#define D_CMND_POWERCAL "PowerCal"
#define D_CMND_VOLTAGECAL "VoltageCal"
#define D_CMND_CURRENTCAL "CurrentCal"
#define D_CMND_FREQUENCYCAL "FrequencyCal"
#define D_CMND_TARIFF "Tariff"
#define D_CMND_MODULEADDRESS "ModuleAddress"
enum EnergyDisplayModes {
ENERGY_DISPLAY_MIN_OPTION,
ENERGY_DISPLAY_ROTATE, ENERGY_DISPLAY_ROTATE_POWERED_ON, ENERGY_DISPLAY_TABS,
ENERGY_DISPLAY_MAX_OPTION };
enum EnergyCalibration {
ENERGY_POWER_CALIBRATION, ENERGY_VOLTAGE_CALIBRATION, ENERGY_CURRENT_CALIBRATION, ENERGY_FREQUENCY_CALIBRATION };
enum EnergyCommands {
CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL,
CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG };
const char kEnergyCommands[] PROGMEM = "|" // No prefix
D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|"
D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|"
D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|"
D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYEXPORTACTIVE "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|"
D_CMND_TARIFF "|" D_CMND_ENERGYDISPLAY "|" D_CMND_ENERGYCOLS ;
void (* const EnergyCommand[])(void) PROGMEM = {
&CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal,
&CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig,
&CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
&CmndMaxEnergy, &CmndMaxEnergyStart,
&CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
&CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow,
&CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyExportActive, &CmndEnergyUsage, &CmndEnergyExport,
&CmndTariff, &CmndEnergyDisplay, &CmndEnergyCols };
/********************************************************************************************/
typedef struct {
float usage_total_kWh[4];
float return_total_kWh[4];
float last_return_total_kWh;
float last_usage_total_kWh;
} tEnergyUsage;
typedef union {
uint16_t data;
struct {
uint16_t spare00 : 1; // bit 0
uint16_t spare01 : 1; // bit 1
uint16_t spare02 : 1; // bit 2
uint16_t spare03 : 1; // bit 3
uint16_t spare04 : 1; // bit 4
uint16_t spare05 : 1; // bit 5
uint16_t spare06 : 1; // bit 6
uint16_t spare07 : 1; // bit 7
uint16_t spare08 : 1; // bit 8
uint16_t spare09 : 1; // bit 9
uint16_t spare10 : 1; // bit 10
uint16_t spare11 : 1; // bit 11
uint16_t spare12 : 1; // bit 12
uint16_t spare13 : 1; // bit 13
uint16_t spare14 : 1; // bit 14
uint16_t spare15 : 1; // bit 15
};
} tEnergyBitfield;
typedef struct {
uint32_t crc32; // To detect file changes
uint16_t version; // To detect driver function changes
uint16_t energy_kWhdoy;
uint32_t energy_kWhtotal_time;
tEnergyBitfield flag;
uint8_t gui_display; // EnergyDisplay - GUI display all relays (0), only powered on relays (1) or user selected relays (2)
uint8_t gui_cols; // EnergyCols
uint32_t spare32_1;
uint32_t spare32_2;
uint32_t spare32_3;
uint32_t spare32_4;
uint32_t power_calibration[ENERGY_MAX_PHASES];
uint32_t voltage_calibration[ENERGY_MAX_PHASES];
uint32_t current_calibration[ENERGY_MAX_PHASES];
uint32_t frequency_calibration[ENERGY_MAX_PHASES];
float energy_today_kWh[ENERGY_MAX_PHASES]; // Energy today in kWh - float allows up to 262143.99 kWh
float energy_yesterday_kWh[ENERGY_MAX_PHASES]; // Energy yesterday in kWh - float allows up to 262143.99 kWh
float energy_total_kWh[ENERGY_MAX_PHASES]; // Total energy in kWh - float allows up to 262143.99 kWh
float energy_export_kWh[ENERGY_MAX_PHASES]; // Export energy in kWh - float allows up to 262143.99 kWh
uint16_t power_delta[ENERGY_MAX_PHASES]; // PowerDelta
uint16_t tariff[4][2];
tEnergyUsage energy_usage;
} tEnergySettings;
typedef struct {
tEnergySettings Settings;
// Global updated / accessed
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
float current[ENERGY_MAX_PHASES]; // 123.123 A
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
float power_factor[ENERGY_MAX_PHASES]; // 0.12
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous
float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy
float daily_sum; // 123.123 kWh
float total_sum; // 12345.12345 kWh total energy
float yesterday_sum; // 123.123 kWh
int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy->kWhtoday (HLW and CSE only)
int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
// Local only
float daily_kWh[ENERGY_MAX_PHASES]; // 123.123 kWh
float energy_today_offset_kWh[ENERGY_MAX_PHASES]; // 123.12312 kWh = Energy->daily
float period_kWh[ENERGY_MAX_PHASES]; // 123.12312 kWh = Energy->daily
float daily_sum_import_balanced; // 123.123 kWh
float daily_sum_export_balanced; // 123.123 kWh
uint16_t power_history[ENERGY_MAX_PHASES][3];
uint16_t mplh_counter;
uint16_t mplw_counter;
uint8_t data_valid[ENERGY_MAX_PHASES];
uint8_t phase_count; // Number of phases active
uint8_t fifth_second;
uint8_t command_code;
uint8_t power_steady_counter; // Allow for power on stabilization
uint8_t mplr_counter;
uint8_t max_energy_state;
uint8_t gui_indirect[ENERGY_MAX_PHASES];
uint8_t gui_rotate;
uint8_t gui_count;
uint8_t gui_offset;
bool voltage_common; // Use common voltage
bool frequency_common; // Use common frequency
bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware
bool kWhtoday_offset_init;
bool voltage_available; // Enable if voltage is measured
bool current_available; // Enable if current is measured
bool local_energy_active_export; // Enable if support for storing energy_active
bool type_dc;
bool power_on;
bool min_power_flag;
bool max_power_flag;
bool min_voltage_flag;
bool max_voltage_flag;
bool min_current_flag;
bool max_current_flag;
} tEnergy;
tEnergy *Energy = nullptr;
Ticker ticker_energy;
/*********************************************************************************************\
* RTC Energy memory
\*********************************************************************************************/
const uint16_t RTC_ENERGY_MEM_VALID = 0xA55A;
typedef struct {
uint16_t valid;
tEnergyUsage energy_usage;
float energy_today_kWh[ENERGY_MAX_PHASES];
float energy_total_kWh[ENERGY_MAX_PHASES];
float energy_export_kWh[ENERGY_MAX_PHASES];
} tRtcEnergySettings;
tRtcEnergySettings RtcEnergySettings;
static RTC_NOINIT_ATTR tRtcEnergySettings RtcDataEnergySettings;
uint32_t energy_rtc_settings_crc = 0;
uint32_t EnergyGetRtcSettingsCrc(void) {
uint32_t crc = 0;
uint8_t *bytes = (uint8_t*)&RtcEnergySettings;
for (uint32_t i = 0; i < sizeof(RtcEnergySettings); i++) {
crc += bytes[i]*(i+1);
}
return crc;
}
void EnergyRtcSettingsSave(void) {
if (EnergyGetRtcSettingsCrc() != energy_rtc_settings_crc) {
if (RTC_ENERGY_MEM_VALID != RtcEnergySettings.valid) {
memset(&RtcEnergySettings, 0, sizeof(RtcEnergySettings));
RtcEnergySettings.valid = RTC_ENERGY_MEM_VALID;
RtcEnergySettings.energy_usage = Energy->Settings.energy_usage;
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
RtcEnergySettings.energy_today_kWh[i] = Energy->Settings.energy_today_kWh[i];
RtcEnergySettings.energy_total_kWh[i] = Energy->Settings.energy_total_kWh[i];
RtcEnergySettings.energy_export_kWh[i] = Energy->Settings.energy_export_kWh[i];
}
}
// AddLog(LOG_LEVEL_INFO, PSTR("DBG: energy_today_kWh[0] %3_f/%3_f"), RtcEnergySettings.energy_today_kWh[0], Energy->Settings.energy_today_kWh[0]);
RtcDataEnergySettings = RtcEnergySettings;
energy_rtc_settings_crc = EnergyGetRtcSettingsCrc();
}
}
bool EnergyRtcSettingsLoad(void) {
RtcEnergySettings = RtcDataEnergySettings;
bool read_valid = (RTC_ENERGY_MEM_VALID == RtcEnergySettings.valid);
if (!read_valid) {
EnergyRtcSettingsSave();
}
return read_valid;
}
bool EnergyRtcSettingsValid(void) {
return (RTC_ENERGY_MEM_VALID == RtcEnergySettings.valid);
}
/*********************************************************************************************\
* Driver Settings load and save using filesystem
\*********************************************************************************************/
const uint32_t XDRV_03_VERSION = 0x0102; // Latest driver version (See settings deltas below)
void EnergySettingsLoad(void) {
// *** Start init default values in case file is not found ***
memset(&Energy->Settings, 0x00, sizeof(tEnergySettings));
Energy->Settings.version = XDRV_03_VERSION;
// Init any other parameter in struct
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
Energy->Settings.power_calibration[i] = Settings->energy_power_calibration;
Energy->Settings.voltage_calibration[i] = Settings->energy_voltage_calibration;;
Energy->Settings.current_calibration[i] = Settings->energy_current_calibration;;
Energy->Settings.frequency_calibration[i] = Settings->energy_frequency_calibration;
}
Energy->Settings.power_calibration[1] = Settings->energy_power_calibration2;
Energy->Settings.voltage_calibration[1] = Settings->energy_voltage_calibration2;
Energy->Settings.current_calibration[1] = Settings->energy_current_calibration2;
/*
RtcEnergySettings.energy_total_kWh[0] = 0;
RtcEnergySettings.energy_total_kWh[1] = 0;
RtcEnergySettings.energy_total_kWh[2] = 0;
memset((char*)&RtcEnergySettings.energy_usage, 0x00, sizeof(RtcEnergySettings.energy_usage));
*/
Energy->Settings.energy_kWhdoy = Settings->energy_kWhdoy;
for (uint32_t i = 0; i < 3; i++) {
Energy->Settings.energy_today_kWh[i] = (float)Settings->energy_kWhtoday_ph[i] / 100000;
Energy->Settings.energy_yesterday_kWh[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
Energy->Settings.energy_total_kWh[i] = (float)Settings->energy_kWhtotal_ph[i] / 1000;
Energy->Settings.energy_export_kWh[i] = (float)Settings->energy_kWhexport_ph[i] / 1000;
Energy->Settings.power_delta[i] = (float)Settings->energy_power_delta[i];
// AddLog(LOG_LEVEL_INFO, PSTR("DBG: kWhtoday %d = %4_f, kWhyesterday %d = %4_f"),
// Settings->energy_kWhtoday_ph[i], &Energy->Settings.energy_today_kWh[i],
// Settings->energy_kWhyesterday_ph[i], &Energy->Settings.energy_yesterday_kWh[i]);
}
// v0102 additions
Energy->Settings.gui_display = ENERGY_GUI_DISPLAY_MODE;
Energy->Settings.gui_cols = ENERGY_GUI_MAX_COLS;
// *** End Init default values ***
#ifndef USE_UFILESYS
AddLog(LOG_LEVEL_INFO, PSTR("CFG: Energy use defaults as file system not enabled"));
#else
// Try to load file /.drvset003
char filename[20];
// Use for drivers:
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_03);
if (TfsLoadFile(filename, (uint8_t*)&Energy->Settings, sizeof(tEnergySettings))) {
if (Energy->Settings.version != XDRV_03_VERSION) { // Fix version dependent changes
// *** Start fix possible setting deltas ***
if (Energy->Settings.version < 0x0102) {
Energy->Settings.gui_display = ENERGY_GUI_DISPLAY_MODE;
Energy->Settings.gui_cols = ENERGY_GUI_MAX_COLS;
}
// *** End setting deltas ***
// Set current version and save settings
Energy->Settings.version = XDRV_03_VERSION;
EnergySettingsSave();
}
AddLog(LOG_LEVEL_INFO, PSTR("CFG: Energy loaded from file"));
} else {
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_INFO, PSTR("CFG: Energy use defaults as file system not ready or file not found"));
}
#endif // USE_UFILESYS
}
void EnergySettingsSave(void) {
#ifdef USE_UFILESYS
// Called from FUNC_SAVE_SETTINGS every SaveData second and at restart
uint32_t crc32 = GetCfgCrc32((uint8_t*)&Energy->Settings +4, sizeof(tEnergySettings) -4); // Skip crc32
if (crc32 != Energy->Settings.crc32) {
// Try to save file /.drvset003
Energy->Settings.crc32 = crc32;
char filename[20];
// Use for drivers:
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_03);
if (TfsSaveFile(filename, (const uint8_t*)&Energy->Settings, sizeof(tEnergySettings))) {
AddLog(LOG_LEVEL_DEBUG, PSTR("CFG: Energy saved to file"));
} else {
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_DEBUG, PSTR("CFG: ERROR Energy file system not ready or unable to save file"));
}
}
#endif // USE_UFILESYS
}
/********************************************************************************************/
char* EnergyFormat(char* result, float* input, uint32_t resolution, uint32_t single = 0);
char* EnergyFormat(char* result, float* input, uint32_t resolution, uint32_t single) {
// single = 0 - Energy->phase_count - xx or [xx,xx] or [xx,xx,xx]
// single = 1 - Energy->voltage_common or Energy->frequency_common - xx
// single = 2 - Sum of Energy->phase_count if SO129 0 - xx or if SO129 1 - [xx,xx,xx]
// single = 5 - single &0x03 = 1 - xx
// single = 6 - single &0x03 = 2 - [xx,xx] - used by tarriff
// single = 7 - single &0x03 = 3 - [xx,xx,xx]
uint32_t index = (single > 3) ? single &0x03 : (0 == single) ? Energy->phase_count : 1; // 1,2,3
if (single > 2) { single = 0; } // 0,1,2
float input_sum = 0.0f;
if (single > 1) {
if (!Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information
for (uint32_t i = 0; i < Energy->phase_count; i++) {
if (!isnan(input[i])) {
input_sum += input[i];
}
}
input = &input_sum;
} else {
index = Energy->phase_count;
}
}
result[0] = '\0';
for (uint32_t i = 0; i < index; i++) {
ext_snprintf_P(result, GUISZ, PSTR("%s%s%*_f%s"), result, (0==i)?(1==index)?"":"[":",", resolution, &input[i], (index-1==i)?(1==index)?"":"]":"");
}
return result;
}
#ifdef USE_WEBSERVER
char* WebEnergyFormat(char* result, float* input, uint32_t resolution, uint32_t single = 0);
char* WebEnergyFormat(char* result, float* input, uint32_t resolution, uint32_t single) {
// single = 0 - Energy->phase_count - xx / xx / xx or multi column
// single = 1 - Energy->voltage_common or Energy->frequency_common - xx or single column using colspan (if needed)
// single = 2 - Sum of Energy->phase_count if SO129 0 - xx or single column using colspan (if needed) or if SO129 1 - xx / xx / xx or multi column
float input_sum = 0.0f;
if (single > 1) { // Sum and/or Single column
if (!Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information
for (uint32_t i = 0; i < Energy->phase_count; i++) {
if (!isnan(input[i])) {
input_sum += input[i];
}
}
input = &input_sum;
} else {
single = 0;
}
}
#ifdef USE_ENERGY_COLUMN_GUI
ext_snprintf_P(result, GUISZ, PSTR("")); // Skip first column
if ((Energy->gui_count > 1) && single) { // Need to set colspan so need new columns
// 1.23 | |
// | 1.23 | |
// | 1.23 | |
ext_snprintf_P(result, GUISZ, PSTR("%s | %*_f | | "),
result, (Energy->gui_count *2) -1, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("center"), resolution, &input[Energy->gui_indirect[0]]);
} else {
// 1.23 | |
// | 1.23 | | 1.23 | |
// | 1.23 | | 1.23 | | 1.23 | |
// | 1.23 | | 1.23 | | 1.23 | | 1.23 | |
for (uint32_t i = 0; i < Energy->gui_count; i++) {
ext_snprintf_P(result, GUISZ, PSTR("%s | %*_f | | "),
result, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("left"), resolution, &input[Energy->gui_indirect[Energy->gui_offset +i]]);
}
}
ext_snprintf_P(result, GUISZ, PSTR("%s"), result);
#else // not USE_ENERGY_COLUMN_GUI
uint32_t index = (single) ? 1 : Energy->phase_count; // 1,2,3
result[0] = '\0';
for (uint32_t i = 0; i < index; i++) {
ext_snprintf_P(result, GUISZ, PSTR("%s%s%*_f"), result, (i)?" / ":"", resolution, &input[i]);
}
#endif // USE_ENERGY_COLUMN_GUI
return result;
}
#endif // USE_WEBSERVER
/********************************************************************************************/
bool EnergyTariff1Active() { // Off-Peak hours
uint8_t dst = 0;
if (IsDst() && (Energy->Settings.tariff[0][1] != Energy->Settings.tariff[1][1])) {
dst = 1;
}
if (Energy->Settings.tariff[0][dst] != Energy->Settings.tariff[1][dst]) {
if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF
(RtcTime.day_of_week == 7))) {
return true;
}
uint32_t minutes = MinutesPastMidnight();
if (Energy->Settings.tariff[0][dst] > Energy->Settings.tariff[1][dst]) {
// {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
return ((minutes >= Energy->Settings.tariff[0][dst]) || (minutes < Energy->Settings.tariff[1][dst]));
} else {
// {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
return ((minutes >= Energy->Settings.tariff[0][dst]) && (minutes < Energy->Settings.tariff[1][dst]));
}
} else {
return false;
}
}
void EnergyUpdateToday(void) {
// Energy->kWhtoday_delta[]: int32_t x = 0.0000x kWh change
// Energy->kWhtoday[] : int32_t y = 0.0000y kWh
Energy->total_sum = 0.0f;
Energy->yesterday_sum = 0.0f;
Energy->daily_sum = 0.0f;
int32_t delta_sum_balanced = 0;
for (uint32_t i = 0; i < Energy->phase_count; i++) {
if (abs(Energy->kWhtoday_delta[i]) > 1000) {
int32_t delta = Energy->kWhtoday_delta[i] / 1000;
delta_sum_balanced += delta;
Energy->kWhtoday_delta[i] -= (delta * 1000);
Energy->kWhtoday[i] += delta;
if (delta < 0) { // Export energy
RtcEnergySettings.energy_export_kWh[i] += ((float)(delta / 100) *-1) / 1000;
}
}
RtcEnergySettings.energy_today_kWh[i] = Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000);
Energy->daily_kWh[i] = RtcEnergySettings.energy_today_kWh[i];
Energy->total[i] = RtcEnergySettings.energy_total_kWh[i] + RtcEnergySettings.energy_today_kWh[i];
if (Energy->local_energy_active_export) {
Energy->export_active[i] = RtcEnergySettings.energy_export_kWh[i];
}
Energy->total_sum += Energy->total[i];
Energy->yesterday_sum += Energy->Settings.energy_yesterday_kWh[i];
Energy->daily_sum += Energy->daily_kWh[i];
}
if (delta_sum_balanced > 0) {
Energy->daily_sum_import_balanced += (float)delta_sum_balanced / 100000;
} else {
Energy->daily_sum_export_balanced += (float)abs(delta_sum_balanced) / 100000;
}
if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.
float energy_diff = Energy->total_sum - RtcEnergySettings.energy_usage.last_usage_total_kWh;
RtcEnergySettings.energy_usage.last_usage_total_kWh = Energy->total_sum;
float return_diff = 0;
if (!isnan(Energy->export_active[0])) {
// return_diff = Energy->export_active - RtcEnergySettings.energy_usage.last_return_total_kWh;
// RtcEnergySettings.energy_usage.last_return_total_kWh = Energy->export_active;
float export_active = 0.0f;
for (uint32_t i = 0; i < Energy->phase_count; i++) {
if (!isnan(Energy->export_active[i])) {
export_active += Energy->export_active[i];
}
}
return_diff = export_active - RtcEnergySettings.energy_usage.last_return_total_kWh;
RtcEnergySettings.energy_usage.last_return_total_kWh = export_active;
}
uint32_t index = (EnergyTariff1Active()) ? 0 : 1; // Tarrif1 = Off-Peak
RtcEnergySettings.energy_usage.usage_total_kWh[index] += energy_diff;
RtcEnergySettings.energy_usage.return_total_kWh[index] += return_diff;
}
}
void EnergyUpdateTotal(void) {
// Provide total import active energy as float Energy->import_active[phase] in kWh: 98Wh = 0.098kWh
for (uint32_t i = 0; i < Energy->phase_count; i++) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy->import_active[i]);
// Try to fix instable input by verifying allowed bandwidth (#17659)
if ((Energy->start_energy[i] != 0) &&
(Settings->param[P_CSE7766_INVALID_POWER] > 0) &&
(Settings->param[P_CSE7766_INVALID_POWER] < 128)) { // SetOption39 1..127 kWh
int total = abs((int)Energy->total[i]); // We only use kWh
int import_active = abs((int)Energy->import_active[i]);
if ((import_active < (total - Settings->param[P_CSE7766_INVALID_POWER])) ||
(import_active > (total + Settings->param[P_CSE7766_INVALID_POWER]))) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Outside bandwidth"));
continue; // No valid energy value received
}
}
if (0 == Energy->start_energy[i] || (Energy->import_active[i] < Energy->start_energy[i])) {
Energy->start_energy[i] = Energy->import_active[i]; // Init after restart and handle roll-over if any
}
else if (Energy->import_active[i] != Energy->start_energy[i]) {
Energy->kWhtoday[i] = (int32_t)((Energy->import_active[i] - Energy->start_energy[i]) * 100000);
}
if ((Energy->total[i] < (Energy->import_active[i] - 0.01f)) && // We subtract a little offset of 10Wh to avoid continuous updates
Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
// The following calculation allows total usage (Energy->import_active[i]) up to +/-2147483.647 kWh
RtcEnergySettings.energy_total_kWh[i] = Energy->import_active[i] - (Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000));
Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i];
Energy->total[i] = Energy->import_active[i];
Energy->Settings.energy_kWhtotal_time = (!Energy->energy_today_offset_kWh[i]) ? LocalTime() : Midnight();
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value"));
}
}
EnergyUpdateToday();
}
/*********************************************************************************************/
void Energy200ms(void) {
Energy->power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off
Energy->fifth_second++;
if (5 == Energy->fifth_second) {
Energy->fifth_second = 0;
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
if (RtcTime.valid) {
if (!Energy->kWhtoday_offset_init && (RtcTime.day_of_year == Energy->Settings.energy_kWhdoy)) {
Energy->kWhtoday_offset_init = true;
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
Energy->energy_today_offset_kWh[i] = Energy->Settings.energy_today_kWh[i];
// RtcEnergySettings.energy_today_kWh[i] = 0;
}
}
bool midnight = (LocalTime() == Midnight());
if (midnight || (RtcTime.day_of_year > Energy->Settings.energy_kWhdoy)) {
Energy->kWhtoday_offset_init = true;
Energy->Settings.energy_kWhdoy = RtcTime.day_of_year;
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
Energy->Settings.energy_yesterday_kWh[i] = RtcEnergySettings.energy_today_kWh[i];
RtcEnergySettings.energy_total_kWh[i] += RtcEnergySettings.energy_today_kWh[i];
Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i];
Energy->Settings.energy_export_kWh[i] = RtcEnergySettings.energy_export_kWh[i];
Energy->period_kWh[i] -= RtcEnergySettings.energy_today_kWh[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation
Energy->kWhtoday[i] = 0;
Energy->energy_today_offset_kWh[i] = 0;
RtcEnergySettings.energy_today_kWh[i] = 0;
Energy->Settings.energy_today_kWh[i] = 0;
Energy->start_energy[i] = 0;
// Energy->kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow
Energy->daily_sum_import_balanced = 0.0;
Energy->daily_sum_export_balanced = 0.0;
}
EnergyUpdateToday();
}
if (midnight) {
Energy->max_energy_state = 3;
}
if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy->max_energy_state )) {
Energy->max_energy_state = 0;
}
}
}
XnrgCall(FUNC_EVERY_200_MSECOND);
}
void EnergySaveState(void) {
Energy->Settings.energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
Energy->Settings.energy_today_kWh[i] = RtcEnergySettings.energy_today_kWh[i];
Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i];
Energy->Settings.energy_export_kWh[i] = RtcEnergySettings.energy_export_kWh[i];
}
Energy->Settings.energy_usage = RtcEnergySettings.energy_usage;
}
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) {
bool change;
if (!margin) return false;
change = save_flag;
if (type) {
flag = (value > margin);
} else {
flag = (value < margin);
}
save_flag = flag;
return (change != save_flag);
}
void EnergyMarginCheck(void) {
if (!Energy->phase_count || (TasmotaGlobal.uptime < 8)) { return; }
if (Energy->power_steady_counter) {
Energy->power_steady_counter--;
return;
}
bool jsonflg = false;
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
uint16_t active_power = (uint16_t)(Energy->active_power[phase]);
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy->power_history[phase][0], Energy->power_history[phase][1], Energy->power_history[phase][2]);
if (Energy->Settings.power_delta[phase]) {
power_diff[phase] = active_power - Energy->power_history[phase][0];
uint16_t delta = abs(power_diff[phase]);
bool threshold_met = false;
if (delta > 0) {
if (Energy->Settings.power_delta[phase] < 101) { // 1..100 = Percentage
uint16_t min_power = (Energy->power_history[phase][0] > active_power) ? active_power : Energy->power_history[phase][0];
if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741)
delta = (delta * 100) / min_power;
if (delta >= Energy->Settings.power_delta[phase]) {
threshold_met = true;
}
} else { // 101..32000 = Absolute
if (delta >= (Energy->Settings.power_delta[phase] -100)) {
threshold_met = true;
}
}
}
if (threshold_met) {
Energy->power_history[phase][1] = active_power; // We only want one report so reset history
Energy->power_history[phase][2] = active_power;
jsonflg = true;
} else {
power_diff[phase] = 0;
}
}
Energy->power_history[phase][0] = Energy->power_history[phase][1]; // Shift in history every second allowing power changes to settle for up to three seconds
Energy->power_history[phase][1] = Energy->power_history[phase][2];
Energy->power_history[phase][2] = active_power;
}
if (jsonflg) {
float power_diff_f[Energy->phase_count];
for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
power_diff_f[phase] = power_diff[phase];
}
char value_chr[GUISZ];
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_f, 0));
}
uint16_t energy_power_u = (uint16_t)(Energy->active_power[0]);
if (Energy->power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) {
uint16_t energy_voltage_u = (uint16_t)(Energy->voltage[0]);
uint16_t energy_current_u = (uint16_t)(Energy->current[0] * 1000);
DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
bool flag;
if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy->min_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy->max_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy->min_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy->max_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy->min_current_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy->max_current_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
}
if (jsonflg) {
ResponseJsonEndEnd();
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN);
EnergyMqttShow();
}
// Max Power
if (Settings->energy_max_power_limit) {
if (Energy->active_power[0] > Settings->energy_max_power_limit) {
if (!Energy->mplh_counter) {
Energy->mplh_counter = Settings->energy_max_power_limit_hold;
} else {
Energy->mplh_counter--;
if (!Energy->mplh_counter) {
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u);
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
if (!Energy->mplr_counter) {
Energy->mplr_counter = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count
}
Energy->mplw_counter = Settings->energy_max_power_limit_window;
}
}
}
else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) {
Energy->mplh_counter = 0;
Energy->mplr_counter = 0;
Energy->mplw_counter = 0;
}
if (!TasmotaGlobal.power) {
if (Energy->mplw_counter) {
Energy->mplw_counter--;
} else {
if (Energy->mplr_counter) {
Energy->mplr_counter--;
if (Energy->mplr_counter) {
ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
RestorePower(true, SRC_MAXPOWER);
} else {
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
}
}
}
}
}
// Max Energy
if (Settings->energy_max_energy) {
uint16_t energy_daily_u = (uint16_t)(Energy->daily_sum * 1000);
if (!Energy->max_energy_state && (RtcTime.hour == Settings->energy_max_energy_start)) {
Energy->max_energy_state = 1;
ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
RestorePower(true, SRC_MAXENERGY);
}
else if ((1 == Energy->max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) {
Energy->max_energy_state = 2;
ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy->daily_sum);
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXENERGY);
}
}
}
void EnergyMqttShow(void) {
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
int tele_period_save = TasmotaGlobal.tele_period;
TasmotaGlobal.tele_period = 2;
ResponseClear();
ResponseAppendTime();
EnergyShow(true);
TasmotaGlobal.tele_period = tele_period_save;
ResponseJsonEnd();
MqttPublishTeleSensor();
}
void EnergyEverySecond(void) {
// Overtemp check
if (Energy->use_overtemp && TasmotaGlobal.global_update) {
if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius);
SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP);
}
}
// Invalid data reset
if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) {
uint32_t data_valid = Energy->phase_count;
for (uint32_t i = 0; i < Energy->phase_count; i++) {
if (Energy->data_valid[i] <= ENERGY_WATCHDOG) {
Energy->data_valid[i]++;
if (Energy->data_valid[i] > ENERGY_WATCHDOG) {
// Reset energy registers
Energy->voltage[i] = 0;
Energy->current[i] = 0;
Energy->active_power[i] = 0;
if (!isnan(Energy->apparent_power[i])) { Energy->apparent_power[i] = 0; }
if (!isnan(Energy->reactive_power[i])) { Energy->reactive_power[i] = 0; }
if (!isnan(Energy->frequency[i])) { Energy->frequency[i] = 0; }
if (!isnan(Energy->power_factor[i])) { Energy->power_factor[i] = 0; }
if (!isnan(Energy->export_active[i])) { Energy->export_active[i] = 0; }
data_valid--;
}
}
}
if (!data_valid) {
//Energy->start_energy = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data"));
XnrgCall(FUNC_ENERGY_RESET);
}
}
EnergyMarginCheck();
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void ResponseCmndEnergyTotalYesterdayToday(void) {
char value_chr[GUISZ]; // Used by EnergyFormatIndex
char value2_chr[GUISZ];
char value3_chr[GUISZ];
float energy_yesterday_kWh[3];
for (uint32_t i = 0; i < Energy->phase_count; i++) {
energy_yesterday_kWh[i] = Energy->Settings.energy_yesterday_kWh[i];
Energy->total[i] = RtcEnergySettings.energy_total_kWh[i] + Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000);
if (Energy->local_energy_active_export) {
Energy->export_active[i] = RtcEnergySettings.energy_export_kWh[i];
}
}
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"),
XdrvMailbox.command,
EnergyFormat(value_chr, Energy->total, Settings->flag2.energy_resolution),
EnergyFormat(value2_chr, energy_yesterday_kWh, Settings->flag2.energy_resolution),
EnergyFormat(value3_chr, Energy->daily_kWh, Settings->flag2.energy_resolution));
if (Energy->local_energy_active_export) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
EnergyFormat(value_chr, Energy->export_active, Settings->flag2.energy_resolution));
}
ResponseJsonEndEnd();
}
void CmndEnergyDisplay(void) {
// Select either all relays, only powered on relays or user selected relay group
// EnergyDisplay 1, EnergyDisplay 2 or EnergyDisplay 3
if ((XdrvMailbox.payload > ENERGY_DISPLAY_MIN_OPTION) && (XdrvMailbox.payload < ENERGY_DISPLAY_MAX_OPTION)) {
Energy->Settings.gui_display = XdrvMailbox.payload;
Energy->gui_rotate = 0;
}
ResponseCmndNumber(Energy->Settings.gui_display);
}
void CmndEnergyCols(void) {
// Select number of columns
// EnergyCols 1..8
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= ENERGY_MAX_PHASES)) {
Energy->Settings.gui_cols = XdrvMailbox.payload;
Energy->gui_rotate = 0;
}
ResponseCmndNumber(Energy->Settings.gui_cols);
}
void CmndEnergyTotal(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Total
RtcEnergySettings.energy_total_kWh[phase] = (float)values[0] / 1000;
Energy->Settings.energy_total_kWh[phase] = RtcEnergySettings.energy_total_kWh[phase];
if (params > 1) {
Energy->Settings.energy_kWhtotal_time = values[1];
} else {
Energy->Settings.energy_kWhtotal_time = (!Energy->energy_today_offset_kWh[phase]) ? LocalTime() : Midnight();
}
RtcEnergySettings.energy_usage.last_usage_total_kWh = Energy->total[phase];
}
ResponseCmndEnergyTotalYesterdayToday();
}
void CmndEnergyYesterday(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Yesterday
Energy->Settings.energy_yesterday_kWh[phase] = (float)values[0] / 1000;
if (params > 1) {
Energy->Settings.energy_kWhtotal_time = values[1];
}
}
ResponseCmndEnergyTotalYesterdayToday();
}
void CmndEnergyToday(void) {
// EnergyToday 22 = 0.022 kWh
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Today
Energy->energy_today_offset_kWh[phase] = (float)values[0] / 1000;
Energy->kWhtoday[phase] = 0;
Energy->kWhtoday_delta[phase] = 0;
Energy->start_energy[phase] = 0;
Energy->period_kWh[phase] = Energy->energy_today_offset_kWh[phase];
Energy->Settings.energy_today_kWh[phase] = Energy->energy_today_offset_kWh[phase];
RtcEnergySettings.energy_today_kWh[phase] = Energy->energy_today_offset_kWh[phase];
Energy->daily_kWh[phase] = Energy->energy_today_offset_kWh[phase];
if (params > 1) {
Energy->Settings.energy_kWhtotal_time = values[1];
}
else if (!RtcEnergySettings.energy_total_kWh[phase] && !Energy->energy_today_offset_kWh[phase]) {
Energy->Settings.energy_kWhtotal_time = LocalTime();
}
}
ResponseCmndEnergyTotalYesterdayToday();
}
void CmndEnergyExportActive(void) {
if (Energy->local_energy_active_export) {
// EnergyExportActive1 24
// EnergyExportActive1 24,1650111291
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Export Active
RtcEnergySettings.energy_export_kWh[phase] = (float)values[0] / 1000;
Energy->Settings.energy_export_kWh[phase] = RtcEnergySettings.energy_export_kWh[phase];
if (params > 1) {
Energy->Settings.energy_kWhtotal_time = values[1];
}
}
ResponseCmndEnergyTotalYesterdayToday();
}
}
void ResponseCmndEnergyUsageExport(void) {
Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"),
XdrvMailbox.command,
Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.usage_total_kWh[0],
Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.usage_total_kWh[1],
Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.return_total_kWh[0],
Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.return_total_kWh[1]);
}
void CmndEnergyUsage(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if (params > 0) {
// Reset energy_usage.usage totals
RtcEnergySettings.energy_usage.usage_total_kWh[0] = (float)values[0] / 1000;
if (params > 1) {
RtcEnergySettings.energy_usage.usage_total_kWh[1] = (float)values[1] / 1000;
}
Energy->Settings.energy_usage.usage_total_kWh[0] = RtcEnergySettings.energy_usage.usage_total_kWh[0];
Energy->Settings.energy_usage.usage_total_kWh[1] = RtcEnergySettings.energy_usage.usage_total_kWh[1];
}
ResponseCmndEnergyUsageExport();
}
void CmndEnergyExport(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if (params > 0) {
// Reset energy_usage.return totals
RtcEnergySettings.energy_usage.return_total_kWh[0] = (float)values[0] / 1000;
if (params > 1) {
RtcEnergySettings.energy_usage.return_total_kWh[1] = (float)values[1] / 1000;
}
Energy->Settings.energy_usage.return_total_kWh[0] = RtcEnergySettings.energy_usage.return_total_kWh[0];
Energy->Settings.energy_usage.return_total_kWh[1] = RtcEnergySettings.energy_usage.return_total_kWh[1];
}
ResponseCmndEnergyUsageExport();
}
void CmndTariff(void) {
// Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
// Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time
// Tariffx 1320, 1380 = minutes and also 22:00, 23:00
// Tariffx 22, 23 = hours and also 22:00, 23:00
// Tariff9 0/1
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
uint32_t tariff = XdrvMailbox.index -1;
uint32_t time_type = 0;
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30
while ((str != nullptr) && (time_type < 2)) {
char *q;
uint32_t value = strtol(str, &q, 10); // 23 or 22
Energy->Settings.tariff[tariff][time_type] = value;
if (value < 24) { // Below 24 is hours
Energy->Settings.tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes
char *minute = strtok_r(nullptr, ":", &q);
if (minute) {
value = strtol(minute, nullptr, 10); // 15 or 30
if (value > 59) {
value = 59;
}
Energy->Settings.tariff[tariff][time_type] += value;
}
}
if (Energy->Settings.tariff[tariff][time_type] > 1439) {
Energy->Settings.tariff[tariff][time_type] = 1439; // Max is 23:59
}
str = strtok_r(nullptr, ", ", &p);
time_type++;
}
}
else if (XdrvMailbox.index == 9) {
Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF
}
Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"),
XdrvMailbox.command,
GetMinuteTime(Energy->Settings.tariff[0][0]).c_str(),GetMinuteTime(Energy->Settings.tariff[0][1]).c_str(),
GetMinuteTime(Energy->Settings.tariff[1][0]).c_str(),GetMinuteTime(Energy->Settings.tariff[1][1]).c_str(),
GetStateText(Settings->flag3.energy_weekend)); // CMND_TARIFF
}
uint32_t EnergyGetCalibration(uint32_t cal_type, uint32_t chan = 0) {
// uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
uint32_t channel = chan;
switch (cal_type) {
case ENERGY_POWER_CALIBRATION: return Energy->Settings.power_calibration[channel];
case ENERGY_VOLTAGE_CALIBRATION: return Energy->Settings.voltage_calibration[channel];
case ENERGY_CURRENT_CALIBRATION: return Energy->Settings.current_calibration[channel];
case ENERGY_FREQUENCY_CALIBRATION: return Energy->Settings.frequency_calibration[channel];
}
return 0;
}
void EnergySetCalibration(uint32_t cal_type, uint32_t value, uint32_t chan = 0) {
// uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
uint32_t channel = chan;
switch (cal_type) {
case ENERGY_POWER_CALIBRATION: Energy->Settings.power_calibration[channel] = value; return;
case ENERGY_VOLTAGE_CALIBRATION: Energy->Settings.voltage_calibration[channel] = value; return;
case ENERGY_CURRENT_CALIBRATION: Energy->Settings.current_calibration[channel] = value; return;
case ENERGY_FREQUENCY_CALIBRATION: Energy->Settings.frequency_calibration[channel] = value; return;
}
}
void EnergyCommandCalSetResponse(uint32_t cal_type) {
if (XdrvMailbox.payload > 99) {
EnergySetCalibration(cal_type, XdrvMailbox.payload, XdrvMailbox.index -1);
}
if (Energy->phase_count > 1) {
ResponseAppend_P(PSTR("["));
for (uint32_t i = 0; i < Energy->phase_count; i++) {
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", EnergyGetCalibration(cal_type, i));
}
ResponseAppend_P(PSTR("]}"));
} else {
ResponseAppend_P(PSTR("%d}"), EnergyGetCalibration(cal_type));
}
}
void EnergyCommandCalResponse(uint32_t cal_type) {
Response_P(PSTR("{\"%s\":"), XdrvMailbox.command);
EnergyCommandCalSetResponse(cal_type);
}
void EnergyCommandSetCalResponse(uint32_t cal_type) {
Response_P(PSTR("{\"%sCal\":"), XdrvMailbox.command);
EnergyCommandCalSetResponse(cal_type);
}
void CmndPowerCal(void) {
Energy->command_code = CMND_POWERCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
EnergyCommandCalResponse(ENERGY_POWER_CALIBRATION);
}
}
void CmndVoltageCal(void) {
Energy->command_code = CMND_VOLTAGECAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
EnergyCommandCalResponse(ENERGY_VOLTAGE_CALIBRATION);
}
}
void CmndCurrentCal(void) {
Energy->command_code = CMND_CURRENTCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
EnergyCommandCalResponse(ENERGY_CURRENT_CALIBRATION);
}
}
void CmndFrequencyCal(void) {
Energy->command_code = CMND_FREQUENCYCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
EnergyCommandCalResponse(ENERGY_FREQUENCY_CALIBRATION);
}
}
void CmndPowerSet(void) {
Energy->command_code = CMND_POWERSET;
if (XnrgCall(FUNC_COMMAND)) { // Watt
EnergyCommandSetCalResponse(ENERGY_POWER_CALIBRATION);
}
}
void CmndVoltageSet(void) {
Energy->command_code = CMND_VOLTAGESET;
if (XnrgCall(FUNC_COMMAND)) { // Volt
EnergyCommandSetCalResponse(ENERGY_VOLTAGE_CALIBRATION);
}
}
void CmndCurrentSet(void) {
Energy->command_code = CMND_CURRENTSET;
if (XnrgCall(FUNC_COMMAND)) { // milliAmpere
EnergyCommandSetCalResponse(ENERGY_CURRENT_CALIBRATION);
}
}
void CmndFrequencySet(void) {
Energy->command_code = CMND_FREQUENCYSET;
if (XnrgCall(FUNC_COMMAND)) { // Hz
EnergyCommandSetCalResponse(ENERGY_FREQUENCY_CALIBRATION);
}
}
void CmndModuleAddress(void) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 8) && (1 == Energy->phase_count)) {
Energy->command_code = CMND_MODULEADDRESS;
if (XnrgCall(FUNC_COMMAND)) { // Module address
ResponseCmndDone();
}
}
}
void CmndEnergyConfig(void) {
Energy->command_code = CMND_ENERGYCONFIG;
ResponseClear();
if (XnrgCall(FUNC_COMMAND)) {
if (!ResponseLength()) {
ResponseCmndDone();
}
}
}
/*********************************************************************************************\
* USE_ENERGY_MARGIN_DETECTION and USE_ENERGY_POWER_LIMIT
\*********************************************************************************************/
void EnergyMarginStatus(void) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":["));
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", Energy->Settings.power_delta[i]);
}
ResponseAppend_P(PSTR("],\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\""
D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\"" D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d}}"),
Settings->energy_min_power, Settings->energy_max_power,
Settings->energy_min_voltage, Settings->energy_max_voltage, Settings->energy_min_current, Settings->energy_max_current);
}
void CmndPowerDelta(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 32000)) {
Energy->Settings.power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
ResponseCmndIdxNumber(Energy->Settings.power_delta[XdrvMailbox.index -1]);
}
}
void CmndPowerLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_min_power = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_power);
}
void CmndPowerHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power);
}
void CmndVoltageLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 500)) {
Settings->energy_min_voltage = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_voltage);
}
void CmndVoltageHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 500)) {
Settings->energy_max_voltage = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_voltage);
}
void CmndCurrentLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 25000)) {
Settings->energy_min_current = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_current);
}
void CmndCurrentHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 25000)) {
Settings->energy_max_current = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_current);
}
void CmndMaxPower(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power_limit = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit);
}
void CmndMaxPowerHold(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit_hold);
}
void CmndMaxPowerWindow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit_window);
}
void CmndSafePower(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power_safe_limit = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit);
}
void CmndSafePowerHold(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit_hold);
}
void CmndSafePowerWindow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) {
Settings->energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit_window);
}
void CmndMaxEnergy(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 6000)) {
Settings->energy_max_energy = XdrvMailbox.payload;
Energy->max_energy_state = 3;
}
ResponseCmndNumber(Settings->energy_max_energy);
}
void CmndMaxEnergyStart(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
Settings->energy_max_energy_start = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_energy_start);
}
/********************************************************************************************/
void EnergyDrvInit(void) {
Energy = (tEnergy*)calloc(sizeof(tEnergy), 1); // Need calloc to reset registers to 0/false
if (!Energy) { return; }
EnergySettingsLoad();
EnergyRtcSettingsLoad();
// Energy->voltage_common = false;
// Energy->frequency_common = false;
// Energy->use_overtemp = false;
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
Energy->apparent_power[phase] = NAN;
Energy->reactive_power[phase] = NAN;
Energy->power_factor[phase] = NAN;
Energy->frequency[phase] = NAN;
Energy->export_active[phase] = NAN;
}
Energy->phase_count = 1; // Number of phases active
Energy->voltage_available = true; // Enable if voltage is measured
Energy->current_available = true; // Enable if current is measured
Energy->power_on = true;
TasmotaGlobal.energy_driver = ENERGY_NONE;
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
if (TasmotaGlobal.energy_driver) {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Init driver %d"), TasmotaGlobal.energy_driver);
}
}
void EnergySnsInit(void) {
XnrgCall(FUNC_INIT);
if (TasmotaGlobal.energy_driver) {
/*
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Rtc valid %d, kWhtoday_ph Rtc %3_f/%3_f/%3_f, Set %3_f/%3_f/%3_f"),
EnergyRtcSettingsValid(),
&RtcEnergySettings.energy_today_kWh[0],&RtcEnergySettings.energy_today_kWh[1],&RtcEnergySettings.energy_today_kWh[2],
&Energy->Settings.energy_today_kWh[0],&Energy->Settings.energy_today_kWh[1],&Energy->Settings.energy_today_kWh[2]
);
*/
for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) {
// Energy->energy_today_offset_kWh[i] = 0; // Reset by EnergyDrvInit()
// 20220805 - Change from https://github.com/arendst/Tasmota/issues/16118
if (EnergyRtcSettingsValid()) {
Energy->energy_today_offset_kWh[i] = RtcEnergySettings.energy_today_kWh[i];
RtcEnergySettings.energy_today_kWh[i] = 0;
Energy->kWhtoday_offset_init = true;
}
// Energy->kWhtoday_ph[i] = 0; // Reset by EnergyDrvInit()
// Energy->kWhtoday_delta[i] = 0; // Reset by EnergyDrvInit()
Energy->period_kWh[i] = Energy->energy_today_offset_kWh[i];
if (Energy->local_energy_active_export) {
Energy->export_active[i] = 0; // Was set to NAN by EnergyDrvInit()
}
}
EnergyUpdateToday();
ticker_energy.attach_ms(200, Energy200ms);
}
}
#ifdef USE_WEBSERVER
const char HTTP_ENERGY_SNS1[] PROGMEM =
"{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}"
"{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}"
"{s}" D_POWER_FACTOR "{m}%s{e}";
const char HTTP_ENERGY_SNS2[] PROGMEM =
"{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = | , {m} = | , {e} = |
const char HTTP_ENERGY_SNS3[] PROGMEM =
"{s}" D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}";
#endif // USE_WEBSERVER
void EnergyShow(bool json) {
bool voltage_common = (Settings->flag6.no_voltage_common) ? false : Energy->voltage_common;
bool frequency_common = (Settings->flag6.no_voltage_common) ? false : Energy->frequency_common;
if (voltage_common) {
for (uint32_t i = 0; i < Energy->phase_count; i++) {
Energy->voltage[i] = Energy->voltage[0];
}
}
float apparent_power[Energy->phase_count];
float reactive_power[Energy->phase_count];
float power_factor[Energy->phase_count];
if (!Energy->type_dc) {
if (Energy->current_available && Energy->voltage_available) {
for (uint32_t i = 0; i < Energy->phase_count; i++) {
apparent_power[i] = Energy->apparent_power[i];
if (isnan(apparent_power[i])) {
apparent_power[i] = Energy->voltage[i] * Energy->current[i];
}
if (apparent_power[i] < Energy->active_power[i]) { // Should be impossible
Energy->active_power[i] = apparent_power[i];
}
power_factor[i] = Energy->power_factor[i];
if (isnan(power_factor[i])) {
power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0;
if (power_factor[i] > 1) {
power_factor[i] = 1;
}
}
reactive_power[i] = Energy->reactive_power[i];
if (isnan(reactive_power[i])) {
reactive_power[i] = 0;
uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy->active_power[i] * 100)) / 10;
if ((Energy->current[i] > 0.005f) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) {
// calculating reactive power only if current is greater than 0.005A and
// difference between active and apparent power is greater than 1.5W or 1%
//reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy->active_power[i] * Energy->active_power[i] * 100))) / 10;
float power_diff = apparent_power[i] * apparent_power[i] - Energy->active_power[i] * Energy->active_power[i];
if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1)
reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0f))) / 10.0f;
else
reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff)));
}
}
}
}
}
float active_power_sum = 0.0f;
float energy_yesterday_kWh[Energy->phase_count];
for (uint32_t i = 0; i < Energy->phase_count; i++) {
energy_yesterday_kWh[i] = Energy->Settings.energy_yesterday_kWh[i];
active_power_sum += Energy->active_power[i];
}
bool energy_tariff = false;
float energy_usage_kWh[2];
float energy_return_kWh[2];
if (Energy->Settings.tariff[0][0] != Energy->Settings.tariff[1][0]) {
energy_usage_kWh[0] = RtcEnergySettings.energy_usage.usage_total_kWh[0]; // Tariff1
energy_usage_kWh[1] = RtcEnergySettings.energy_usage.usage_total_kWh[1]; // Tariff2
energy_return_kWh[0] = RtcEnergySettings.energy_usage.return_total_kWh[0]; // Tariff1
energy_return_kWh[1] = RtcEnergySettings.energy_usage.return_total_kWh[1]; // Tariff2
energy_tariff = true;
}
char value_chr[GUISZ]; // Used by EnergyFormatIndex
char value2_chr[GUISZ];
char value3_chr[GUISZ];
if (json) {
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"),
GetDateAndTime(DT_ENERGY).c_str(),
EnergyFormat(value_chr, Energy->total, Settings->flag2.energy_resolution, 2));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"),
EnergyFormat(value_chr, energy_usage_kWh, Settings->flag2.energy_resolution, 6));
}
ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"),
EnergyFormat(value_chr, energy_yesterday_kWh, Settings->flag2.energy_resolution, 2),
EnergyFormat(value2_chr, Energy->daily_kWh, Settings->flag2.energy_resolution, 2));
/*
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
if (!isnan(Energy->import_active[0])) {
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"),
EnergyFormat(value_chr, Energy->import_active, Settings->flag2.energy_resolution));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"),
EnergyFormat(value_chr, energy_return_kWh, Settings->flag2.energy_resolution, 6));
}
}
#endif // SDM630_IMPORT || SDM72_IMPEXP
*/
if (!isnan(Energy->export_active[0])) {
uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 0 : 1;
ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_IMPORT "\":%s,\"" D_JSON_TODAY_SUM_EXPORT "\":%s,\"" D_JSON_EXPORT_ACTIVE "\":%s"),
EnergyFormat(value_chr, &Energy->daily_sum_import_balanced, Settings->flag2.energy_resolution, 1),
EnergyFormat(value2_chr, &Energy->daily_sum_export_balanced, Settings->flag2.energy_resolution, 1),
EnergyFormat(value3_chr, Energy->export_active, Settings->flag2.energy_resolution, single));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"),
EnergyFormat(value_chr, energy_return_kWh, Settings->flag2.energy_resolution, 6));
}
}
if (show_energy_period) {
float energy_period[Energy->phase_count];
for (uint32_t i = 0; i < Energy->phase_count; i++) {
energy_period[i] = RtcEnergySettings.energy_today_kWh[i] - Energy->period_kWh[i];
Energy->period_kWh[i] = RtcEnergySettings.energy_today_kWh[i];
}
ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"),
EnergyFormat(value_chr, energy_period, Settings->flag2.wattage_resolution));
}
ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"),
EnergyFormat(value_chr, Energy->active_power, Settings->flag2.wattage_resolution));
if (!Energy->type_dc) {
if (Energy->current_available && Energy->voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"),
EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution),
EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution),
EnergyFormat(value3_chr, power_factor, 2));
}
if (!isnan(Energy->frequency[0])) {
ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"),
EnergyFormat(value_chr, Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
}
}
if (Energy->voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"),
EnergyFormat(value_chr, Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
}
if (Energy->current_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"),
EnergyFormat(value_chr, Energy->current, Settings->flag2.current_resolution));
}
XnrgCall(FUNC_JSON_APPEND);
ResponseJsonEnd();
#ifdef USE_DOMOTICZ
if (show_energy_period) { // Only send if telemetry
char temp_chr[FLOATSZ];
if (Energy->voltage_available) {
dtostrfd(Energy->voltage[0], Settings->flag2.voltage_resolution, temp_chr);
DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage
}
if (Energy->current_available) {
dtostrfd(Energy->current[0], Settings->flag2.current_resolution, temp_chr);
DomoticzSensor(DZ_CURRENT, temp_chr); // Current
}
dtostrfd(Energy->total_sum * 1000, 1, temp_chr);
DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday
char energy_usage_chr[2][FLOATSZ];
char energy_return_chr[2][FLOATSZ];
dtostrfd(RtcEnergySettings.energy_usage.usage_total_kWh[0], 1, energy_usage_chr[0]); // Tariff1
dtostrfd(RtcEnergySettings.energy_usage.usage_total_kWh[1], 1, energy_usage_chr[1]); // Tariff2
dtostrfd(RtcEnergySettings.energy_usage.return_total_kWh[0], 1, energy_return_chr[0]);
dtostrfd(RtcEnergySettings.energy_usage.return_total_kWh[1], 1, energy_return_chr[1]);
DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (show_energy_period) {
if (Energy->voltage_available) {
KnxSensor(KNX_ENERGY_VOLTAGE, Energy->voltage[0]);
}
if (Energy->current_available) {
KnxSensor(KNX_ENERGY_CURRENT, Energy->current[0]);
}
KnxSensor(KNX_ENERGY_POWER, active_power_sum);
if (!Energy->type_dc) {
KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]);
}
KnxSensor(KNX_ENERGY_DAILY, Energy->daily_sum);
KnxSensor(KNX_ENERGY_TOTAL, Energy->total_sum);
KnxSensor(KNX_ENERGY_YESTERDAY, Energy->yesterday_sum);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
#ifdef USE_ENERGY_COLUMN_GUI
uint8_t relays[ENERGY_MAX_PHASES];
uint32_t relay_show = 0;
power_t power = TasmotaGlobal.power;
for (uint32_t i = 0; i < Energy->phase_count; i++) { // Init relays and gui_indirect tables based on EnergyDisplay
if ((ENERGY_DISPLAY_ROTATE == Energy->Settings.gui_display) ||
((ENERGY_DISPLAY_ROTATE_POWERED_ON == Energy->Settings.gui_display) && (power >> i) &1) ||
(ENERGY_DISPLAY_TABS == Energy->Settings.gui_display)) {
relays[relay_show] = i +1;
Energy->gui_indirect[relay_show] = i;
relay_show++;
}
}
if (relay_show) {
if (Energy->Settings.gui_display != ENERGY_DISPLAY_TABS) {
if (relay_show > Energy->Settings.gui_cols) {
Energy->gui_rotate++;
} else {
Energy->gui_rotate = 0;
}
}
if (Energy->gui_rotate >= relay_show) {
Energy->gui_rotate = 0;
}
Energy->gui_offset = (Energy->gui_rotate / Energy->Settings.gui_cols) * Energy->Settings.gui_cols;
Energy->gui_count = relay_show - Energy->gui_offset;
if (Energy->gui_count > Energy->Settings.gui_cols) { Energy->gui_count = Energy->Settings.gui_cols; }
WSContentSend_P(PSTR("
")); // Close current table as we will use different column count
bool label_o = voltage_common;
if (ENERGY_DISPLAY_TABS == Energy->Settings.gui_display) {
uint32_t tabs = (relay_show -1 + Energy->Settings.gui_cols) / Energy->Settings.gui_cols;
if (tabs > 1) {
WSContentSend_P(PSTR("{t}")); // {t} =
uint32_t cols_width = 100 / tabs;
uint32_t current_tab = Energy->gui_rotate / Energy->Settings.gui_cols;
for (uint32_t idx = 0; idx < tabs; idx++) {
WSContentSend_P(PSTR(" | "), // &k03 is related to WebGetArg("k", tmp, sizeof(tmp));
cols_width,
(current_tab == idx) ? WebColor(COL_BACKGROUND) : WebColor(COL_FORM),
(current_tab == idx) ? "bold" : "normal",
idx,
(label_o) ? "O" : "L", (idx *Energy->Settings.gui_cols) +1);
}
WSContentSend_P(PSTR("
")); // Close current table as we will use different column count
}
}
// {s} | Head1 | | {e}
// {s} | | Head1 | | Head2 | | {e}
// {s} | | Head1 | | Head2 | | Head3 | | {e}
// {s} | | Head1 | | Head2 | | Head3 | | Head4 | | {e}
WSContentSend_P(PSTR("{t}{s} | | ")); // First column is empty ({t} = , {s} = )
bool no_label = (1 == Energy->phase_count);
for (uint32_t i = 0; i < Energy->gui_count; i++) {
WSContentSend_P(PSTR(" | %s%s | | "),
(no_label) ? "" : (label_o) ? "O" : "L",
(no_label) ? "" : itoa(relays[Energy->gui_offset +i], value_chr, 10));
}
WSContentSend_P(PSTR("{e}")); // Last column is units ({e} = |
)
#endif // USE_ENERGY_COLUMN_GUI
if (Energy->voltage_available) {
WSContentSend_PD(HTTP_SNS_VOLTAGE, WebEnergyFormat(value_chr, Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
}
if (!Energy->type_dc) {
if (!isnan(Energy->frequency[0])) {
WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"),
WebEnergyFormat(value_chr, Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
}
}
if (Energy->current_available) {
WSContentSend_PD(HTTP_SNS_CURRENT, WebEnergyFormat(value_chr, Energy->current, Settings->flag2.current_resolution));
}
WSContentSend_PD(HTTP_SNS_POWER, WebEnergyFormat(value_chr, Energy->active_power, Settings->flag2.wattage_resolution));
if (!Energy->type_dc) {
if (Energy->current_available && Energy->voltage_available) {
WSContentSend_PD(HTTP_ENERGY_SNS1, WebEnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution),
WebEnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution),
WebEnergyFormat(value3_chr, power_factor, 2));
}
}
WSContentSend_PD(HTTP_ENERGY_SNS2, WebEnergyFormat(value_chr, Energy->daily_kWh, Settings->flag2.energy_resolution, 2),
WebEnergyFormat(value2_chr, energy_yesterday_kWh, Settings->flag2.energy_resolution, 2),
WebEnergyFormat(value3_chr, Energy->total, Settings->flag2.energy_resolution, 2));
if (!isnan(Energy->export_active[0])) {
uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 2 : 1;
WSContentSend_PD(HTTP_ENERGY_SNS3, WebEnergyFormat(value_chr, Energy->export_active, Settings->flag2.energy_resolution, single));
}
#ifdef USE_ENERGY_COLUMN_GUI
XnrgCall(FUNC_WEB_COL_SENSOR);
WSContentSend_P(PSTR("
{t}")); // {t} = - Define for next FUNC_WEB_SENSOR
#endif // USE_ENERGY_COLUMN_GUI
XnrgCall(FUNC_WEB_SENSOR);
#endif // USE_WEBSERVER
}
}
}
#ifdef USE_WEBSERVER
void EnergyWebGetArg(void) {
char tmp[8]; // WebGetArg numbers only
WebGetArg(PSTR("k03"), tmp, sizeof(tmp)); // relay gtoups
if (strlen(tmp)) { Energy->gui_rotate = atoi(tmp) * Energy->Settings.gui_cols; }
}
#endif // USE_WEBSERVER
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv03(uint32_t function)
{
bool result = false;
if (FUNC_PRE_INIT == function) {
EnergyDrvInit();
}
else if (TasmotaGlobal.energy_driver) {
switch (function) {
case FUNC_LOOP:
case FUNC_SLEEP_LOOP:
XnrgCall(FUNC_LOOP);
break;
case FUNC_EVERY_250_MSECOND:
if (TasmotaGlobal.uptime > 4) {
XnrgCall(FUNC_EVERY_250_MSECOND);
}
break;
case FUNC_EVERY_SECOND:
XnrgCall(FUNC_EVERY_SECOND);
break;
case FUNC_SERIAL:
result = XnrgCall(FUNC_SERIAL);
break;
case FUNC_SAVE_SETTINGS:
EnergySettingsSave();
EnergyRtcSettingsSave();
break;
case FUNC_SET_POWER:
Energy->power_steady_counter = 2;
break;
case FUNC_COMMAND:
result = DecodeCommand(kEnergyCommands, EnergyCommand);
break;
case FUNC_NETWORK_UP:
XnrgCall(FUNC_NETWORK_UP);
break;
case FUNC_NETWORK_DOWN:
XnrgCall(FUNC_NETWORK_DOWN);
break;
}
}
return result;
}
bool Xsns03(uint32_t function)
{
bool result = false;
if (TasmotaGlobal.energy_driver) {
switch (function) {
case FUNC_EVERY_SECOND:
EnergyEverySecond();
break;
case FUNC_JSON_APPEND:
EnergyShow(true);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
EnergyShow(false);
break;
case FUNC_WEB_GET_ARG:
EnergyWebGetArg();
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
EnergySaveState();
break;
case FUNC_INIT:
EnergySnsInit();
break;
}
}
return result;
}
#endif // USE_ENERGY_SENSOR
#endif // ESP32