/* xsns_61_MI_NRF24.ino - MI-BLE-sensors via nrf24l01 support for Tasmota Copyright (C) 2020 Christian Baars and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -------------------------------------------------------------------------------------------- Version yyyymmdd Action Description -------------------------------------------------------------------------------------------- 0.9.5.0 20200328 integrate - add dew point, multi-page-web ui, refactoring, command interface, simple beacon --- 0.9.4.0 20200304 integrate - sensor types can be ignored (default for LYWSD03), add CGD1 (Alarm clock), correct PDU-types for LYWSD02 --- 0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI, add CGG1 --- 0.9.2.0 20200212 integrate - "backports" from MI-HM10, change reading pattern, add missing PDU-types, renaming driver --- 0.9.1.0 20200117 integrate - Added support for the LYWSD02 --- 0.9.0.0 20191127 started - further development by Christian Baars base - code base from cbm80amiga, floe, Dmitry.GR forked - from arendst/tasmota - https://github.com/arendst/Tasmota */ #ifdef USE_SPI #ifdef USE_NRF24 #ifdef USE_MIBLE #ifdef DEBUG_TASMOTA_SENSOR #define MINRF_LOG_BUFFER(x) MINRFshowBuffer(x); #else #define MINRF_LOG_BUFFER(x) #endif /*********************************************************************************************\ * MINRF * BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02, GCx * * Usage: Configure NRF24 \*********************************************************************************************/ #define XSNS_61 61 #include #define FLORA 1 #define MJ_HT_V1 2 #define LYWSD02 3 #define LYWSD03 4 #define CGG1 5 #define CGD1 6 #define D_CMND_NRF "NRF" const char S_JSON_NRF_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_NRF "%s\":%d}"; const char S_JSON_NRF_COMMAND[] PROGMEM = "{\"" D_CMND_NRF "%s\":\"%s\"}"; const char kNRF_Commands[] PROGMEM = "Ignore|Page|Scan|Beacon|Chan"; enum NRF_Commands { // commands useable in console or rules CMND_NRF_IGNORE, // ignore specific sensor type (1-6) CMND_NRF_PAGE, // sensor entries per web page, which will be shown alternated CMND_NRF_SCAN, // simplified passive BLE adv scan CMND_NRF_BEACON, // even more simplified Beacon, reports time since last sighting CMND_NRF_CHAN // ignore channel 0-2 (translates to 37-39) }; const uint16_t kMINRFSlaveID[6]={ 0x0098, // Flora 0x01aa, // MJ_HT_V1 0x045b, // LYWSD02 0x055b, // LYWSD03 0x0347, // CGG1 0x0576 // CGD1 }; const char kMINRFSlaveType1[] PROGMEM = "Flora"; const char kMINRFSlaveType2[] PROGMEM = "MJ_HT_V1"; const char kMINRFSlaveType3[] PROGMEM = "LYWSD02"; const char kMINRFSlaveType4[] PROGMEM = "LYWSD03"; const char kMINRFSlaveType5[] PROGMEM = "CGG1"; const char kMINRFSlaveType6[] PROGMEM = "CGD1"; const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5,kMINRFSlaveType6}; // PDU's or different channels 37-39 const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46}; const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5}; const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71dafb46}; // const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58 const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58 const uint32_t kMINRFCGGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd}; const uint32_t kMINRFCGDPDU[3] = {0x5da0d752,0xc10c16e7,0x29c497c1}; // start-LSFR for different channels 37-39 const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02 const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGx #pragma pack(1) // important!! struct mi_beacon_t{ uint16_t productID; uint8_t counter; uint8_t Mac[6]; uint8_t spare; // not on MJ_HT_V1 and CGG1 uint8_t type; uint8_t ten; uint8_t size; union { struct{ //0d int16_t temp; uint16_t hum; }HT; uint8_t bat; //0a uint16_t temp; //04 uint16_t hum; //06 uint32_t lux:24; //07 uint8_t moist; //08 uint16_t fert; //09 }; }; struct CGDPacket_t { // related to the whole 32-byte-packet/buffer uint8_t serial[6]; uint16_t mode; union { struct { int16_t temp; // -9 - 59 °C uint16_t hum; }; uint8_t bat; }; }; struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24 uint8_t pduType; uint8_t payloadSize; uint8_t mac[6]; }; union FIFO_t{ bleAdvPacket_t bleAdv; mi_beacon_t miBeacon; CGDPacket_t CGDPacket; uint8_t raw[32]; }; #pragma pack(0) struct { const uint8_t channel[3] = {37,38,39}; // BLE advertisement channel number const uint8_t frequency[3] = { 2,26,80}; // real frequency (2400+x MHz) uint16_t timer; uint8_t currentChan=0; uint8_t ignore = 0; //bitfield: 2^sensor type uint8_t channelIgnore = 0; //bitfield: 2^channel (0=37,1=38,2=39) uint8_t confirmedSensors = 0; uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - 6 "special" sensor packets uint8_t perPage = 4; uint8_t firstUsedPacketMode = 1; FIFO_t buffer; struct { uint8_t mac[6]; uint32_t time; uint32_t PDU[3]; bool active = false; } beacon; bool activeScan = false; bool stopScan = false; #ifdef DEBUG_TASMOTA_SENSOR uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes uint8_t lsfrBuffer[sizeof(buffer)]; // correpsonding lfsr-bytes for the buffer, probably only useful for a BLE-packet #endif // DEBUG_TASMOTA_SENSOR } MINRF; struct mi_sensor_t{ uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6 uint8_t serial[6]; uint8_t showedUp; float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx union { struct { float moisture; float fertility; uint32_t lux; }; // Flora struct { float hum; uint8_t bat; }; // MJ_HT_V1, LYWSD0x, CGx }; }; struct scan_entry_t { uint8_t mac[6]; uint16_t cid; uint16_t svc; uint16_t uuid; uint8_t showedUp; }; std::vector MIBLEsensors; std::vector MINRFscanResult; static union{ scan_entry_t MINRFdummyEntry; uint8_t MINRFtempBuf[23]; }; /********************************************************************************************/ /** * @brief * * @param _mode Packet mode 0-6 * @return true If no error occured * @return false If NRF24L01 is not connected */ bool MINRFinitBLE(uint8_t _mode) { if (MINRF.timer%1000 == 0){ // only re-init every 20 seconds NRF24radio.begin(pin[GPIO_SPI_CS],pin[GPIO_SPI_DC]); NRF24radio.setAutoAck(false); NRF24radio.setDataRate(RF24_1MBPS); NRF24radio.disableCRC(); NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] ); NRF24radio.setRetries(0,0); NRF24radio.setPALevel(RF24_PA_MIN); // we only receive NRF24radio.setAddressWidth(4); // NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171) // NRF24radio.openWritingPipe( 0x6B7D9171); // not used ATM NRF24radio.powerUp(); } if(NRF24radio.isChipConnected()){ // DEBUG_SENSOR_LOG(PSTR("MINRF chip connected")); MINRFchangePacketModeTo(_mode); return true; } // DEBUG_SENSOR_LOG(PSTR("MINRF chip NOT !!!! connected")); return false; } /** * @brief cycle through the channels 37-39, skip ignored channel * */ void MINRFhopChannel() { for (uint32_t i = 0; i<3;i++){ MINRF.currentChan++; if(bitRead(MINRF.channelIgnore,MINRF.currentChan)) continue; if(MINRF.currentChan >= sizeof(MINRF.channel)) { MINRF.currentChan = 0; if(bitRead(MINRF.channelIgnore,MINRF.currentChan)) continue; } break; } NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] ); } /** * @brief Read out FIFO-buffer, swap buffer and whiten * * @return true - If something is in the buffer * @return false - Nothing is in the buffer */ bool MINRFreceivePacket(void) { if(!NRF24radio.available()) { return false; } while(NRF24radio.available()) { // static uint8_t _lsfr = 0; //-> for testing out suitable lsfr-start-values for yet unknown packets // _lsfr++; NRF24radio.read( &MINRF.buffer, sizeof(MINRF.buffer) ); #ifdef DEBUG_TASMOTA_SENSOR memcpy(&MINRF.streamBuffer, &MINRF.buffer, sizeof(MINRF.buffer)); #endif // DEBUG_TASMOTA_SENSOR MINRFswapbuf((uint8_t*)&MINRF.buffer, sizeof(MINRF.buffer) ); // MINRF_LOG_BUFFER(); // AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF: _lsfrlist: %x, chan: %u, mode: %u"),_lsfrlist[MINRF.currentChan],MINRF.currentChan, MINRF.packetMode); switch (MINRF.packetMode) { case 0: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40); break; case 1: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_A[MINRF.currentChan]); // "flora" mode break; case 2: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "MJ_HT_V1" mode break; case 3: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_A[MINRF.currentChan]); // "LYWSD02" mode break; case 4: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "LYWSD03" mode break; case 5: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGG1" mode break; case 6: MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGD1" mode break; } // DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr); // if (_lsfr>254) _lsfr=0; } // DEBUG_SENSOR_LOG(PSTR("MINRF: did read FIFO")); return true; } #ifdef DEBUG_TASMOTA_SENSOR void MINRFshowBuffer(uint8_t (&buf)[32]){ // we use this only for the 32-byte-FIFO-buffer, so 32 is hardcoded // DEBUG_SENSOR_LOG(PSTR("MINRF: Buffer: %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c") DEBUG_SENSOR_LOG(PSTR("MINRF: Buffer: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x ") ,buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9],buf[10],buf[11], buf[12],buf[13],buf[14],buf[15],buf[16],buf[17],buf[18],buf[19],buf[20],buf[21],buf[22],buf[23], buf[24],buf[25],buf[26],buf[27],buf[28],buf[29],buf[30],buf[31] ); } #endif // DEBUG_TASMOTA_SENSOR /** * @brief change lsfrBuffer content to "wire bit order" * * @param len Buffer lenght (could be hardcoded to 32) */ void MINRFswapbuf(uint8_t *buf, uint8_t len) { // uint8_t* buf = (uint8_t*)&MINRF.buffer; while(len--) { uint8_t a = *buf; uint8_t v = 0; if (a & 0x80) v |= 0x01; if (a & 0x40) v |= 0x02; if (a & 0x20) v |= 0x04; if (a & 0x10) v |= 0x08; if (a & 0x08) v |= 0x10; if (a & 0x04) v |= 0x20; if (a & 0x02) v |= 0x40; if (a & 0x01) v |= 0x80; *(buf++) = v; } } /** * @brief Whiten the packet buffer * * @param buf The packet buffer * @param len Lenght of the packet buffer * @param lfsr Start lsfr-byte */ void MINRFwhiten(uint8_t *buf, uint8_t len, uint8_t lfsr) { while(len--) { uint8_t res = 0; // LFSR in "wire bit order" for (uint8_t i = 1; i; i <<= 1) { if (lfsr & 0x01) { lfsr ^= 0x88; res |= i; } lfsr >>= 1; } *(buf++) ^= res; #ifdef DEBUG_TASMOTA_SENSOR MINRF.lsfrBuffer[31-len] = lfsr; #endif //DEBUG_TASMOTA_SENSOR } } /*********************************************************************************************\ * Beacon functions \*********************************************************************************************/ bool MINRFhandleBeacon(scan_entry_t * entry, uint32_t offset); /** * @brief handle a generic BLE-packet in the scan process * */ void MINRFhandleScan(void){ if(MINRFscanResult.size()>20 || MINRF.stopScan) { MINRF.activeScan=false; MINRFcomputefirstUsedPacketMode(); uint32_t i = 0; // pass counter as reference to lambda MINRFscanResult.erase(std::remove_if(MINRFscanResult.begin(), MINRFscanResult.end(), [&i](scan_entry_t e) { if(e.showedUp>2) AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF: Beacon %02u: %02X%02X%02X%02X%02X%02X Cid: %04X Svc: %04X UUID: %04X"),i,e.mac[0],e.mac[1],e.mac[2],e.mac[3],e.mac[4],e.mac[5],e.cid,e.svc,e.uuid); i++; return ((e.showedUp < 3)); }), MINRFscanResult.end()); MINRF.stopScan=false; return; } MINRFreverseMAC(MINRF.buffer.bleAdv.mac); for(uint32_t i=0; iregular BLE-ADV, 6->"cutted" BLE-ADV with MAC as PDU * @return true - when name, cid, uuid or svc is found with any value * @return false - name, cid, uuid and svc are not found */ bool MINRFhandleBeacon(scan_entry_t * entry, uint32_t offset){ bool success = false; uint8_t _buf[32+offset]; MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40); MINRFswapbuf((uint8_t*)&MINRF.buffer,sizeof(MINRF.buffer)); memcpy((uint8_t*)&_buf+offset,MINRF.buffer.raw,32); MINRFswapbuf((uint8_t*)&_buf,sizeof(_buf)); MINRFwhiten((uint8_t *)&_buf, sizeof(_buf), MINRF.channel[MINRF.currentChan] | 0x40); if (offset == 6) MINRFreverseMAC((uint8_t*)&_buf[2]); if(memcmp((uint8_t*)&_buf[2],MINRF.beacon.mac,2)==0){ // always at least 2 undestroyed bytes left if(_buf[8]!=2 && _buf[9]!=1){ DEBUG_SENSOR_LOG(PSTR("MINRF: unsupported ADV %02x %02x"), _buf[8],_buf[9]); return success; } AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Beacon:____________")); for (uint32_t i = 8; i<32+offset;i++){ uint32_t size = _buf[i]; if (size>30) break; uint32_t ADtype = _buf[i+1]; // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Size: %u AD: %x i:%u"), size, ADtype,i); if (size+i>32+offset) size=32-i+offset-2; if (size>30) break; char _stemp[(size*2)]; uint32_t backupSize; switch(ADtype){ case 0x01: AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Flags: %02x"), _buf[i+2]); break; case 0x02: case 0x03: entry->uuid = _buf[i+3]*256 + _buf[i+2]; AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: UUID: %04x"), entry->uuid); success = true; break; case 0x08: case 0x09: backupSize = _buf[i+size+1]; _buf[i+size+1] = 0; AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Name: %s"), (char*)&_buf[i+2]); success = true; _buf[i+size+1] = backupSize; break; case 0x0a: AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: TxPow: %02u"), _buf[i+2]); break; case 0xff: entry->cid = _buf[i+3]*256 + _buf[i+2]; AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Cid: %04x"), entry->cid); ToHex_P((unsigned char*)&_buf+i+4,size-3,_stemp,(size*2)); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp); success = true; break; case 0x16: entry->svc = _buf[i+3]*256 + _buf[i+2]; AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MINRF: Svc: %04x"), entry->svc); ToHex_P((unsigned char*)&_buf+i+4,size-3,_stemp,(size*2)); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp); success = true; break; default: ToHex_P((unsigned char*)&_buf+i+2,size-1,_stemp,(size*2)); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp); } i+=size; } MINRF.beacon.time = 0; } return success; } /** * @brief increase beacon timer every second and process the result * */ void MINRFbeaconCounter(void){ if(MINRF.beacon.active) { MINRF.beacon.time++; char stemp[20]; snprintf_P(stemp, sizeof(stemp),PSTR("{%s:{\"Beacon\": %u}}"),D_CMND_NRF, MINRF.beacon.time); AddLog_P2(LOG_LEVEL_DEBUG, stemp); RulesProcessEvent(stemp); } } /** * @brief compute "PDU" from MAC for each possible channel and store it globally * */ void MINRFcomputeBeaconPDU(void){ for (uint32_t i = 0; i<3; i++){ bleAdvPacket_t packet; memcpy((uint8_t *)&packet.mac, (uint8_t *)&MINRF.beacon.mac, sizeof(packet.mac)); MINRFreverseMAC(packet.mac); MINRFwhiten((uint8_t *)&packet, sizeof(packet), MINRF.channel[i] | 0x40); MINRFswapbuf((uint8_t*)&packet,sizeof(packet)); uint32_t pdu = packet.mac[0]<<24 | packet.mac[1]<<16 | packet.mac[2]<<8 | packet.mac[3]; MINRF.beacon.PDU[i] = pdu; } } /*********************************************************************************************\ * helper functions \*********************************************************************************************/ /** * @brief reverse 6-byte-array, hard-coded size of 6 * * @param _mac pass an uint_t[6] */ void MINRFreverseMAC(uint8_t _mac[]){ uint8_t _reversedMAC[6]; for (uint8_t i=0; i<6; i++){ _reversedMAC[5-i] = _mac[i]; } memcpy(_mac,_reversedMAC, sizeof(_reversedMAC)); } /** * @brief * * @param _string input string in format: AABBCCDDEEFF (upper case!) * @param _mac target byte array with fixed size of 6 */ void MINRFMACStringToBytes(char* _string, uint8_t _mac[]) { //uppercase uint32_t index = 0; while (index < 12) { char c = _string[index]; uint8_t value = 0; if(c >= '0' && c <= '9') value = (c - '0'); else if (c >= 'A' && c <= 'F') value = (10 + (c - 'A')); _mac[(index/2)] += value << (((index + 1) % 2) * 4); index++; } // DEBUG_SENSOR_LOG(PSTR("MINRF: %s to MAC-array: %02X%02X%02X%02X%02X%02X"),_string,_mac[0],_mac[1],_mac[2],_mac[3],_mac[4],_mac[5]); } /** * @brief helper function, to avoid to start with an ignored sensor type * */ void MINRFcomputefirstUsedPacketMode(void){ for (uint32_t i = 0; iCGD1) MINRF.firstUsedPacketMode=0; break; } } } /** * @brief Set packet mode and fitting PDU-type of the NRF24L01 * * @param _mode The internal packet mode number */ void MINRFchangePacketModeTo(uint8_t _mode) { uint32_t (_nextchannel) = MINRF.currentChan+1; if (_nextchannel>2) _nextchannel=0; switch(_mode){ case 0: // normal BLE advertisement NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171) break; case 1: // special flora packet NRF24radio.openReadingPipe(0,kMINRFFloPDU[_nextchannel]); // 95 fe 71 20 -> flora break; case 2: // special MJ_HT_V1 packet NRF24radio.openReadingPipe(0,kMINRFMJPDU[_nextchannel]); // 95 fe 50 20 -> MJ_HT_V1 break; case 3: // special LYWSD02 packet NRF24radio.openReadingPipe(0,kMINRFL2PDU[_nextchannel]);// 95 fe 70 20 -> LYWSD02 break; case 4: // special LYWSD03 packet NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message) break; case 5: // special CGG1 packet NRF24radio.openReadingPipe(0,kMINRFCGGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1 break; case 6: // special CGD1 packet NRF24radio.openReadingPipe(0,kMINRFCGDPDU[_nextchannel]); // cd fd 08 0c -> CGD1 break; } // DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode); MINRF.packetMode = _mode; } /** * @brief Return the slot number of a known sensor or return create new sensor slot * * @param _serial BLE address of the sensor * @param _type Type number of the sensor * @return uint32_t Known or new slot in the sensors-vector */ uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){ DEBUG_SENSOR_LOG(PSTR("MINRF: will test ID-type: %x"), _type); bool _success = false; for (uint32_t i=0;i<6;i++){ // i < sizeof(kMINRFSlaveID) gives compiler warning if(_type == kMINRFSlaveID[i]){ DEBUG_SENSOR_LOG(PSTR("MINRF: ID is type %u"), i); _type = i+1; _success = true; } else { DEBUG_SENSOR_LOG(PSTR("MINRF: ID-type is not: %x"),kMINRFSlaveID[i]); } } if(!_success) return 0xff; DEBUG_SENSOR_LOG(PSTR("MINRF: vector size %u"), MIBLEsensors.size()); for(uint32_t i=0; i 2){ MINRF.confirmedSensors++; } } } /** * @brief generic MiBeacon parser * */ void MINRFhandleMiBeaconPacket(void){ MINRFreverseMAC(MINRF.buffer.miBeacon.Mac); uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.miBeacon.Mac, MINRF.buffer.miBeacon.productID); if(_slot==0xff) return; DEBUG_SENSOR_LOG(PSTR("MINRF: slot %u, size vector: %u %u"),_slot,MIBLEsensors.size()); mi_sensor_t *_sensorVec = &MIBLEsensors.at(_slot); float _tempFloat; if (_sensorVec->type==MJ_HT_V1 || _sensorVec->type==CGG1){ memcpy(MINRFtempBuf,(uint8_t*)&MINRF.buffer.miBeacon.spare, 32-9); // shift by one byte for the MJ_HT_V1 and CGG1 memcpy((uint8_t*)&MINRF.buffer.miBeacon.type,MINRFtempBuf, 32-9); // shift by one byte for the MJ_HT_V1 and CGG1 } DEBUG_SENSOR_LOG(PSTR("%s at slot %u"), kNRFSlaveType[_sensorVec->type-1],_slot); switch(MINRF.buffer.miBeacon.type){ case 0x04: _tempFloat=(float)(MINRF.buffer.miBeacon.temp)/10.0f; if(_tempFloat<60){ _sensorVec->temp=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 4: temp updated")); } DEBUG_SENSOR_LOG(PSTR("Mode 4: U16: %u Temp"), MINRF.buffer.miBeacon.temp ); break; case 0x06: _tempFloat=(float)(MINRF.buffer.miBeacon.hum)/10.0f; if(_tempFloat<101){ _sensorVec->hum=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 6: hum updated")); } DEBUG_SENSOR_LOG(PSTR("Mode 6: U16: %u Hum"), MINRF.buffer.miBeacon.hum); break; case 0x07: _sensorVec->lux=MINRF.buffer.miBeacon.lux & 0x00ffffff; DEBUG_SENSOR_LOG(PSTR("Mode 7: U24: %u Lux"), MINRF.buffer.miBeacon.lux & 0x00ffffff); break; case 0x08: _tempFloat =(float)MINRF.buffer.miBeacon.moist; if(_tempFloat<100){ _sensorVec->moisture=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated")); } DEBUG_SENSOR_LOG(PSTR("Mode 8: U8: %u Moisture"), MINRF.buffer.miBeacon.moist); break; case 0x09: _tempFloat=(float)(MINRF.buffer.miBeacon.fert); if(_tempFloat<65535){ // ??? _sensorVec->fertility=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated")); } DEBUG_SENSOR_LOG(PSTR("Mode 9: U16: %u Fertility"), MINRF.buffer.miBeacon.fert); break; case 0x0a: if(MINRF.buffer.miBeacon.bat<101){ _sensorVec->bat = MINRF.buffer.miBeacon.bat; DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated")); } DEBUG_SENSOR_LOG(PSTR("Mode a: U8: %u %%"), MINRF.buffer.miBeacon.bat); break; case 0x0d: _tempFloat=(float)(MINRF.buffer.miBeacon.HT.temp)/10.0f; if(_tempFloat<60){ _sensorVec->temp = _tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode d: temp updated")); } _tempFloat=(float)(MINRF.buffer.miBeacon.HT.hum)/10.0f; if(_tempFloat<100){ _sensorVec->hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode d: hum updated")); } DEBUG_SENSOR_LOG(PSTR("Mode d: U16: %x Temp U16: %x Hum"), MINRF.buffer.miBeacon.HT.temp, MINRF.buffer.miBeacon.HT.hum); break; } } /** * @brief more or less a placeholder, at least it is technically possible to really decrypt data, but * the bind_key must be retrieved with 3rd-party-tools -> TODO */ void MINRFhandleLYWSD03Packet(void){ // not much to do ATM, just show the sensor without data MINRFreverseMAC(MINRF.buffer.miBeacon.Mac); uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.miBeacon.Mac, MINRF.buffer.miBeacon.productID); DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); if(_slot==0xff) return; MINRF_LOG_BUFFER(MINRF.streamBuffer); MINRF_LOG_BUFFER(MINRF.lsfrBuffer); MINRF_LOG_BUFFER(MINRF.buffer.raw); } /** * @brief parse the Cleargrass-packet * Note: battery section is based on "internet data" -> not confirmed yet */ void MINRFhandleCGD1Packet(void){ // no MiBeacon MINRFreverseMAC(MINRF.buffer.CGDPacket.serial); uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.CGDPacket.serial, 0x0576); // This must be hard-coded, no object-id in Cleargrass-packet DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); if(_slot==0xff) return; switch (MINRF.buffer.CGDPacket.mode){ case 0x0401: float _tempFloat; _tempFloat=(float)(MINRF.buffer.CGDPacket.temp)/10.0f; if(_tempFloat<60){ MIBLEsensors.at(_slot).temp = _tempFloat; DEBUG_SENSOR_LOG(PSTR("CGD1: temp updated")); } _tempFloat=(float)(MINRF.buffer.CGDPacket.hum)/10.0f; if(_tempFloat<100){ MIBLEsensors.at(_slot).hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("CGD1: hum updated")); } DEBUG_SENSOR_LOG(PSTR("CGD1: U16: %x Temp U16: %x Hum"), MINRF.buffer.CGDPacket.temp, MINRF.buffer.CGDPacket.hum); break; case 0x0102: if(MINRF.buffer.CGDPacket.bat<101){ MIBLEsensors.at(_slot).bat = MINRF.buffer.CGDPacket.bat; DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated")); } break; default: DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected CGD1-packet")); MINRF_LOG_BUFFER(MINRF.buffer.raw); } } /*********************************************************************************************\ * Main loop of the driver \*********************************************************************************************/ void MINRF_EVERY_50_MSECOND() { // Every 50mseconds if(MINRF.timer>6000){ // happens every 6000/20 = 300 seconds DEBUG_SENSOR_LOG(PSTR("MINRF: check for FAKE sensors")); MINRFpurgeFakeSensors(); MINRF.timer=0; } MINRF.timer++; if (!MINRFreceivePacket()){ // DEBUG_SENSOR_LOG(PSTR("MINRF: nothing received")); } else { switch (MINRF.packetMode) { case 0: if (MINRF.beacon.active){ MINRFhandleBeacon(&MINRFdummyEntry,6); } else MINRFhandleScan(); break; case FLORA: case MJ_HT_V1: case LYWSD02: case CGG1: MINRFhandleMiBeaconPacket(); break; case LYWSD03: MINRFhandleLYWSD03Packet(); break; case CGD1: MINRFhandleCGD1Packet(); break; default: break; } } if (MINRF.beacon.active || MINRF.activeScan) { MINRF.firstUsedPacketMode=0; } MINRF.packetMode = (MINRF.packetMode+1>CGD1) ? MINRF.firstUsedPacketMode : MINRF.packetMode+1; for (uint32_t i = MINRF.packetMode; i 0) { if (XdrvMailbox.payload == 0) XdrvMailbox.payload = MINRF.perPage; // ignore 0 MINRF.perPage = XdrvMailbox.payload; } else XdrvMailbox.payload = MINRF.perPage; Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_NRF_IGNORE: if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.payload == 0){ MINRF.ignore = 0; } else if (XdrvMailbox.payload < CGD1+1) { bitSet(MINRF.ignore,XdrvMailbox.payload); MINRFcomputefirstUsedPacketMode(); MINRF.timer = 5900; Response_P(S_JSON_NRF_COMMAND, command, kMINRFSlaveType[XdrvMailbox.payload-1]); } else if (XdrvMailbox.payload == 255) { MINRF.ignore = 255; } } Response_P(S_JSON_NRF_COMMAND_NVALUE, command, MINRF.ignore); break; case CMND_NRF_SCAN: if (XdrvMailbox.data_len > 0) { MINRF.beacon.active = false; switch(XdrvMailbox.payload){ case 0: // new scan MINRF.activeScan = true; MINRF.stopScan = false; MINRFscanResult.erase(std::remove_if(MINRFscanResult.begin(), MINRFscanResult.end(), [](scan_entry_t&) { return true; }), MINRFscanResult.end()); break; case 1: // append scan MINRF.activeScan = true; MINRF.stopScan = false; break; case 2: // stop scan MINRF.stopScan = true; break; } Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload); } break; case CMND_NRF_BEACON: if (XdrvMailbox.data_len > 0) { if(XdrvMailbox.data_len<3){ // a list entry if (XdrvMailbox.payload < MINRFscanResult.size()) { MINRFstartBeacon(XdrvMailbox.payload); Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload); } } if (XdrvMailbox.data_len==12){ // a MAC-string memset(MINRF.beacon.mac,0,sizeof(MINRF.beacon.mac)); MINRFMACStringToBytes(XdrvMailbox.data, MINRF.beacon.mac); MINRF.beacon.time=0; MINRF.beacon.active=true; Response_P(S_JSON_NRF_COMMAND, command, XdrvMailbox.data); } MINRFcomputeBeaconPDU(); } break; case CMND_NRF_CHAN: if (XdrvMailbox.data_len == 1) { switch(XdrvMailbox.payload){ case 0: case 1: case 2: bitRead(MINRF.channelIgnore,XdrvMailbox.payload) == 0 ? bitSet(MINRF.channelIgnore,XdrvMailbox.payload) : bitClear(MINRF.channelIgnore,XdrvMailbox.payload); break; } } Response_P(S_JSON_NRF_COMMAND_NVALUE, command, MINRF.channelIgnore); break; default: // else for Unknown command serviced = false; break; } } else { return false; } return serviced; } /*********************************************************************************************\ * Presentation \*********************************************************************************************/ const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}"; const char HTTP_MINRF_MAC[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}"; const char HTTP_MINRF_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%dus/cm{e}"; const char HTTP_MINRF_HL[] PROGMEM = "{s}
{m}
{e}"; const char HTTP_NRF24NEW[] PROGMEM = "{s}%sL01%c{m}%u%s / %u{e}"; void MINRFShow(bool json) { if (json) { for (uint32_t i = 0; i < MIBLEsensors.size(); i++) { if(MIBLEsensors[i].showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MINRF: sensor not fully registered yet")); break; } ResponseAppend_P(PSTR(",\"%s-%02x%02x%02x\":{"),kMINRFSlaveType[MIBLEsensors[i].type-1],MIBLEsensors[i].serial[3],MIBLEsensors[i].serial[4],MIBLEsensors[i].serial[5]); if (MIBLEsensors[i].type==FLORA && !isnan(MIBLEsensors[i].temp)){ char stemp[FLOATSZ]; dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, stemp); ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), stemp); if(MIBLEsensors[i].lux!=0xffffffff){ // this is the error code -> no lux ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), MIBLEsensors[i].lux); } if(!isnan(MIBLEsensors[i].moisture)){ dtostrfd(MIBLEsensors[i].moisture, 0, stemp); ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%s"), stemp); } if(!isnan(MIBLEsensors[i].fertility)){ dtostrfd(MIBLEsensors[i].fertility, 0, stemp); ResponseAppend_P(PSTR(",\"Fertility\":%s"), stemp); } ResponseJsonEnd(); } if (MIBLEsensors[i].type>FLORA){ if(!isnan(MIBLEsensors[i].temp) && !isnan(MIBLEsensors[i].hum)){ ResponseAppendTHD(MIBLEsensors[i].temp,MIBLEsensors[i].hum); } if(MIBLEsensors[i].bat!=0x00){ // this is the error code -> no battery ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors[i].bat); } ResponseJsonEnd(); } } if(MINRF.beacon.active){ ResponseAppend_P(PSTR(",\"Beacon\":{\"Timer\":%u}"),MINRF.beacon.time); } // ResponseJsonEnd(); #ifdef USE_WEBSERVER } else { static uint32_t _page = 0; static uint32_t counter = 0; int32_t i = _page * MINRF.perPage; uint32_t j = i + MINRF.perPage; if (j+1>MINRF.confirmedSensors){ j = MINRF.confirmedSensors; } char stemp[5] ={0}; if (MINRF.confirmedSensors-(_page*MINRF.perPage)>1 && MINRF.perPage!=1) { sprintf_P(stemp,"-%u",j); } if (MINRF.confirmedSensors==0) i=-1; // only for the GUI WSContentSend_PD(HTTP_NRF24NEW, NRF24type, NRF24.chipType, i+1,stemp,MINRF.confirmedSensors); for (i ; i no valid value WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kMINRFSlaveType[MIBLEsensors[i].type-1], MIBLEsensors[i].lux); } if(!isnan(MIBLEsensors[i].moisture)){ // this is the error code -> no valid value WSContentSend_PD(HTTP_SNS_MOISTURE, kMINRFSlaveType[MIBLEsensors[i].type-1], MIBLEsensors[i].moisture); } if(!isnan(MIBLEsensors[i].fertility)){ // this is the error code -> no valid value WSContentSend_PD(HTTP_MINRF_FLORA_DATA, kMINRFSlaveType[MIBLEsensors[i].type-1], MIBLEsensors[i].fertility); } } if (MIBLEsensors[i].type>FLORA){ // everything "above" Flora WSContentSend_THD(kMINRFSlaveType[MIBLEsensors[i].type-1], MIBLEsensors[i].temp, MIBLEsensors[i].hum); if(MIBLEsensors[i].bat!=0x00){ // without "juice" nothing can be done WSContentSend_PD(HTTP_BATTERY, kMINRFSlaveType[MIBLEsensors[i].type-1], MIBLEsensors[i].bat); } } } if(MINRF.beacon.active){ WSContentSend_PD(HTTP_MINRF_HL); WSContentSend_PD(HTTP_MINRF_HL); WSContentSend_PD(HTTP_MINRF_MAC, F("Beacon"), D_MAC_ADDRESS, MINRF.beacon.mac[0], MINRF.beacon.mac[1],MINRF.beacon.mac[2],MINRF.beacon.mac[3],MINRF.beacon.mac[4],MINRF.beacon.mac[5]); WSContentSend_PD(PSTR("{s}Beacon Time{m}%u seconds{e}"),MINRF.beacon.time); } if(counter>3) { _page++; counter = 0; } counter++; if(MINRF.confirmedSensors%MINRF.perPage==0 && _page==MINRF.confirmedSensors/MINRF.perPage) _page=0; if(_page>MINRF.confirmedSensors/MINRF.perPage) _page=0; #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns61(uint8_t function) { bool result = false; if (NRF24.chipType) { switch (function) { case FUNC_INIT: MINRFinitBLE(1); AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF: started")); break; case FUNC_EVERY_50_MSECOND: MINRF_EVERY_50_MSECOND(); break; case FUNC_EVERY_SECOND: MINRFbeaconCounter(); break; case FUNC_COMMAND: result = NRFCmd(); break; case FUNC_JSON_APPEND: MINRFShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: MINRFShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_MIBLE #endif // USE_NRF24 #endif // USE_SPI