/*
xdrv_23_zigbee_converters.ino - zigbee support for Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* ZCL
\*********************************************************************************************/
typedef union ZCLHeaderFrameControl_t {
struct {
uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific
uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field
uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota
uint8_t disable_def_resp : 1; // don't send back default response
uint8_t reserved : 3;
} b;
uint32_t d8; // raw 8 bits field
} ZCLHeaderFrameControl_t;
class ZCLFrame {
public:
ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id,
const char *buf, size_t buf_len, uint16_t clusterid = 0, uint16_t groupid = 0):
_cmd_id(cmd_id), _manuf_code(manuf_code), _transact_seq(transact_seq),
_payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough
_cluster_id(clusterid), _group_id(groupid)
{
_frame_control.d8 = frame_control;
_payload.addBuffer(buf, buf_len);
};
void publishMQTTReceived(uint16_t groupid, uint16_t clusterid, Z_ShortAddress srcaddr,
uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp) {
#ifdef ZIGBEE_VERBOSE
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{"
"\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\","
"\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d,"
"\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d,"
"\"timestamp\":%d,"
"\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d,"
"\"cmdid\":\"0x%02X\",\"payload\":\"%s\""),
groupid, clusterid, srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp,
_frame_control, _manuf_code, _transact_seq, _cmd_id,
hex_char);
ResponseJsonEnd(); // append '}'
ResponseJsonEnd(); // append '}'
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
#endif
}
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
uint8_t transact_seq;
uint8_t cmd_id;
frame_control.d8 = buf.get8(i++);
if (frame_control.b.manuf_specific) {
manuf_code = buf.get16(i);
i += 2;
}
transact_seq = buf.get8(i++);
cmd_id = buf.get8(i++);
ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id,
(const char *)(buf.buf() + i), len + offset - i,
clusterid, groupid);
return zcl_frame;
}
bool isClusterSpecificCommand(void) {
return _frame_control.b.frame_type & 1;
}
void parseRawAttributes(JsonObject& json, uint8_t offset = 0);
void parseReadAttributes(JsonObject& json, uint8_t offset = 0);
void parseClusterSpecificCommand(JsonObject& json, uint8_t offset = 0);
void postProcessAttributes(uint16_t shortaddr, JsonObject& json);
inline void setGroupId(uint16_t groupid) {
_group_id = groupid;
}
inline void setClusterId(uint16_t clusterid) {
_cluster_id = clusterid;
}
inline uint8_t getCmdId(void) const {
return _cmd_id;
}
inline uint16_t getClusterId(void) const {
return _cluster_id;
}
const SBuffer &getPayload(void) const {
return _payload;
}
private:
ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 };
uint16_t _manuf_code = 0; // optional
uint8_t _transact_seq = 0; // transaction sequence number
uint8_t _cmd_id = 0;
uint16_t _cluster_id = 0;
uint16_t _group_id = 0;
SBuffer _payload;
};
// Zigbee ZCL converters
// from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55
// Input voltage in mV, i.e. 3000 = 3.000V
// Output percentage from 0 to 100 as int
uint8_t toPercentageCR2032(uint32_t voltage) {
uint32_t percentage;
if (voltage < 2100) {
percentage = 0;
} else if (voltage < 2440) {
percentage = 6 - ((2440 - voltage) * 6) / 340;
} else if (voltage < 2740) {
percentage = 18 - ((2740 - voltage) * 12) / 300;
} else if (voltage < 2900) {
percentage = 42 - ((2900 - voltage) * 24) / 160;
} else if (voltage < 3000) {
percentage = 100 - ((3000 - voltage) * 58) / 100;
} else if (voltage >= 3000) {
percentage = 100;
}
return percentage;
}
uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer &buf,
uint32_t offset, uint32_t len) {
uint32_t i = offset;
uint32_t attrtype = buf.get8(i++);
// fallback - enter a null value
json[attrid_str] = (char*) nullptr;
// now parse accordingly to attr type
switch (attrtype) {
case 0x00: // nodata
case 0xFF: // unk
break;
case 0x10: // bool
{
uint8_t val_bool = buf.get8(i++);
if (0xFF != val_bool) {
json[attrid_str] = (bool) (val_bool ? true : false);
}
}
break;
case 0x20: // uint8
{
uint8_t uint8_val = buf.get8(i);
i += 1;
if (0xFF != uint8_val) {
json[attrid_str] = uint8_val;
}
}
break;
case 0x21: // uint16
{
uint16_t uint16_val = buf.get16(i);
i += 2;
if (0xFFFF != uint16_val) {
json[attrid_str] = uint16_val;
}
}
break;
case 0x23: // uint32
{
uint32_t uint32_val = buf.get32(i);
i += 4;
if (0xFFFFFFFF != uint32_val) {
json[attrid_str] = uint32_val;
}
}
break;
// Note: uint40, uint48, uint56, uint64 are stored as Hex
case 0x24: // uint40
case 0x25: // uint48
case 0x26: // uint56
case 0x27: // uint64
{
uint8_t len = attrtype - 0x1F; // 5 - 8
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
i += len;
}
break;
case 0x28: // uint8
{
int8_t int8_val = buf.get8(i);
i += 1;
if (0x80 != int8_val) {
json[attrid_str] = int8_val;
}
}
break;
case 0x29: // uint16
{
int16_t int16_val = buf.get16(i);
i += 2;
if (0x8000 != int16_val) {
json[attrid_str] = int16_val;
}
}
break;
case 0x2B: // uint16
{
int32_t int32_val = buf.get32(i);
i += 4;
if (0x80000000 != int32_val) {
json[attrid_str] = int32_val;
}
}
break;
// Note: int40, int48, int56, int64 are not stored as Hex
case 0x2C: // int40
case 0x2D: // int48
case 0x2E: // int56
case 0x2F: // int64
{
uint8_t len = attrtype - 0x27; // 5 - 8
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
i += len;
}
break;
case 0x41: // octet string, 1 byte len
case 0x42: // char string, 1 byte len
case 0x43: // octet string, 2 bytes len
case 0x44: // char string, 2 bytes len
// For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions
{
bool parse_as_string = true;
uint32_t len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits
i += (attrtype <= 0x42) ? 1 : 2; // increment pointer
// check if we can safely use a string
if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; }
else {
for (uint32_t j = 0; j < len; j++) {
if (0x00 == buf.get8(i+j)) {
parse_as_string = false;
break;
}
}
}
if (parse_as_string) {
char str[len+1];
strncpy(str, buf.charptr(i), len);
str[len] = 0x00;
json[attrid_str] = str;
} else {
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
}
i += len;
break;
}
i += buf.get8(i) + 1;
break;
case 0x08: // data8
case 0x18: // map8
{
uint8_t uint8_val = buf.get8(i);
i += 1;
json[attrid_str] = uint8_val;
}
break;
case 0x09: // data16
case 0x19: // map16
{
uint16_t uint16_val = buf.get16(i);
i += 2;
json[attrid_str] = uint16_val;
}
break;
case 0x0B: // data32
case 0x1B: // map32
{
uint32_t uint32_val = buf.get32(i);
i += 4;
json[attrid_str] = uint32_val;
}
break;
// enum
case 0x30: // enum8
case 0x31: // enum16
i += attrtype - 0x2F;
break;
// TODO
case 0x39: // float
i += 4;
break;
case 0xE0: // ToD
case 0xE1: // date
case 0xE2: // UTC
i += 4;
break;
case 0xE8: // clusterId
case 0xE9: // attribId
i += 2;
break;
case 0xEA: // bacOID
i += 4;
break;
case 0xF0: // EUI64
i += 8;
break;
case 0xF1: // key128
i += 16;
break;
// Other un-implemented data types
case 0x0A: // data24
case 0x0C: // data40
case 0x0D: // data48
case 0x0E: // data56
case 0x0F: // data64
i += attrtype - 0x07; // 2-8
break;
// map
case 0x1A: // map24
case 0x1C: // map40
case 0x1D: // map48
case 0x1E: // map56
case 0x1F: // map64
i += attrtype - 0x17;
break;
// semi
case 0x38: // semi (float on 2 bytes)
i += 2;
break;
case 0x3A: // double precision
i += 8;
break;
}
// String pp; // pretty print
// json[attrid_str].prettyPrintTo(pp);
// // now store the attribute
// AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZCL attribute decoded, id %s, type 0x%02X, val=%s"),
// attrid_str, attrtype, pp.c_str());
return i - offset; // how much have we increased the index
}
// First pass, parse all attributes in their native format
void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len - i >= 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
char key[16];
snprintf_P(key, sizeof(key), PSTR("%04X/%04X"),
_cluster_id, attrid);
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
}
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
// ZCL_READ_ATTRIBUTES_RESPONSE
void ZCLFrame::parseReadAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len - i >= 4) {
uint16_t attrid = _payload.get16(i);
i += 2;
uint8_t status = _payload.get8(i++);
if (0 == status) {
char key[16];
snprintf_P(key, sizeof(key), PSTR("%04X/%04X"),
_cluster_id, attrid);
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
}
// Parse non-normalized attributes
// The key is "s_" followed by 16 bits clusterId, "_" followed by 8 bits command id
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
char attrid_str[12];
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("%04X!%02X"), _cmd_id, _cluster_id);
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
json[attrid_str] = hex_char;
}
// return value:
// 0 = keep initial value
// 1 = remove initial value
typedef int32_t (*Z_AttrConverter)(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper* new_name);
typedef struct Z_AttributeConverter {
uint16_t cluster;
uint16_t attribute;
const char * name;
Z_AttrConverter func;
} Z_AttributeConverter;
// list of post-processing directives
const Z_AttributeConverter Z_PostProcess[] PROGMEM = {
{ 0x0000, 0x0000, "ZCLVersion", &Z_Copy },
{ 0x0000, 0x0001, "AppVersion", &Z_Copy },
{ 0x0000, 0x0002, "StackVersion", &Z_Copy },
{ 0x0000, 0x0003, "HWVersion", &Z_Copy },
{ 0x0000, 0x0004, "Manufacturer", &Z_ManufKeep }, // record Manufacturer
{ 0x0000, 0x0005, D_JSON_MODEL D_JSON_ID, &Z_ModelKeep }, // record Model
{ 0x0000, 0x0006, "DateCode", &Z_Copy },
{ 0x0000, 0x0007, "PowerSource", &Z_Copy },
{ 0x0000, 0x4000, "SWBuildID", &Z_Copy },
{ 0x0000, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ 0x0000, 0xFF01, nullptr, &Z_AqaraSensor }, // Occupancy (map8)
// Power Configuration cluster
{ 0x0001, 0x0000, "MainsVoltage", &Z_Copy },
{ 0x0001, 0x0001, "MainsFrequency", &Z_Copy },
{ 0x0001, 0x0020, "BatteryVoltage", &Z_Copy },
{ 0x0001, 0x0021, "BatteryPercentageRemaining",&Z_Copy },
// Device Temperature Configuration cluster
{ 0x0002, 0x0000, "CurrentTemperature", &Z_Copy },
{ 0x0002, 0x0001, "MinTempExperienced", &Z_Copy },
{ 0x0002, 0x0002, "MaxTempExperienced", &Z_Copy },
{ 0x0002, 0x0003, "OverTempTotalDwell", &Z_Copy },
// On/off cluster
{ 0x0006, 0x0000, "Power", &Z_Copy },
// On/Off Switch Configuration cluster
{ 0x0007, 0x0000, "SwitchType", &Z_Copy },
// Level Control cluster
{ 0x0008, 0x0000, "CurrentLevel", &Z_Copy },
// { 0x0008, 0x0001, "RemainingTime", &Z_Copy },
// { 0x0008, 0x0010, "OnOffTransitionTime", &Z_Copy },
// { 0x0008, 0x0011, "OnLevel", &Z_Copy },
// { 0x0008, 0x0012, "OnTransitionTime", &Z_Copy },
// { 0x0008, 0x0013, "OffTransitionTime", &Z_Copy },
// { 0x0008, 0x0014, "DefaultMoveRate", &Z_Copy },
// Alarms cluster
{ 0x0009, 0x0000, "AlarmCount", &Z_Copy },
// Time cluster
{ 0x000A, 0x0000, "Time", &Z_Copy },
{ 0x000A, 0x0001, "TimeStatus", &Z_Copy },
{ 0x000A, 0x0002, "TimeZone", &Z_Copy },
{ 0x000A, 0x0003, "DstStart", &Z_Copy },
{ 0x000A, 0x0004, "DstStart", &Z_Copy },
{ 0x000A, 0x0005, "DstShift", &Z_Copy },
{ 0x000A, 0x0006, "StandardTime", &Z_Copy },
{ 0x000A, 0x0007, "LocalTime", &Z_Copy },
{ 0x000A, 0x0008, "LastSetTime", &Z_Copy },
{ 0x000A, 0x0009, "ValidUntilTime", &Z_Copy },
// RSSI Location cluster
{ 0x000B, 0x0000, "LocationType", &Z_Copy },
{ 0x000B, 0x0000, "LocationMethod", &Z_Copy },
{ 0x000B, 0x0000, "LocationAge", &Z_Copy },
{ 0x000B, 0x0000, "QualityMeasure", &Z_Copy },
{ 0x000B, 0x0000, "NumberOfDevices", &Z_Copy },
// Analog Input cluster
{ 0x000C, 0x0004, "ActiveText", &Z_Copy },
{ 0x000C, 0x001C, "Description", &Z_Copy },
{ 0x000C, 0x002E, "InactiveText", &Z_Copy },
{ 0x000C, 0x0041, "MaxPresentValue", &Z_Copy },
{ 0x000C, 0x0045, "MinPresentValue", &Z_Copy },
{ 0x000C, 0x0051, "OutOfService", &Z_Copy },
{ 0x000C, 0x0055, "PresentValue", &Z_Copy },
{ 0x000C, 0x0057, "PriorityArray", &Z_Copy },
{ 0x000C, 0x0067, "Reliability", &Z_Copy },
{ 0x000C, 0x0068, "RelinquishDefault", &Z_Copy },
{ 0x000C, 0x006A, "Resolution", &Z_Copy },
{ 0x000C, 0x006F, "StatusFlags", &Z_Copy },
{ 0x000C, 0x0075, "EngineeringUnits", &Z_Copy },
{ 0x000C, 0x0100, "ApplicationType", &Z_Copy },
// Binary Output cluster
{ 0x0010, 0x0004, "ActiveText", &Z_Copy },
{ 0x0010, 0x001C, "Description", &Z_Copy },
{ 0x0010, 0x002E, "InactiveText", &Z_Copy },
{ 0x0010, 0x0042, "MinimumOffTime", &Z_Copy },
{ 0x0010, 0x0043, "MinimumOnTime", &Z_Copy },
{ 0x0010, 0x0051, "OutOfService", &Z_Copy },
{ 0x0010, 0x0054, "Polarity", &Z_Copy },
{ 0x0010, 0x0055, "PresentValue", &Z_Copy },
{ 0x0010, 0x0057, "PriorityArray", &Z_Copy },
{ 0x0010, 0x0067, "Reliability", &Z_Copy },
{ 0x0010, 0x0068, "RelinquishDefault", &Z_Copy },
{ 0x0010, 0x006F, "StatusFlags", &Z_Copy },
{ 0x0010, 0x0100, "ApplicationType", &Z_Copy },
// Binary Value cluster
{ 0x0011, 0x0004, "ActiveText", &Z_Copy },
{ 0x0011, 0x001C, "Description", &Z_Copy },
{ 0x0011, 0x002E, "InactiveText", &Z_Copy },
{ 0x0011, 0x0042, "MinimumOffTime", &Z_Copy },
{ 0x0011, 0x0043, "MinimumOnTime", &Z_Copy },
{ 0x0011, 0x0051, "OutOfService", &Z_Copy },
{ 0x0011, 0x0055, "PresentValue", &Z_Copy },
{ 0x0011, 0x0057, "PriorityArray", &Z_Copy },
{ 0x0011, 0x0067, "Reliability", &Z_Copy },
{ 0x0011, 0x0068, "RelinquishDefault", &Z_Copy },
{ 0x0011, 0x006F, "StatusFlags", &Z_Copy },
{ 0x0011, 0x0100, "ApplicationType", &Z_Copy },
// Multistate Input cluster
{ 0x0012, 0x000E, "StateText", &Z_Copy },
{ 0x0012, 0x001C, "Description", &Z_Copy },
{ 0x0012, 0x004A, "NumberOfStates", &Z_Copy },
{ 0x0012, 0x0051, "OutOfService", &Z_Copy },
{ 0x0012, 0x0055, "PresentValue", &Z_Copy },
{ 0x0012, 0x0067, "Reliability", &Z_Copy },
{ 0x0012, 0x006F, "StatusFlags", &Z_Copy },
{ 0x0012, 0x0100, "ApplicationType", &Z_Copy },
// Multistate output
{ 0x0013, 0x000E, "StateText", &Z_Copy },
{ 0x0013, 0x001C, "Description", &Z_Copy },
{ 0x0013, 0x004A, "NumberOfStates", &Z_Copy },
{ 0x0013, 0x0051, "OutOfService", &Z_Copy },
{ 0x0013, 0x0055, "PresentValue", &Z_Copy },
{ 0x0013, 0x0057, "PriorityArray", &Z_Copy },
{ 0x0013, 0x0067, "Reliability", &Z_Copy },
{ 0x0013, 0x0068, "RelinquishDefault", &Z_Copy },
{ 0x0013, 0x006F, "StatusFlags", &Z_Copy },
{ 0x0013, 0x0100, "ApplicationType", &Z_Copy },
// Multistate Value cluster
{ 0x0014, 0x000E, "StateText", &Z_Copy },
{ 0x0014, 0x001C, "Description", &Z_Copy },
{ 0x0014, 0x004A, "NumberOfStates", &Z_Copy },
{ 0x0014, 0x0051, "OutOfService", &Z_Copy },
{ 0x0014, 0x0055, "PresentValue", &Z_Copy },
{ 0x0014, 0x0067, "Reliability", &Z_Copy },
{ 0x0014, 0x0068, "RelinquishDefault", &Z_Copy },
{ 0x0014, 0x006F, "StatusFlags", &Z_Copy },
{ 0x0014, 0x0100, "ApplicationType", &Z_Copy },
// Power Profile cluster
{ 0x001A, 0x0000, "TotalProfileNum", &Z_Copy },
{ 0x001A, 0x0001, "MultipleScheduling", &Z_Copy },
{ 0x001A, 0x0002, "EnergyFormatting", &Z_Copy },
{ 0x001A, 0x0003, "EnergyRemote", &Z_Copy },
{ 0x001A, 0x0004, "ScheduleMode", &Z_Copy },
// Poll Control cluster
{ 0x0020, 0x0000, "CheckinInterval", &Z_Copy },
{ 0x0020, 0x0001, "LongPollInterval", &Z_Copy },
{ 0x0020, 0x0002, "ShortPollInterval", &Z_Copy },
{ 0x0020, 0x0003, "FastPollTimeout", &Z_Copy },
{ 0x0020, 0x0004, "CheckinIntervalMin", &Z_Copy },
{ 0x0020, 0x0005, "LongPollIntervalMin", &Z_Copy },
{ 0x0020, 0x0006, "FastPollTimeoutMax", &Z_Copy },
// Shade Configuration cluster
{ 0x0100, 0x0000, "PhysicalClosedLimit", &Z_Copy },
{ 0x0100, 0x0001, "MotorStepSize", &Z_Copy },
{ 0x0100, 0x0002, "Status", &Z_Copy },
{ 0x0100, 0x0010, "ClosedLimit", &Z_Copy },
{ 0x0100, 0x0011, "Mode", &Z_Copy },
// Door Lock cluster
{ 0x0101, 0x0000, "LockState", &Z_Copy },
{ 0x0101, 0x0001, "LockType", &Z_Copy },
{ 0x0101, 0x0002, "ActuatorEnabled", &Z_Copy },
{ 0x0101, 0x0003, "DoorState", &Z_Copy },
{ 0x0101, 0x0004, "DoorOpenEvents", &Z_Copy },
{ 0x0101, 0x0005, "DoorClosedEvents", &Z_Copy },
{ 0x0101, 0x0006, "OpenPeriod", &Z_Copy },
// Window Covering cluster
{ 0x0102, 0x0000, "WindowCoveringType", &Z_Copy },
{ 0x0102, 0x0001, "PhysicalClosedLimitLift",&Z_Copy },
{ 0x0102, 0x0002, "PhysicalClosedLimitTilt",&Z_Copy },
{ 0x0102, 0x0003, "CurrentPositionLift", &Z_Copy },
{ 0x0102, 0x0004, "CurrentPositionTilt", &Z_Copy },
{ 0x0102, 0x0005, "NumberofActuationsLift",&Z_Copy },
{ 0x0102, 0x0006, "NumberofActuationsTilt",&Z_Copy },
{ 0x0102, 0x0007, "ConfigStatus", &Z_Copy },
{ 0x0102, 0x0008, "CurrentPositionLiftPercentage",&Z_Copy },
{ 0x0102, 0x0009, "CurrentPositionTiltPercentage",&Z_Copy },
{ 0x0102, 0x0010, "InstalledOpenLimitLift",&Z_Copy },
{ 0x0102, 0x0011, "InstalledClosedLimitLift",&Z_Copy },
{ 0x0102, 0x0012, "InstalledOpenLimitTilt", &Z_Copy },
{ 0x0102, 0x0013, "InstalledClosedLimitTilt", &Z_Copy },
{ 0x0102, 0x0014, "VelocityLift",&Z_Copy },
{ 0x0102, 0x0015, "AccelerationTimeLift",&Z_Copy },
{ 0x0102, 0x0016, "DecelerationTimeLift", &Z_Copy },
{ 0x0102, 0x0017, "Mode",&Z_Copy },
{ 0x0102, 0x0018, "IntermediateSetpointsLift",&Z_Copy },
{ 0x0102, 0x0019, "IntermediateSetpointsTilt",&Z_Copy },
// Color Control cluster
{ 0x0300, 0x0000, "CurrentHue", &Z_Copy },
{ 0x0300, 0x0001, "CurrentSaturation", &Z_Copy },
{ 0x0300, 0x0002, "RemainingTime", &Z_Copy },
{ 0x0300, 0x0003, "CurrentX", &Z_Copy },
{ 0x0300, 0x0004, "CurrentY", &Z_Copy },
{ 0x0300, 0x0005, "DriftCompensation", &Z_Copy },
{ 0x0300, 0x0006, "CompensationText", &Z_Copy },
{ 0x0300, 0x0007, "ColorTemperatureMireds",&Z_Copy },
{ 0x0300, 0x0008, "ColorMode", &Z_Copy },
{ 0x0300, 0x0010, "NumberOfPrimaries", &Z_Copy },
{ 0x0300, 0x0011, "Primary1X", &Z_Copy },
{ 0x0300, 0x0012, "Primary1Y", &Z_Copy },
{ 0x0300, 0x0013, "Primary1Intensity", &Z_Copy },
{ 0x0300, 0x0015, "Primary2X", &Z_Copy },
{ 0x0300, 0x0016, "Primary2Y", &Z_Copy },
{ 0x0300, 0x0017, "Primary2Intensity", &Z_Copy },
{ 0x0300, 0x0019, "Primary3X", &Z_Copy },
{ 0x0300, 0x001A, "Primary3Y", &Z_Copy },
{ 0x0300, 0x001B, "Primary3Intensity", &Z_Copy },
{ 0x0300, 0x0030, "WhitePointX", &Z_Copy },
{ 0x0300, 0x0031, "WhitePointY", &Z_Copy },
{ 0x0300, 0x0032, "ColorPointRX", &Z_Copy },
{ 0x0300, 0x0033, "ColorPointRY", &Z_Copy },
{ 0x0300, 0x0034, "ColorPointRIntensity", &Z_Copy },
{ 0x0300, 0x0036, "ColorPointGX", &Z_Copy },
{ 0x0300, 0x0037, "ColorPointGY", &Z_Copy },
{ 0x0300, 0x0038, "ColorPointGIntensity", &Z_Copy },
{ 0x0300, 0x003A, "ColorPointBX", &Z_Copy },
{ 0x0300, 0x003B, "ColorPointBY", &Z_Copy },
{ 0x0300, 0x003C, "ColorPointBIntensity", &Z_Copy },
// Illuminance Measurement cluster
{ 0x0400, 0x0000, D_JSON_ILLUMINANCE, &Z_Copy }, // Illuminance (in Lux)
{ 0x0400, 0x0001, "MinMeasuredValue", &Z_Copy }, //
{ 0x0400, 0x0002, "MaxMeasuredValue", &Z_Copy }, //
{ 0x0400, 0x0003, "Tolerance", &Z_Copy }, //
{ 0x0400, 0x0004, "LightSensorType", &Z_Copy }, //
{ 0x0400, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Illuminance Level Sensing cluster
{ 0x0401, 0x0000, "LevelStatus", &Z_Copy }, // Illuminance (in Lux)
{ 0x0401, 0x0001, "LightSensorType", &Z_Copy }, // LightSensorType
{ 0x0401, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Temperature Measurement cluster
{ 0x0402, 0x0000, D_JSON_TEMPERATURE, &Z_FloatDiv100 }, // Temperature
{ 0x0402, 0x0001, "MinMeasuredValue", &Z_FloatDiv100 }, //
{ 0x0402, 0x0002, "MaxMeasuredValue", &Z_FloatDiv100 }, //
{ 0x0402, 0x0003, "Tolerance", &Z_FloatDiv100 }, //
{ 0x0402, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Pressure Measurement cluster
{ 0x0403, 0x0000, D_JSON_PRESSURE_UNIT, &Z_AddPressureUnit }, // Pressure Unit
{ 0x0403, 0x0000, D_JSON_PRESSURE, &Z_Copy }, // Pressure
{ 0x0403, 0x0001, "MinMeasuredValue", &Z_Copy }, //
{ 0x0403, 0x0002, "MaxMeasuredValue", &Z_Copy }, //
{ 0x0403, 0x0003, "Tolerance", &Z_Copy }, //
{ 0x0403, 0x0010, "ScaledValue", &Z_Copy }, //
{ 0x0403, 0x0011, "MinScaledValue", &Z_Copy }, //
{ 0x0403, 0x0012, "MaxScaledValue", &Z_Copy }, //
{ 0x0403, 0x0013, "ScaledTolerance", &Z_Copy }, //
{ 0x0403, 0x0014, "Scale", &Z_Copy }, //
{ 0x0403, 0xFFFF, nullptr, &Z_Remove }, // Remove all other Pressure values
// Flow Measurement cluster
{ 0x0404, 0x0000, D_JSON_FLOWRATE, &Z_FloatDiv10 }, // Flow (in m3/h)
{ 0x0404, 0x0001, "MinMeasuredValue", &Z_Copy }, //
{ 0x0404, 0x0002, "MaxMeasuredValue", &Z_Copy }, //
{ 0x0404, 0x0003, "Tolerance", &Z_Copy }, //
{ 0x0404, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Relative Humidity Measurement cluster
{ 0x0405, 0x0000, D_JSON_HUMIDITY, &Z_FloatDiv100 }, // Humidity
{ 0x0405, 0x0001, "MinMeasuredValue", &Z_Copy }, //
{ 0x0405, 0x0002, "MaxMeasuredValue", &Z_Copy }, //
{ 0x0405, 0x0003, "Tolerance", &Z_Copy }, //
{ 0x0405, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Occupancy Sensing cluster
{ 0x0406, 0x0000, "Occupancy", &Z_Copy }, // Occupancy (map8)
{ 0x0406, 0x0001, "OccupancySensorType", &Z_Copy }, // OccupancySensorType
{ 0x0406, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Meter Identification cluster
{ 0x0B01, 0x0000, "CompanyName", &Z_Copy },
{ 0x0B01, 0x0001, "MeterTypeID", &Z_Copy },
{ 0x0B01, 0x0004, "DataQualityID", &Z_Copy },
{ 0x0B01, 0x0005, "CustomerName", &Z_Copy },
{ 0x0B01, 0x0006, "Model", &Z_Copy },
{ 0x0B01, 0x0007, "PartNumber", &Z_Copy },
{ 0x0B01, 0x000A, "SoftwareRevision", &Z_Copy },
{ 0x0B01, 0x000C, "POD", &Z_Copy },
{ 0x0B01, 0x000D, "AvailablePower", &Z_Copy },
{ 0x0B01, 0x000E, "PowerThreshold", &Z_Copy },
// Diagnostics cluster
{ 0x0B05, 0x0000, "NumberOfResets", &Z_Copy },
{ 0x0B05, 0x0001, "PersistentMemoryWrites",&Z_Copy },
{ 0x0B05, 0x011C, "LastMessageLQI", &Z_Copy },
{ 0x0B05, 0x011D, "LastMessageRSSI", &Z_Copy },
};
// ======================================================================
// Record Manuf
int32_t Z_ManufKeep(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = value;
zigbee_devices.setManufId(shortaddr, value.as());
return 1;
}
//
int32_t Z_ModelKeep(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = value;
zigbee_devices.setModelId(shortaddr, value.as());
return 1;
}
// ======================================================================
// Remove attribute
int32_t Z_Remove(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Copy(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = value;
return 1; // remove original key
}
// Add pressure unit
int32_t Z_AddPressureUnit(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = F(D_UNIT_PRESSURE);
return 0; // keep original key
}
// Convert int to float and divide by 100
int32_t Z_FloatDiv100(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = ((float)value) / 100.0f;
return 1; // remove original key
}
// Convert int to float and divide by 10
int32_t Z_FloatDiv10(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
json[new_name] = ((float)value) / 10.0f;
return 1; // remove original key
}
int32_t Z_AqaraSensor(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const __FlashStringHelper *new_name) {
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint32_t i = 0;
uint32_t len = buf2.len();
char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused
JsonVariant sub_value;
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
i += parseSingleAttribute(json, tmp, buf2, i, len);
float val = json[tmp];
json.remove(tmp);
if (0x64 == attrid) {
json[F(D_JSON_TEMPERATURE)] = val / 100.0f;
} else if (0x65 == attrid) {
json[F(D_JSON_HUMIDITY)] = val / 100.0f;
} else if (0x66 == attrid) {
json[F(D_JSON_PRESSURE)] = val / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
} else if (0x01 == attrid) {
json[F(D_JSON_VOLTAGE)] = val / 1000.0f;
json[F("Battery")] = toPercentageCR2032(val);
}
}
return 1; // remove original key
}
// ======================================================================
// Cluster Specific commands
// #define ZCL_OO_OFF "s_0006_00" // Cluster 0x0006, cmd 0x00 - On/Off - Off
// #define ZCL_OO_ON "s_0006_01" // Cluster 0x0006, cmd 0x01 - On/Off - On
// #define ZCL_COLORTEMP_MOVE "s_0300_0A" // Cluster 0x0300, cmd 0x0A, Move to Color Temp
// #define ZCL_LC_MOVE "s_0008_00" // Cluster 0x0008, cmd 0x00, Level Control Move to Level
// #define ZCL_LC_MOVE_1 "s_0008_01" // Cluster 0x0008, cmd 0x01, Level Control Move
// #define ZCL_LC_STEP "s_0008_02" // Cluster 0x0008, cmd 0x02, Level Control Step
// #define ZCL_LC_STOP "s_0008_03" // Cluster 0x0008, cmd 0x03, Level Control Stop
// #define ZCL_LC_MOVE_WOO "s_0008_04" // Cluster 0x0008, cmd 0x04, Level Control Move to Level, with On/Off
// #define ZCL_LC_MOVE_1_WOO "s_0008_05" // Cluster 0x0008, cmd 0x05, Level Control Move, with On/Off
// #define ZCL_LC_STEP_WOO "s_0008_06" // Cluster 0x0008, cmd 0x05, Level Control Step, with On/Off
// #define ZCL_LC_STOP_WOO "s_0008_07" // Cluster 0x0008, cmd 0x07, Level Control Stop
void ZCLFrame::postProcessAttributes(uint16_t shortaddr, JsonObject& json) {
// iterate on json elements
for (auto kv : json) {
String key_string = kv.key;
const char * key = key_string.c_str();
JsonVariant& value = kv.value;
// Check that format looks like "CCCC/AAAA"
char * delimiter = strchr(key, '/');
if (delimiter) {
uint16_t cluster = strtoul(key, &delimiter, 16);
uint16_t attribute = strtoul(delimiter+1, nullptr, 16);
// Iterate on filter
for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = pgm_read_word(&converter->cluster);
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == cluster) &&
((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) {
int32_t drop = (*converter->func)(shortaddr, json, key, value, (const __FlashStringHelper*) converter->name);
if (drop) {
json.remove(key);
}
}
}
}
}
}
//void ZCLFrame::postProcessAttributes2(JsonObject& json) {
// void postProcessAttributes2(JsonObject& json) {
// const __FlashStringHelper *key;
//
// // Osram Mini Switch
// key = F(ZCL_OO_OFF);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("Off");
// }
// key = F(ZCL_OO_ON);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("On");
// }
// key = F(ZCL_COLORTEMP_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint16_t color_temp = buf2.get16(0);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("ColorTemp")] = color_temp;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == level) {
// json[F(D_CMND_POWER)] = F("Off");
// } else {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_1);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// }
// key = F(ZCL_LC_MOVE_1_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// if (0 == move_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STEP);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_STEP_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == step_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STOP);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
// key = F(ZCL_LC_STOP_WOO);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
//
// // Lumi.weather proprietary field
// key = F(ZCL_LUMI_WEATHER);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// DynamicJsonBuffer jsonBuffer;
// JsonObject& json_lumi = jsonBuffer.createObject();
// uint32_t i = 0;
// uint32_t len = buf2.len();
// char shortaddr[8];
//
// while (len - i >= 2) {
// uint8_t attrid = buf2.get8(i++);
//
// snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%02X"), attrid);
//
// //json[shortaddr] = parseSingleAttribute(json_lumi, buf2, i, len, nullptr, 0);
// }
// // parse output
// if (json_lumi.containsKey("0x64")) { // Temperature
// int32_t temperature = json_lumi["0x64"];
// json[F(D_JSON_TEMPERATURE)] = temperature / 100.0f;
// }
// if (json_lumi.containsKey("0x65")) { // Humidity
// uint32_t humidity = json_lumi["0x65"];
// json[F(D_JSON_HUMIDITY)] = humidity / 100.0f;
// }
// if (json_lumi.containsKey("0x66")) { // Pressure
// int32_t pressure = json_lumi["0x66"];
// json[F(D_JSON_PRESSURE)] = pressure / 100.0f;
// json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
// }
// if (json_lumi.containsKey("0x01")) { // Battery Voltage
// uint32_t voltage = json_lumi["0x01"];
// json[F(D_JSON_VOLTAGE)] = voltage / 1000.0f;
// json[F("Battery")] = toPercentageCR2032(voltage);
// }
// json.remove(key);
// }
//
// }
#endif // USE_ZIGBEE