Shutter.direction[i] != 0) { char stemp1[20]; char stemp2[10]; dtostrfd((float)Shutter.time[i] / 20, 1, stemp2); shutter_moving = 1; //Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? Shutter.real_position[i] / Settings.shuttercoeff[2][i] : (Shutter.real_position[i]-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i]; AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d, Target %d, source: %s, start-pos: %d %%, direction: %d, rtcshutter: %s [s]"), i,Shutter.real_position[i], Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), Settings.shutter_position[i], Shutter.direction[i], stemp2 ); } } if (rules_flag.shutter_moving > shutter_moving) { rules_flag.shutter_moved = 1; } else { rules_flag.shutter_moved = 0; } rules_flag.shutter_moving = shutter_moving; //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved); } void ShutterRelayChanged(void) { // Shutter.switched_relay = binary relay that was recently changed and cause an Action // powerstate_local = binary powermatrix and relays from shutter: 0..3 // relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer char stemp1[10]; for (uint32_t i = 0; i < shutters_present; i++) { power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3; //uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; if (manual_relays_changed) { if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) { switch (powerstate_local) { case 1: ShutterDelayForMotorStop(); ShutterStartInit(i, 1, Shutter.open_max[i]); break; case 3: ShutterDelayForMotorStop(); ShutterStartInit(i, -1, 0); break; default: Shutter.direction[i] = 0; Shutter.target_position[i] = Shutter.real_position[i]; } } else { if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) { Shutter.target_position[i] = Shutter.real_position[i]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); } else { last_source = SRC_SHUTTER; // avoid switch off in the next loop if (powerstate_local == 2) { // testing on CLOSE relay, if ON // close with relay two ShutterDelayForMotorStop(); ShutterStartInit(i, -1, 0); } else { // opens with relay one ShutterDelayForMotorStop(); ShutterStartInit(i, 1, Shutter.open_max[i]); } } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i, Shutter.target_position[i], powerstate_local); } } } } /////////////////////////////////////////////////////////////////////////////////// // Shutter specific functions // TODO: move to shutter driver and make them accessible in a generic way // device: 1.. // position: 0-100 void ShutterSetPosition(uint8_t device, uint8_t position) { char svalue[32]; // Command and number parameter snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position); ExecuteCommand(svalue, SRC_IGNORE); } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void CmndShutterOpen(void) { XdrvMailbox.payload = 100; last_source = SRC_WEBGUI; CmndShutterPosition(); } void CmndShutterClose(void) { XdrvMailbox.payload = 0; last_source = SRC_WEBGUI; CmndShutterPosition(); } void CmndShutterStop(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { uint32_t index = XdrvMailbox.index -1; if (Shutter.direction[index] != 0) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving shutter %d: direction: %d"), XdrvMailbox.index, Shutter.direction[index]); int32_t temp_realpos = Shutter.start_position[index] + ( (Shutter.time[index]+10) * (Shutter.direction[index] > 0 ? 100 : -Shutter.close_velocity[index])); XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, index); //XdrvMailbox.payload = Settings.shuttercoeff[2][index] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][index] : (temp_realpos-Settings.shuttercoeff[0,index]) / Settings.shuttercoeff[1][index]; last_source = SRC_WEBGUI; CmndShutterPosition(); } else { ResponseCmndDone(); } } } void CmndShutterPosition(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { uint32_t index = XdrvMailbox.index -1; //limit the payload AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Position in: payload %d, index %d, source %d"), XdrvMailbox.payload , XdrvMailbox.index, last_source ); int8_t target_pos_percent = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload); // webgui still send also on inverted shutter the native position. target_pos_percent = Settings.shutter_invert[index] && SRC_WEBGUI != last_source ? 100 - target_pos_percent : target_pos_percent; if (target_pos_percent != -99) { //target_pos_percent = Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent; Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index); //Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, realpos %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent); } if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter.target_position[index] - Shutter.real_position[index] ) / Shutter.close_velocity[index] > 2) { int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1; if (Shutter.direction[index] == -new_shutterdirection ) { // direction need to be changed. on momentary switches first stop the Shutter if (Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE) { // code for momentary shutters only small switch on to stop Shutter ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); delay(100); } else { ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), 0, SRC_SHUTTER); ShutterDelayForMotorStop(); } } if (Shutter.direction[index] != new_shutterdirection ) { ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); Shutter.operations[index]++; if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) { ExecuteCommandPower(Settings.shutter_startrelay[index], 0, SRC_SHUTTER); //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload); ShutterDelayForMotorStop(); // Code for shutters with circuit safe configuration, switch the direction Relay ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER); // power on ExecuteCommandPower(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); } else { // now start the motor for the right direction, work for momentary and normal shutters. AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter in direction %d"), Shutter.direction[index]); ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload); } Shutter.switched_relay = 0; } } else { target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index); } XdrvMailbox.index = index +1; // Fix random index for ShutterClose ResponseCmndIdxNumber(Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent); } } void CmndShutterOpenTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterCloseTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterRelay(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) { Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; if (XdrvMailbox.payload > 0) { Shutter.mask |= 3 << (XdrvMailbox.payload - 1); } else { Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1); } AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay %d is %d"), XdrvMailbox.index, XdrvMailbox.payload); Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; ShutterInit(); // if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work } ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]); } } void CmndShutterSetHalfway(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { Settings.shutter_set50percent[XdrvMailbox.index -1] = Settings.shutter_invert[XdrvMailbox.index -1] ? 100 - XdrvMailbox.payload : XdrvMailbox.payload; ShutterInit(); ResponseCmndIdxNumber(XdrvMailbox.payload); // ???? } else { ResponseCmndIdxNumber(Settings.shutter_set50percent[XdrvMailbox.index -1]); } } } void CmndShutterSetClose(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { Shutter.real_position[XdrvMailbox.index -1] = 0; ShutterStartInit(XdrvMailbox.index -1, 0, 0); Settings.shutter_position[XdrvMailbox.index -1] = 0; ResponseCmndChar(D_CONFIGURATION_RESET); } } void CmndShutterInvert(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) { Settings.shutter_invert[XdrvMailbox.index -1] = XdrvMailbox.payload; } ResponseCmndIdxNumber(Settings.shutter_invert[XdrvMailbox.index -1]); } } void CmndShutterCalibration(void) // ???? { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { if (XdrvMailbox.data_len > 0) { uint32_t i = 0; char *str_ptr; char* version_dup = strdup(XdrvMailbox.data); // Duplicate the version_str as strtok_r will modify it. // Loop through the version string, splitting on '.' seperators. for (char *str = strtok_r(version_dup, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) { int field = atoi(str); // The fields in a version string can only range from 0-255. if ((field < 0) || (field > 255)) { free(version_dup); break; } messwerte[i] = field; } for (i=0 ; i < 5 ; i++) { Settings.shuttercoeff[i][XdrvMailbox.index-1] = messwerte[i] * 1000 / messwerte[4]; AddLog_P2(LOG_LEVEL_INFO, PSTR("Settings.shuttercoeff í: %d, i: %d, value: %d, messwert %d"), i,XdrvMailbox.index-1,Settings.shuttercoeff[i][XdrvMailbox.index-1], messwerte[i]); } ShutterInit(); ResponseCmndIdxChar(XdrvMailbox.data); } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv27(uint8_t function) { bool result = false; if (Settings.flag3.shutter_mode) { switch (function) { case FUNC_PRE_INIT: ShutterInit(); break; case FUNC_EVERY_50_MSECOND: ShutterUpdatePosition(); break; case FUNC_EVERY_SECOND: ShutterReportPosition(); break; case FUNC_COMMAND: result = DecodeCommand(kShutterCommands, ShutterCommand); break; case FUNC_JSON_APPEND: for (uint32_t i = 0; i < shutters_present; i++) { uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]; ResponseAppend_P(","); ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter.direction[i]); #ifdef USE_DOMOTICZ if ((0 == tele_period) && (0 == i)) { DomoticzSensor(DZ_SHUTTER, position); } #endif // USE_DOMOTICZ } break; case FUNC_SET_POWER: char stemp1[10]; // extract the number of the relay that was switched and save for later in Update Position. Shutter.switched_relay = power ^ Shutter.old_power; Shutter.old_power = power; AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource)); ShutterRelayChanged(); break; } } return result; } #endif //USE_SHUTTER