/*
tasmota.ino - Tasmota firmware for iTead Sonoff, Wemos, NodeMCU, ESP8266 and ESP32 hardwares
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Location specific includes
#ifndef ESP32_STAGE // ESP32 Stage has no core_version.h file. Disable include via PlatformIO Option
#include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_7_1)
#endif // ESP32_STAGE
#include "include/tasmota_compat.h"
#include "include/tasmota_version.h" // Tasmota version information
#include "include/tasmota.h" // Enumeration used in my_user_config.h
#include "my_user_config.h" // Fixed user configurable options
#ifdef USE_TLS
#include // We need to include before "tasmota_globals.h" to take precedence over the BearSSL version in Arduino
#endif // USE_TLS
#include "include/tasmota_globals.h" // Function prototypes and global configuration
#include "include/i18n.h" // Language support configured by my_user_config.h
#include "include/tasmota_template.h" // Hardware configuration
// Libraries
#include // Ota
#include // Ota
#include // Any getHostByName
#ifdef ESP32
#ifdef USE_TLS
#include "HTTPUpdateLight.h" // Ota over HTTPS for ESP32
#endif // USE_TLS
#endif
#include // Webserver, Updater
#include
#include
#include
#include
#include
#ifdef USE_ARDUINO_OTA
#include // Arduino OTA
#ifndef USE_DISCOVERY
#define USE_DISCOVERY
#endif
#endif // USE_ARDUINO_OTA
#ifdef USE_DISCOVERY
#include // MQTT, Webserver, Arduino OTA
#endif // USE_DISCOVERY
//#ifdef USE_I2C
#include // I2C support library
//#endif // USE_I2C
#ifdef USE_SPI
#include // SPI support, TFT, SDcard
#endif // USE_SPI
#ifdef USE_UFILESYS
#ifdef ESP8266
#include
#include
#ifdef USE_SDCARD
#include
#include
#endif // USE_SDCARD
#endif // ESP8266
#ifdef ESP32
#include
#ifdef USE_SDCARD
#include
#include
#endif // USE_SDCARD
#include "FFat.h"
#include "FS.h"
#endif // ESP32
#endif // USE_UFILESYS
// Structs
#include "include/tasmota_types.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#include "soc/efuse_reg.h"
#endif
/*********************************************************************************************\
* Global variables
\*********************************************************************************************/
const uint32_t VERSION_MARKER[] PROGMEM = { 0x5AA55AA5, 0xFFFFFFFF, 0xA55AA55A };
typedef struct {
uint16_t valid; // 280 (RTC memory offset 100 - sizeof(RTCRBT))
uint8_t fast_reboot_count; // 282
uint8_t free_003[1]; // 283
} TRtcReboot;
TRtcReboot RtcReboot;
#ifdef ESP32
RTC_NOINIT_ATTR TRtcReboot RtcDataReboot;
#endif // ESP32
typedef struct {
uint16_t valid; // 290 (RTC memory offset 100)
uint8_t oswatch_blocked_loop; // 292
uint8_t ota_loader; // 293
uint32_t energy_kWhtoday; // 294
uint32_t energy_kWhtotal; // 298
volatile uint32_t pulse_counter[MAX_COUNTERS]; // 29C - See #9521 why volatile
power_t power; // 2AC
EnergyUsage energy_usage; // 2B0
uint32_t nextwakeup; // 2C8
uint32_t baudrate; // 2CC
uint32_t ultradeepsleep; // 2D0
uint16_t deepsleep_slip; // 2D4
uint8_t improv_state; // 2D6
uint8_t free_2d7[1]; // 2D7
int32_t energy_kWhtoday_ph[3]; // 2D8
int32_t energy_kWhtotal_ph[3]; // 2E4
int32_t energy_kWhexport_ph[3]; // 2F0
uint32_t utc_time; // 2FC
} TRtcSettings;
TRtcSettings RtcSettings;
#ifdef ESP32
RTC_NOINIT_ATTR TRtcSettings RtcDataSettings;
#endif // ESP32
struct TIME_T {
uint8_t second;
uint8_t minute;
uint8_t hour;
uint8_t day_of_week; // sunday is day 1
uint8_t day_of_month;
uint8_t month;
char name_of_month[4];
uint16_t day_of_year;
uint16_t year;
uint32_t days;
uint32_t valid;
} RtcTime;
struct XDRVMAILBOX {
bool grpflg;
bool usridx;
uint16_t command_code;
uint32_t index;
uint32_t data_len;
int32_t payload;
char *topic;
char *data;
char *command;
} XdrvMailbox;
DNSClient DnsClient;
WiFiUDP PortUdp; // UDP Syslog and Alexa
#ifdef ESP32
/*
#if CONFIG_IDF_TARGET_ESP32C3 || // support USB via HWCDC using JTAG interface
CONFIG_IDF_TARGET_ESP32S2 || // support USB via USBCDC
CONFIG_IDF_TARGET_ESP32S3 // support USB via HWCDC using JTAG interface or USBCDC
*/
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//#if CONFIG_TINYUSB_CDC_ENABLED // This define is not recognized here so use USE_USB_CDC_CONSOLE
#ifdef USE_USB_CDC_CONSOLE
//#warning **** TasConsole use USB ****
#if ARDUINO_USB_MODE
//#warning **** TasConsole ARDUINO_USB_MODE ****
HWCDC TasConsole; // ESP32C3/S3 embedded USB using JTAG interface
bool tasconsole_serial = false;
//#warning **** TasConsole uses HWCDC ****
#else // No ARDUINO_USB_MODE
#include "USB.h"
#include "USBCDC.h"
USBCDC TasConsole; // ESP32Sx embedded USB interface
bool tasconsole_serial = false;
//#warning **** TasConsole uses USBCDC ****
#endif // ARDUINO_USB_MODE
#else // No USE_USB_CDC_CONSOLE
HardwareSerial TasConsole = Serial; // Fallback serial interface for ESP32C3, S2 and S3 if no USB_SERIAL defined
bool tasconsole_serial = true;
//#warning **** TasConsole uses Serial ****
#endif // USE_USB_CDC_CONSOLE
#else // No ESP32C3, S2 or S3
HardwareSerial TasConsole = Serial; // Fallback serial interface for non ESP32C3, S2 and S3
bool tasconsole_serial = true;
//#warning **** TasConsole uses Serial ****
#endif // ESP32C3, S2 or S3
#else // No ESP32
HardwareSerial TasConsole = Serial; // Only serial interface
#endif // ESP32
struct TasmotaGlobal_t {
uint32_t global_update; // Timestamp of last global temperature and humidity update
uint32_t baudrate; // Current Serial baudrate
uint32_t pulse_timer[MAX_PULSETIMERS]; // Power off timer
uint32_t blink_timer; // Power cycle timer
uint32_t backlog_timer; // Timer for next command in backlog
uint32_t loop_load_avg; // Indicative loop load average
uint32_t log_buffer_pointer; // Index in log buffer
uint32_t uptime; // Counting every second until 4294967295 = 130 year
uint32_t zc_time; // Zero-cross moment (microseconds)
uint32_t zc_offset; // Zero cross moment offset due to monitoring chip processing (microseconds)
uint32_t zc_code_offset; // Zero cross moment offset due to executing power code (microseconds)
uint32_t zc_interval; // Zero cross interval around 8333 (60Hz) or 10000 (50Hz) (microseconds)
GpioOptionABits gpio_optiona; // GPIO Option_A flags
void *log_buffer_mutex; // Control access to log buffer
power_t power; // Current copy of Settings->power
power_t rel_inverted; // Relay inverted flag (1 = (0 = On, 1 = Off))
power_t rel_bistable; // Relay bistable bitmap
power_t last_power; // Last power set state
power_t blink_power; // Blink power state
power_t blink_powersave; // Blink start power save state
power_t blink_mask; // Blink relay active mask
int serial_in_byte_counter; // Index in receive buffer
float temperature_celsius; // Provide a global temperature to be used by some sensors
float humidity; // Provide a global humidity to be used by some sensors
float pressure_hpa; // Provide a global pressure to be used by some sensors
uint16_t gpio_pin[MAX_GPIO_PIN]; // GPIO functions indexed by pin number
myio my_module; // Active copy of Module GPIOs (17 x 16 bits)
uint16_t blink_counter; // Number of blink cycles
uint16_t seriallog_timer; // Timer to disable Seriallog
uint16_t syslog_timer; // Timer to re-enable syslog_level
uint16_t tele_period; // Tele period timer
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
uint16_t pwm_inverted; // PWM inverted flag (1 = inverted) - extended to 16 bits for ESP32
#ifdef ESP32
int16_t pwm_cur_value[MAX_PWMS]; // Current effective values of PWMs as applied to GPIOs
int16_t pwm_cur_phase[MAX_PWMS]; // Current phase values of PWMs as applied to GPIOs
int16_t pwm_value[MAX_PWMS]; // Wanted values of PWMs after update - -1 means no change
int16_t pwm_phase[MAX_PWMS]; // Wanted phase of PWMs after update - -1 means no change
#endif // ESP32
bool serial_local; // Handle serial locally
bool fallback_topic_flag; // Use Topic or FallbackTopic
bool backlog_nodelay; // Execute all backlog commands with no delay
bool backlog_mutex; // Command backlog pending
bool stop_flash_rotate; // Allow flash configuration rotation
bool blinkstate; // LED state
bool pwm_present; // Any PWM channel configured with SetOption15 0
bool i2c_enabled; // I2C configured
#ifdef ESP32
bool i2c_enabled_2; // I2C configured, second controller on ESP32, Wire1
bool ota_factory; // Select safeboot binary
#endif
bool ntp_force_sync; // Force NTP sync
bool skip_light_fade; // Temporarily skip light fading
bool restart_halt; // Do not restart but stay in wait loop
bool module_changed; // Indicate module changed since last restart
bool wifi_stay_asleep; // Allow sleep only incase of ESP32 BLE
bool no_autoexec; // Disable autoexec
bool enable_logging; // Enable logging
uint8_t user_globals[3]; // User set global temp/hum/press
uint8_t init_state; // Tasmota init state
uint8_t heartbeat_inverted; // Heartbeat pulse inverted flag
uint8_t spi_enabled; // SPI configured
uint8_t soft_spi_enabled; // Software SPI configured
uint8_t blinks; // Number of LED blinks
uint8_t restart_flag; // Tasmota restart flag
uint8_t ota_state_flag; // OTA state flag
uint8_t wifi_state_flag; // Wifi state flag
uint8_t mqtt_cmnd_blocked; // Ignore flag for publish command
uint8_t mqtt_cmnd_blocked_reset; // Count down to reset if needed
uint8_t state_250mS; // State 250msecond per second flag
uint8_t latching_relay_pulse; // Latching relay pulse timer
uint8_t active_device; // Active device in ExecuteCommandPower
uint8_t sleep; // Current copy of Settings->sleep
uint8_t skip_sleep; // Abandon sleep and allow loop
uint8_t leds_present; // Max number of LED supported
uint8_t led_inverted; // LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t led_power; // LED power state
uint8_t ledlnk_inverted; // Link LED inverted flag (1 = (0 = On, 1 = Off))
// uint8_t pwm_inverted; // PWM inverted flag (1 = inverted) -- TODO
uint8_t energy_driver; // Energy monitor configured
uint8_t light_driver; // Light module configured
uint8_t light_type; // Light types
uint8_t serial_in_byte; // Received byte
uint8_t devices_present; // Max number of devices supported
uint8_t masterlog_level; // Master log level used to override set log level
uint8_t seriallog_level; // Current copy of Settings->seriallog_level
uint8_t syslog_level; // Current copy of Settings->syslog_level
uint8_t templog_level; // Temporary log level to be used by HTTP cm and Telegram
uint8_t module_type; // Current copy of Settings->module or user template type
uint8_t emulated_module_type; // Emulated module type as requested by ESP32
uint8_t last_source; // Last command source
uint8_t shutters_present; // Number of actual define shutters
uint8_t discovery_counter; // Delayed discovery counter
#ifdef USE_PWM_DIMMER
uint8_t restore_powered_off_led_counter; // Seconds before powered-off LED (LEDLink) is restored
uint8_t pwm_dimmer_led_bri; // Adjusted brightness LED level
#endif // USE_PWM_DIMMER
#ifndef SUPPORT_IF_STATEMENT
uint8_t backlog_index; // Command backlog index
uint8_t backlog_pointer; // Command backlog pointer
String backlog[MAX_BACKLOG]; // Command backlog buffer
#endif
#ifdef MQTT_DATA_STRING
String mqtt_data; // Buffer filled by Response functions
#else
char mqtt_data[MESSZ]; // MQTT publish buffer
#endif
char version[16]; // Composed version string like 255.255.255.255
char image_name[33]; // Code image and/or commit
char hostname[33]; // Composed Wifi hostname
char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer
char mqtt_client[99]; // Composed MQTT Clientname
char mqtt_topic[TOPSZ]; // Composed MQTT topic
#ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED
char* log_buffer = nullptr; // Log buffer in IRAM
#else
char log_buffer[LOG_BUFFER_SIZE]; // Log buffer in DRAM
#endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED
#ifdef USE_BERRY
bool berry_fast_loop_enabled = false; // is Berry fast loop enabled, i.e. control is passed at each loop iteration
#endif // USE_BERRY
} TasmotaGlobal;
TSettings* Settings = nullptr;
#ifdef SUPPORT_IF_STATEMENT
#include
LinkedList backlog; // Command backlog implemented with LinkedList
#define BACKLOG_EMPTY (backlog.size() == 0)
#else
#define BACKLOG_EMPTY (TasmotaGlobal.backlog_pointer == TasmotaGlobal.backlog_index)
#endif
/*********************************************************************************************\
* Main
\*********************************************************************************************/
void setup(void) {
#ifdef ESP32
#ifdef DISABLE_ESP32_BROWNOUT
DisableBrownout(); // Workaround possible weak LDO resulting in brownout detection during Wifi connection
#endif // DISABLE_ESP32_BROWNOUT
#ifdef CONFIG_IDF_TARGET_ESP32
// restore GPIO16/17 if no PSRAM is found
if (!FoundPSRAM()) {
// test if the CPU is not pico
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_version = chip_ver & 0x7;
if (pkg_version <= 3) { // D0WD, S0WD, D2WD
gpio_reset_pin(GPIO_NUM_16);
gpio_reset_pin(GPIO_NUM_17);
}
}
#endif // CONFIG_IDF_TARGET_ESP32
#endif // ESP32
RtcPreInit();
SettingsInit();
#ifdef USE_EMERGENCY_RESET
EmergencyReset();
#endif // USE_EMERGENCY_RESET
memset(&TasmotaGlobal, 0, sizeof(TasmotaGlobal));
TasmotaGlobal.baudrate = APP_BAUDRATE;
TasmotaGlobal.seriallog_timer = SERIALLOG_TIMER;
TasmotaGlobal.temperature_celsius = NAN;
TasmotaGlobal.blinks = 201;
TasmotaGlobal.wifi_state_flag = WIFI_RESTART;
TasmotaGlobal.tele_period = 9999;
TasmotaGlobal.active_device = 1;
TasmotaGlobal.global_state.data = 0xF; // Init global state (wifi_down, mqtt_down) to solve possible network issues
TasmotaGlobal.enable_logging = 1;
TasmotaGlobal.seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
RtcRebootLoad();
if (!RtcRebootValid()) {
RtcReboot.fast_reboot_count = 0;
}
#ifdef FIRMWARE_MINIMAL
RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection
#else
if (ResetReason() == REASON_DEEP_SLEEP_AWAKE) {
RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection
} else {
RtcReboot.fast_reboot_count++;
}
#endif
RtcRebootSave();
if (RtcSettingsLoad(0)) {
uint32_t baudrate = (RtcSettings.baudrate / 300) * 300; // Make it a valid baudrate
if (baudrate) { TasmotaGlobal.baudrate = baudrate; }
}
// Init settings and logging preparing for AddLog use
#ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED
ESP.setIramHeap();
Settings = (TSettings*)malloc(sizeof(TSettings)); // Allocate in "new" 16k heap space
TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "new" 16k heap space
ESP.resetHeap();
if (TasmotaGlobal.log_buffer == nullptr) {
TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "old" heap space as fallback
}
if (TasmotaGlobal.log_buffer != nullptr) {
TasmotaGlobal.log_buffer[0] = '\0';
}
#endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED
if (Settings == nullptr) {
Settings = (TSettings*)malloc(sizeof(TSettings));
}
// Init command console (either serial or USB) preparing for AddLog use
Serial.begin(TasmotaGlobal.baudrate);
Serial.println();
// Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars
#ifdef ESP32
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#ifdef USE_USB_CDC_CONSOLE
TasConsole.begin(115200); // Will always be 115200 bps
#if !ARDUINO_USB_MODE
USB.begin(); // This needs a serial console with DTR/DSR support
#endif // No ARDUINO_USB_MODE
TasConsole.println();
AddLog(LOG_LEVEL_INFO, PSTR("CMD: Using USB CDC"));
#else // No USE_USB_CDC_CONSOLE
TasConsole = Serial;
#endif // USE_USB_CDC_CONSOLE
#else // No ESP32C3, S2 or S3
TasConsole = Serial;
#endif // ESP32C3, S2 or S3
#else // No ESP32
TasConsole = Serial;
#endif // ESP32
// Ready for AddLog use
// AddLog(LOG_LEVEL_INFO, PSTR("ADR: Settings %p, Log %p"), Settings, TasmotaGlobal.log_buffer);
#ifdef ESP32
AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s %s"), GetDeviceHardware().c_str(),
FoundPSRAM() ? (CanUsePSRAM() ? "(PSRAM)" : "(PSRAM disabled)") : "" );
AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: FoundPSRAM=%i CanUsePSRAM=%i"), FoundPSRAM(), CanUsePSRAM());
#if !defined(HAS_PSRAM_FIX)
if (FoundPSRAM() && !CanUsePSRAM()) {
AddLog(LOG_LEVEL_INFO, PSTR("HDW: PSRAM is disabled, requires specific compilation on this hardware (see doc)"));
}
#endif
#else // ESP32
AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s"), GetDeviceHardware().c_str());
#endif // ESP32
#ifdef USE_UFILESYS
UfsInit(); // xdrv_50_filesystem.ino
#endif
SettingsLoad();
SettingsDelta();
OsWatchInit();
TasmotaGlobal.seriallog_level = Settings->seriallog_level;
TasmotaGlobal.syslog_level = Settings->syslog_level;
TasmotaGlobal.module_changed = (Settings->module != Settings->last_module);
if (TasmotaGlobal.module_changed) {
Settings->baudrate = APP_BAUDRATE / 300;
Settings->serial_config = TS_SERIAL_8N1;
}
SetSerialBaudrate(Settings->baudrate * 300); // Reset serial interface if current baudrate is different from requested baudrate
if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well
UpdateQuickPowerCycle(true);
}
if (ResetReason() != REASON_DEEP_SLEEP_AWAKE) {
#ifdef ESP8266
Settings->flag4.network_wifi = 1; // Make sure we're in control
#endif
#ifdef ESP32
if (!Settings->flag4.network_ethernet) {
Settings->flag4.network_wifi = 1; // Make sure we're in control
}
#endif
}
TasmotaGlobal.stop_flash_rotate = Settings->flag.stop_flash_rotate; // SetOption12 - Switch between dynamic or fixed slot flash save location
TasmotaGlobal.save_data_counter = Settings->save_data;
TasmotaGlobal.sleep = Settings->sleep;
#ifndef USE_EMULATION
Settings->flag2.emulation = 0;
#else
#ifndef USE_EMULATION_WEMO
if (EMUL_WEMO == Settings->flag2.emulation) { Settings->flag2.emulation = 0; }
#endif
#ifndef USE_EMULATION_HUE
if (EMUL_HUE == Settings->flag2.emulation) { Settings->flag2.emulation = 0; }
#endif
#endif // USE_EMULATION
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&TasmotaGlobal, sizeof(TasmotaGlobal));
if (Settings->param[P_BOOT_LOOP_OFFSET]) { // SetOption36
// Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts)
if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET]) { // Restart twice
Settings->flag3.user_esp8285_enable = 0; // SetOption51 - Enable ESP8285 user GPIO's - Disable ESP8285 Generic GPIOs interfering with flash SPI
if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times
for (uint32_t i = 0; i < MAX_RULE_SETS; i++) {
if (bitRead(Settings->rule_stop, i)) {
bitWrite(Settings->rule_enabled, i, 0); // Disable rules causing boot loop
}
}
}
if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times
Settings->rule_enabled = 0; // Disable all rules
TasmotaGlobal.no_autoexec = true;
}
if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times
for (uint32_t i = 0; i < nitems(Settings->my_gp.io); i++) {
Settings->my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors
}
}
if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times
Settings->module = Settings->fallback_module; // Reset module to fallback module
// Settings->last_module = Settings->fallback_module;
}
AddLog(LOG_LEVEL_INFO, PSTR("FRC: " D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count);
}
}
memcpy_P(TasmotaGlobal.version, VERSION_MARKER, 1); // Dummy for compiler saving VERSION_MARKER
snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0
if (VERSION & 0xff) { // Development or patched version 6.3.0.10
snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%s.%d"), TasmotaGlobal.version, VERSION & 0xff);
}
// Thehackbox inserts "release" or "commit number" before compiling using sed -i -e 's/PSTR("(%s)")/PSTR("(85cff52-%s)")/g' tasmota.ino
snprintf_P(TasmotaGlobal.image_name, sizeof(TasmotaGlobal.image_name), PSTR("(%s)"), PSTR(CODE_IMAGE_STR)); // Results in (85cff52-tasmota) or (release-tasmota)
Format(TasmotaGlobal.mqtt_client, SettingsText(SET_MQTT_CLIENT), sizeof(TasmotaGlobal.mqtt_client));
Format(TasmotaGlobal.mqtt_topic, SettingsText(SET_MQTT_TOPIC), sizeof(TasmotaGlobal.mqtt_topic));
if (strchr(SettingsText(SET_HOSTNAME), '%') != nullptr) {
SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME);
snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME), TasmotaGlobal.mqtt_topic, ESP_getChipId() & 0x1FFF);
} else {
snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME));
}
char *s = TasmotaGlobal.hostname;
while (*s) {
if (!(isalnum(*s) || ('.' == *s))) { *s = '-'; } // Valid hostname chars are A..Z, a..z, 0..9, . and -
if ((s == TasmotaGlobal.hostname) && ('-' == *s)) { *s = 'x'; } // First char cannot be a dash so replace by an x
s++;
}
snprintf_P(TasmotaGlobal.mqtt_topic, sizeof(TasmotaGlobal.mqtt_topic), ResolveToken(TasmotaGlobal.mqtt_topic).c_str());
RtcInit();
GpioInit();
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif // ROTARY_V1
#ifdef USE_BERRY
if (!TasmotaGlobal.no_autoexec) {
BerryInit();
}
#endif // USE_BERRY
XdrvCall(FUNC_PRE_INIT);
XsnsCall(FUNC_PRE_INIT);
TasmotaGlobal.init_state = INIT_GPIOS;
SetPowerOnState();
DnsClient.setTimeout(Settings->dns_timeout);
WifiConnect();
AddLog(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s - %s " D_VERSION " %s%s-" ARDUINO_CORE_RELEASE "(%s)"),
PSTR(PROJECT), SettingsText(SET_DEVICENAME), TasmotaGlobal.version, TasmotaGlobal.image_name, GetBuildDateAndTime().c_str());
#ifdef FIRMWARE_MINIMAL
AddLog(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION));
#endif // FIRMWARE_MINIMAL
#ifdef USE_ARDUINO_OTA
ArduinoOTAInit();
#endif // USE_ARDUINO_OTA
XdrvCall(FUNC_INIT);
XsnsCall(FUNC_INIT);
#ifdef USE_SCRIPT
if (bitRead(Settings->rule_enabled, 0)) Run_Scripter(">BS",3,0);
#endif
TasmotaGlobal.rules_flag.system_init = 1;
}
void BacklogLoop(void) {
if (TimeReached(TasmotaGlobal.backlog_timer)) {
if (!BACKLOG_EMPTY && !TasmotaGlobal.backlog_mutex) {
TasmotaGlobal.backlog_mutex = true;
bool nodelay = false;
bool nodelay_detected = false;
String cmd;
do {
#ifdef SUPPORT_IF_STATEMENT
cmd = backlog.shift();
#else
cmd = TasmotaGlobal.backlog[TasmotaGlobal.backlog_pointer];
TasmotaGlobal.backlog[TasmotaGlobal.backlog_pointer] = (const char*) nullptr; // Force deallocation of the String internal memory
TasmotaGlobal.backlog_pointer++;
if (TasmotaGlobal.backlog_pointer >= MAX_BACKLOG) { TasmotaGlobal.backlog_pointer = 0; }
#endif
nodelay_detected = !strncasecmp_P(cmd.c_str(), PSTR(D_CMND_NODELAY), strlen(D_CMND_NODELAY));
if (nodelay_detected) { nodelay = true; }
} while (!BACKLOG_EMPTY && nodelay_detected);
if (!nodelay_detected) {
ExecuteCommand((char*)cmd.c_str(), SRC_BACKLOG);
}
if (nodelay || TasmotaGlobal.backlog_nodelay) {
TasmotaGlobal.backlog_timer = millis(); // Reset backlog_timer which has been set by ExecuteCommand (CommandHandler)
}
TasmotaGlobal.backlog_mutex = false;
}
if (BACKLOG_EMPTY) {
TasmotaGlobal.backlog_nodelay = false;
}
}
}
void SleepDelay(uint32_t mseconds) {
if (!TasmotaGlobal.backlog_nodelay && mseconds) {
uint32_t wait = millis() + mseconds;
while (!TimeReached(wait) && !Serial.available() && !TasmotaGlobal.skip_sleep) { // We need to service serial buffer ASAP as otherwise we get uart buffer overrun
delay(1);
}
} else {
delay(0);
}
}
void Scheduler(void) {
XdrvCall(FUNC_LOOP);
XsnsCall(FUNC_LOOP);
// check LEAmDNS.h
// MDNS.update() needs to be called in main loop
#ifdef ESP8266 // Not needed with esp32 mdns
#ifdef USE_DISCOVERY
#ifdef USE_WEBSERVER
#ifdef WEBSERVER_ADVERTISE
MdnsUpdate();
#endif // WEBSERVER_ADVERTISE
#endif // USE_WEBSERVER
#endif // USE_DISCOVERY
#endif // ESP8266
OsWatchLoop();
ButtonLoop();
SwitchLoop();
#ifdef USE_DEVICE_GROUPS
DeviceGroupsLoop();
#endif // USE_DEVICE_GROUPS
BacklogLoop();
static uint32_t state_50msecond = 0; // State 50msecond timer
if (TimeReached(state_50msecond)) {
SetNextTimeInterval(state_50msecond, 50);
#ifdef ROTARY_V1
RotaryHandler();
#endif // ROTARY_V1
XdrvCall(FUNC_EVERY_50_MSECOND);
XsnsCall(FUNC_EVERY_50_MSECOND);
}
static uint32_t state_100msecond = 0; // State 100msecond timer
if (TimeReached(state_100msecond)) {
SetNextTimeInterval(state_100msecond, 100);
Every100mSeconds();
XdrvCall(FUNC_EVERY_100_MSECOND);
XsnsCall(FUNC_EVERY_100_MSECOND);
}
static uint32_t state_250msecond = 0; // State 250msecond timer
if (TimeReached(state_250msecond)) {
SetNextTimeInterval(state_250msecond, 250);
Every250mSeconds();
XdrvCall(FUNC_EVERY_250_MSECOND);
XsnsCall(FUNC_EVERY_250_MSECOND);
}
static uint32_t state_second = 0; // State second timer
if (TimeReached(state_second)) {
SetNextTimeInterval(state_second, 1000);
PerformEverySecond();
XdrvCall(FUNC_EVERY_SECOND);
XsnsCall(FUNC_EVERY_SECOND);
}
if (!TasmotaGlobal.serial_local) { SerialInput(); }
#ifdef ESP32
if (!tasconsole_serial) { TasConsoleInput(); }
#endif // ESP32
#ifdef USE_ARDUINO_OTA
ArduinoOtaLoop();
#endif // USE_ARDUINO_OTA
}
void loop(void) {
uint32_t my_sleep = millis();
Scheduler();
uint32_t my_activity = millis() - my_sleep;
if (Settings->flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep
// yield(); // yield == delay(0), delay contains yield, auto yield in loop
SleepDelay(TasmotaGlobal.sleep); // https://github.com/esp8266/Arduino/issues/2021
} else {
if (my_activity < (uint32_t)TasmotaGlobal.sleep) {
SleepDelay((uint32_t)TasmotaGlobal.sleep - my_activity); // Provide time for background tasks like wifi
} else {
if (TasmotaGlobal.global_state.network_down) {
SleepDelay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/2 of my_activity period
}
}
}
if (!my_activity) { my_activity++; } // We cannot divide by 0
uint32_t loop_delay = TasmotaGlobal.sleep;
if (!loop_delay) { loop_delay++; } // We cannot divide by 0
uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second
uint32_t this_cycle_ratio = 100 * my_activity / loop_delay;
TasmotaGlobal.loop_load_avg = TasmotaGlobal.loop_load_avg - (TasmotaGlobal.loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one
}