/*
xnrg_04_mcp39f501.ino - MCP39F501 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_MCP39F501
/*********************************************************************************************\
* MCP39F501 - Energy (Shelly 2)
*
* Based on datasheet from https://www.microchip.com/wwwproducts/en/MCP39F501
* and https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/7a7f9bb56d4b72770dba8d0f18eaa9d956dd0baf/olimex/user/modules/mod_emtr.c
\*********************************************************************************************/
#define XNRG_04 4
#define MCP_BAUDRATE 4800
#define MCP_TIMEOUT 4
#define MCP_CALIBRATION_TIMEOUT 2
#define MCP_CALIBRATE_POWER 0x001
#define MCP_CALIBRATE_VOLTAGE 0x002
#define MCP_CALIBRATE_CURRENT 0x004
#define MCP_CALIBRATE_FREQUENCY 0x008
#define MCP_SINGLE_WIRE_FLAG 0x100
#define MCP_START_FRAME 0xA5
#define MCP_ACK_FRAME 0x06
#define MCP_ERROR_NAK 0x15
#define MCP_ERROR_CRC 0x51
#define MCP_SINGLE_WIRE 0xAB
#define MCP_SET_ADDRESS 0x41
#define MCP_READ 0x4E
#define MCP_READ_16 0x52
#define MCP_READ_32 0x44
#define MCP_WRITE 0x4D
#define MCP_WRITE_16 0x57
#define MCP_WRITE_32 0x45
#define MCP_SAVE_REGISTERS 0x53
#define MCP_CALIBRATION_BASE 0x0028
#define MCP_CALIBRATION_LEN 52
#define MCP_FREQUENCY_REF_BASE 0x0094
#define MCP_FREQUENCY_GAIN_BASE 0x00AE
#define MCP_FREQUENCY_LEN 4
#define MCP_BUFFER_SIZE 60
#include
TasmotaSerial *McpSerial = nullptr;
typedef struct mcp_cal_registers_type {
uint16_t gain_current_rms;
uint16_t gain_voltage_rms;
uint16_t gain_active_power;
uint16_t gain_reactive_power;
sint32_t offset_current_rms;
sint32_t offset_active_power;
sint32_t offset_reactive_power;
sint16_t dc_offset_current;
sint16_t phase_compensation;
uint16_t apparent_power_divisor;
uint32_t system_configuration;
uint16_t dio_configuration;
uint32_t range;
uint32_t calibration_current;
uint16_t calibration_voltage;
uint32_t calibration_active_power;
uint32_t calibration_reactive_power;
uint16_t accumulation_interval;
} mcp_cal_registers_type;
char *mcp_buffer = nullptr;
unsigned long mcp_window = 0;
unsigned long mcp_kWhcounter = 0;
uint32_t mcp_system_configuration = 0x03000000;
uint32_t mcp_active_power;
//uint32_t mcp_reactive_power;
//uint32_t mcp_apparent_power;
uint32_t mcp_current_rms;
uint16_t mcp_voltage_rms;
uint16_t mcp_line_frequency;
//sint16_t mcp_power_factor;
uint8_t mcp_address = 0;
uint8_t mcp_calibration_active = 0;
uint8_t mcp_init = 0;
uint8_t mcp_timeout = 0;
uint8_t mcp_calibrate = 0;
uint8_t mcp_byte_counter = 0;
/*********************************************************************************************\
* Olimex tools
* https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/7a7f9bb56d4b72770dba8d0f18eaa9d956dd0baf/olimex/user/modules/mod_emtr.c
\*********************************************************************************************/
uint8_t McpChecksum(uint8_t *data)
{
uint8_t checksum = 0;
uint8_t offset = 0;
uint8_t len = data[1] -1;
for (uint32_t i = offset; i < len; i++) { checksum += data[i]; }
return checksum;
}
unsigned long McpExtractInt(char *data, uint8_t offset, uint8_t size)
{
unsigned long result = 0;
unsigned long pow = 1;
for (uint32_t i = 0; i < size; i++) {
result = result + (uint8_t)data[offset + i] * pow;
pow = pow * 256;
}
return result;
}
void McpSetInt(unsigned long value, uint8_t *data, uint8_t offset, size_t size)
{
for (uint32_t i = 0; i < size; i++) {
data[offset + i] = ((value >> (i * 8)) & 0xFF);
}
}
void McpSend(uint8_t *data)
{
if (mcp_timeout) { return; }
mcp_timeout = MCP_TIMEOUT;
data[0] = MCP_START_FRAME;
data[data[1] -1] = McpChecksum(data);
// AddLogBuffer(LOG_LEVEL_DEBUG_MORE, data, data[1]);
for (uint32_t i = 0; i < data[1]; i++) {
McpSerial->write(data[i]);
}
}
/********************************************************************************************/
void McpGetAddress(void)
{
uint8_t data[] = { MCP_START_FRAME, 7, MCP_SET_ADDRESS, 0x00, 0x26, MCP_READ_16, 0x00 };
McpSend(data);
}
void McpAddressReceive(void)
{
// 06 05 004D 58
mcp_address = mcp_buffer[3];
}
/********************************************************************************************/
void McpGetCalibration(void)
{
if (mcp_calibration_active) { return; }
mcp_calibration_active = MCP_CALIBRATION_TIMEOUT;
uint8_t data[] = { MCP_START_FRAME, 8, MCP_SET_ADDRESS, (MCP_CALIBRATION_BASE >> 8) & 0xFF, MCP_CALIBRATION_BASE & 0xFF, MCP_READ, MCP_CALIBRATION_LEN, 0x00 };
McpSend(data);
}
void McpParseCalibration(void)
{
bool action = false;
mcp_cal_registers_type cal_registers;
// 06 37 C882 B6AD 0781 9273 06000000 00000000 00000000 0000 D3FF 0300 00000003 9204 120C1300 204E0000 9808 E0AB0000 D9940000 0200 24
cal_registers.gain_current_rms = McpExtractInt(mcp_buffer, 2, 2);
cal_registers.gain_voltage_rms = McpExtractInt(mcp_buffer, 4, 2);
cal_registers.gain_active_power = McpExtractInt(mcp_buffer, 6, 2);
cal_registers.gain_reactive_power = McpExtractInt(mcp_buffer, 8, 2);
cal_registers.offset_current_rms = McpExtractInt(mcp_buffer, 10, 4);
cal_registers.offset_active_power = McpExtractInt(mcp_buffer, 14, 4);
cal_registers.offset_reactive_power = McpExtractInt(mcp_buffer, 18, 4);
cal_registers.dc_offset_current = McpExtractInt(mcp_buffer, 22, 2);
cal_registers.phase_compensation = McpExtractInt(mcp_buffer, 24, 2);
cal_registers.apparent_power_divisor = McpExtractInt(mcp_buffer, 26, 2);
cal_registers.system_configuration = McpExtractInt(mcp_buffer, 28, 4);
cal_registers.dio_configuration = McpExtractInt(mcp_buffer, 32, 2);
cal_registers.range = McpExtractInt(mcp_buffer, 34, 4);
cal_registers.calibration_current = McpExtractInt(mcp_buffer, 38, 4);
cal_registers.calibration_voltage = McpExtractInt(mcp_buffer, 42, 2);
cal_registers.calibration_active_power = McpExtractInt(mcp_buffer, 44, 4);
cal_registers.calibration_reactive_power = McpExtractInt(mcp_buffer, 48, 4);
cal_registers.accumulation_interval = McpExtractInt(mcp_buffer, 52, 2);
if (mcp_calibrate & MCP_CALIBRATE_POWER) {
cal_registers.calibration_active_power = EnergyGetCalibration(ENERGY_POWER_CALIBRATION);
if (McpCalibrationCalc(&cal_registers, 16)) { action = true; }
}
if (mcp_calibrate & MCP_CALIBRATE_VOLTAGE) {
cal_registers.calibration_voltage = EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION);
if (McpCalibrationCalc(&cal_registers, 0)) { action = true; }
}
if (mcp_calibrate & MCP_CALIBRATE_CURRENT) {
cal_registers.calibration_current = EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION);
if (McpCalibrationCalc(&cal_registers, 8)) { action = true; }
}
mcp_timeout = 0;
if (action) { McpSetCalibration(&cal_registers); }
mcp_calibrate = 0;
EnergySetCalibration(ENERGY_POWER_CALIBRATION, cal_registers.calibration_active_power);
EnergySetCalibration(ENERGY_VOLTAGE_CALIBRATION, cal_registers.calibration_voltage);
EnergySetCalibration(ENERGY_CURRENT_CALIBRATION, cal_registers.calibration_current);
mcp_system_configuration = cal_registers.system_configuration;
if (mcp_system_configuration & MCP_SINGLE_WIRE_FLAG) {
mcp_system_configuration &= ~MCP_SINGLE_WIRE_FLAG; // Reset SingleWire flag
McpSetSystemConfiguration(2);
}
}
bool McpCalibrationCalc(struct mcp_cal_registers_type *cal_registers, uint8_t range_shift)
{
uint32_t measured;
uint32_t expected;
uint16_t *gain;
uint32_t new_gain;
if (range_shift == 0) {
measured = mcp_voltage_rms;
expected = cal_registers->calibration_voltage;
gain = &(cal_registers->gain_voltage_rms);
} else if (range_shift == 8) {
measured = mcp_current_rms;
expected = cal_registers->calibration_current;
gain = &(cal_registers->gain_current_rms);
} else if (range_shift == 16) {
measured = mcp_active_power;
expected = cal_registers->calibration_active_power;
gain = &(cal_registers->gain_active_power);
} else {
return false;
}
if (measured == 0) {
return false;
}
uint32_t range = (cal_registers->range >> range_shift) & 0xFF;
calc:
new_gain = (*gain) * expected / measured;
if (new_gain < 25000) {
range++;
if (measured > 6) {
measured = measured / 2;
goto calc;
}
}
if (new_gain > 55000) {
range--;
measured = measured * 2;
goto calc;
}
*gain = new_gain;
uint32_t old_range = (cal_registers->range >> range_shift) & 0xFF;
cal_registers->range = cal_registers->range ^ (old_range << range_shift);
cal_registers->range = cal_registers->range | (range << range_shift);
return true;
}
/*
void McpCalibrationReactivePower(void)
{
cal_registers.gain_reactive_power = cal_registers.gain_reactive_power * cal_registers.calibration_reactive_power / mcp_reactive_power;
}
*/
void McpSetCalibration(struct mcp_cal_registers_type *cal_registers)
{
uint8_t data[7 + MCP_CALIBRATION_LEN + 2 + 1];
data[1] = sizeof(data);
data[2] = MCP_SET_ADDRESS; // Set address pointer
data[3] = (MCP_CALIBRATION_BASE >> 8) & 0xFF; // address
data[4] = (MCP_CALIBRATION_BASE >> 0) & 0xFF; // address
data[5] = MCP_WRITE; // Write N bytes
data[6] = MCP_CALIBRATION_LEN;
McpSetInt(cal_registers->gain_current_rms, data, 0+7, 2);
McpSetInt(cal_registers->gain_voltage_rms, data, 2+7, 2);
McpSetInt(cal_registers->gain_active_power, data, 4+7, 2);
McpSetInt(cal_registers->gain_reactive_power, data, 6+7, 2);
McpSetInt(cal_registers->offset_current_rms, data, 8+7, 4);
McpSetInt(cal_registers->offset_active_power, data, 12+7, 4);
McpSetInt(cal_registers->offset_reactive_power, data, 16+7, 4);
McpSetInt(cal_registers->dc_offset_current, data, 20+7, 2);
McpSetInt(cal_registers->phase_compensation, data, 22+7, 2);
McpSetInt(cal_registers->apparent_power_divisor, data, 24+7, 2);
McpSetInt(cal_registers->system_configuration, data, 26+7, 4);
McpSetInt(cal_registers->dio_configuration, data, 30+7, 2);
McpSetInt(cal_registers->range, data, 32+7, 4);
McpSetInt(cal_registers->calibration_current, data, 36+7, 4);
McpSetInt(cal_registers->calibration_voltage, data, 40+7, 2);
McpSetInt(cal_registers->calibration_active_power, data, 42+7, 4);
McpSetInt(cal_registers->calibration_reactive_power, data, 46+7, 4);
McpSetInt(cal_registers->accumulation_interval, data, 50+7, 2);
data[MCP_CALIBRATION_LEN+7] = MCP_SAVE_REGISTERS; // Save registers to flash
data[MCP_CALIBRATION_LEN+8] = mcp_address; // Device address
McpSend(data);
}
/********************************************************************************************/
void McpSetSystemConfiguration(uint16 interval)
{
// A5 11 41 00 42 45 03 00 01 00 41 00 5A 57 00 06 7A
uint8_t data[17];
data[ 1] = sizeof(data);
data[ 2] = MCP_SET_ADDRESS; // Set address pointer
data[ 3] = 0x00; // address
data[ 4] = 0x42; // address
data[ 5] = MCP_WRITE_32; // Write 4 bytes
data[ 6] = (mcp_system_configuration >> 24) & 0xFF; // system_configuration
data[ 7] = (mcp_system_configuration >> 16) & 0xFF; // system_configuration
data[ 8] = (mcp_system_configuration >> 8) & 0xFF; // system_configuration
data[ 9] = (mcp_system_configuration >> 0) & 0xFF; // system_configuration
data[10] = MCP_SET_ADDRESS; // Set address pointer
data[11] = 0x00; // address
data[12] = 0x5A; // address
data[13] = MCP_WRITE_16; // Write 2 bytes
data[14] = (interval >> 8) & 0xFF; // interval
data[15] = (interval >> 0) & 0xFF; // interval
McpSend(data);
}
/********************************************************************************************/
void McpGetFrequency(void)
{
if (mcp_calibration_active) { return; }
mcp_calibration_active = MCP_CALIBRATION_TIMEOUT;
uint8_t data[] = { MCP_START_FRAME, 11, MCP_SET_ADDRESS, (MCP_FREQUENCY_REF_BASE >> 8) & 0xFF, MCP_FREQUENCY_REF_BASE & 0xFF, MCP_READ_16,
MCP_SET_ADDRESS, (MCP_FREQUENCY_GAIN_BASE >> 8) & 0xFF, MCP_FREQUENCY_GAIN_BASE & 0xFF, MCP_READ_16, 0x00 };
McpSend(data);
}
void McpParseFrequency(void)
{
// 06 07 C350 8000 A0
uint16_t line_frequency_ref = mcp_buffer[2] * 256 + mcp_buffer[3];
uint16_t gain_line_frequency = mcp_buffer[4] * 256 + mcp_buffer[5];
if (mcp_calibrate & MCP_CALIBRATE_FREQUENCY) {
line_frequency_ref = EnergyGetCalibration(ENERGY_FREQUENCY_CALIBRATION);
if ((0xFFFF == mcp_line_frequency) || (0 == gain_line_frequency)) { // Reset values to 50Hz
mcp_line_frequency = 50000;
gain_line_frequency = 0x8000;
}
gain_line_frequency = gain_line_frequency * line_frequency_ref / mcp_line_frequency;
mcp_timeout = 0;
McpSetFrequency(line_frequency_ref, gain_line_frequency);
}
EnergySetCalibration(ENERGY_FREQUENCY_CALIBRATION, line_frequency_ref);
mcp_calibrate = 0;
}
void McpSetFrequency(uint16_t line_frequency_ref, uint16_t gain_line_frequency)
{
// A5 11 41 00 94 57 C3 B4 41 00 AE 57 7E 46 53 4D 03
uint8_t data[17];
data[ 1] = sizeof(data);
data[ 2] = MCP_SET_ADDRESS; // Set address pointer
data[ 3] = (MCP_FREQUENCY_REF_BASE >> 8) & 0xFF; // address
data[ 4] = (MCP_FREQUENCY_REF_BASE >> 0) & 0xFF; // address
data[ 5] = MCP_WRITE_16; // Write register
data[ 6] = (line_frequency_ref >> 8) & 0xFF; // line_frequency_ref high
data[ 7] = (line_frequency_ref >> 0) & 0xFF; // line_frequency_ref low
data[ 8] = MCP_SET_ADDRESS; // Set address pointer
data[ 9] = (MCP_FREQUENCY_GAIN_BASE >> 8) & 0xFF; // address
data[10] = (MCP_FREQUENCY_GAIN_BASE >> 0) & 0xFF; // address
data[11] = MCP_WRITE_16; // Write register
data[12] = (gain_line_frequency >> 8) & 0xFF; // gain_line_frequency high
data[13] = (gain_line_frequency >> 0) & 0xFF; // gain_line_frequency low
data[14] = MCP_SAVE_REGISTERS; // Save registers to flash
data[15] = mcp_address; // Device address
McpSend(data);
}
/********************************************************************************************/
void McpGetData(void)
{
uint8_t data[] = { MCP_START_FRAME, 8, MCP_SET_ADDRESS, 0x00, 0x04, MCP_READ, 22, 0x00 };
McpSend(data);
}
void McpParseData(void)
{
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// 06 19 61 06 00 00 FE 08 9B 0E 00 00 0B 00 00 00 97 0E 00 00 FF 7F 0C C6 35
// 06 19 CE 18 00 00 F2 08 3A 38 00 00 66 00 00 00 93 38 00 00 36 7F 9A C6 B7
// Ak Ln Current---- Volt- ActivePower ReActivePow ApparentPow Factr Frequ Ck
mcp_current_rms = McpExtractInt(mcp_buffer, 2, 4);
mcp_voltage_rms = McpExtractInt(mcp_buffer, 6, 2);
mcp_active_power = McpExtractInt(mcp_buffer, 8, 4);
// mcp_reactive_power = McpExtractInt(mcp_buffer, 12, 4);
// mcp_power_factor = McpExtractInt(mcp_buffer, 20, 2);
mcp_line_frequency = McpExtractInt(mcp_buffer, 22, 2);
if (Energy->power_on) { // Powered on
Energy->data_valid[0] = 0;
Energy->frequency[0] = (float)mcp_line_frequency / 1000;
Energy->voltage[0] = (float)mcp_voltage_rms / 10;
Energy->active_power[0] = (float)mcp_active_power / 100;
if (0 == Energy->active_power[0]) {
Energy->current[0] = 0;
} else {
Energy->current[0] = (float)mcp_current_rms / 10000;
}
/*
} else { // Powered off
Energy->data_valid[0] = ENERGY_WATCHDOG;
*/
}
}
/********************************************************************************************/
void McpSerialInput(void)
{
while ((McpSerial->available()) && (mcp_byte_counter < MCP_BUFFER_SIZE)) {
yield();
mcp_buffer[mcp_byte_counter++] = McpSerial->read();
mcp_window = millis();
}
// Ignore until non received after 2 chars (= 12 bits/char) time
if ((mcp_byte_counter) && (millis() - mcp_window > (24000 / MCP_BAUDRATE) +1)) {
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, (uint8_t*)mcp_buffer, mcp_byte_counter);
if (MCP_BUFFER_SIZE == mcp_byte_counter) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("MCP: Overflow"));
}
else if (1 == mcp_byte_counter) {
if (MCP_ERROR_CRC == mcp_buffer[0]) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("MCP: Send " D_CHECKSUM_FAILURE));
mcp_timeout = 0;
}
else if (MCP_ERROR_NAK == mcp_buffer[0]) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("MCP: NAck"));
mcp_timeout = 0;
}
}
else if (MCP_ACK_FRAME == mcp_buffer[0]) {
if (mcp_byte_counter == mcp_buffer[1]) {
if (McpChecksum((uint8_t *)mcp_buffer) != mcp_buffer[mcp_byte_counter -1]) {
AddLog(LOG_LEVEL_DEBUG, PSTR("MCP: " D_CHECKSUM_FAILURE));
} else {
if (5 == mcp_buffer[1]) { McpAddressReceive(); }
if (25 == mcp_buffer[1]) { McpParseData(); }
if (MCP_CALIBRATION_LEN + 3 == mcp_buffer[1]) { McpParseCalibration(); }
if (MCP_FREQUENCY_LEN + 3 == mcp_buffer[1]) { McpParseFrequency(); }
}
}
mcp_timeout = 0;
}
else if (MCP_SINGLE_WIRE == mcp_buffer[0]) {
mcp_timeout = 0;
}
mcp_byte_counter = 0;
McpSerial->flush();
}
}
/********************************************************************************************/
void McpEverySecond(void)
{
if (Energy->data_valid[0] > ENERGY_WATCHDOG) {
mcp_voltage_rms = 0;
mcp_current_rms = 0;
mcp_active_power = 0;
mcp_line_frequency = 0;
}
if (mcp_active_power) {
Energy->kWhtoday_delta[0] += ((mcp_active_power * 10) / 36);
EnergyUpdateToday();
}
if (mcp_timeout) {
mcp_timeout--;
}
else if (mcp_calibration_active) {
mcp_calibration_active--;
}
else if (mcp_init) {
if (2 == mcp_init) {
McpGetCalibration(); // Get calibration parameters and disable SingleWire mode if enabled
}
else if (1 == mcp_init) {
McpGetFrequency(); // Get calibration parameter
}
mcp_init--;
}
else if (!mcp_address) {
McpGetAddress(); // Get device address for future calibration changes
}
else {
McpGetData(); // Get energy data
}
}
void McpSnsInit(void)
{
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
McpSerial = new TasmotaSerial(Pin(GPIO_MCP39F5_RX), Pin(GPIO_MCP39F5_TX), 1);
if (McpSerial->begin(MCP_BAUDRATE)) {
if (McpSerial->hardwareSerial()) {
ClaimSerial();
mcp_buffer = TasmotaGlobal.serial_in_buffer; // Use idle serial buffer to save RAM
} else {
mcp_buffer = (char*)(malloc(MCP_BUFFER_SIZE));
}
DigitalWrite(GPIO_MCP39F5_RST, 0, 1); // MCP enable
Energy->use_overtemp = true; // Use global temperature for overtemp detection
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void McpDrvInit(void)
{
if (PinUsed(GPIO_MCP39F5_RX) && PinUsed(GPIO_MCP39F5_TX)) {
if (PinUsed(GPIO_MCP39F5_RST)) {
pinMode(Pin(GPIO_MCP39F5_RST), OUTPUT);
digitalWrite(Pin(GPIO_MCP39F5_RST), 0); // MCP disable - Reset Delta Sigma ADC's
}
mcp_calibrate = 0;
mcp_timeout = 2; // Initial wait
mcp_init = 2; // Initial setup steps
TasmotaGlobal.energy_driver = XNRG_04;
}
}
bool McpCommand(void)
{
bool serviced = true;
unsigned long value = 0;
if (CMND_POWERSET == Energy->command_code) {
if (XdrvMailbox.data_len && mcp_active_power) {
value = (unsigned long)(CharToFloat(XdrvMailbox.data) * 100);
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
XdrvMailbox.payload = value;
mcp_calibrate |= MCP_CALIBRATE_POWER;
McpGetCalibration();
}
}
}
else if (CMND_VOLTAGESET == Energy->command_code) {
if (XdrvMailbox.data_len && mcp_voltage_rms) {
value = (unsigned long)(CharToFloat(XdrvMailbox.data) * 10);
if ((value > 1000) && (value < 2600)) { // Between 100V and 260V
XdrvMailbox.payload = value;
mcp_calibrate |= MCP_CALIBRATE_VOLTAGE;
McpGetCalibration();
}
}
}
else if (CMND_CURRENTSET == Energy->command_code) {
if (XdrvMailbox.data_len && mcp_current_rms) {
value = (unsigned long)(CharToFloat(XdrvMailbox.data) * 10);
if ((value > 100) && (value < 80000)) { // Between 10mA and 8A
XdrvMailbox.payload = value;
mcp_calibrate |= MCP_CALIBRATE_CURRENT;
McpGetCalibration();
}
}
}
else if (CMND_FREQUENCYSET == Energy->command_code) {
if (XdrvMailbox.data_len && mcp_line_frequency) {
value = (unsigned long)(CharToFloat(XdrvMailbox.data) * 1000);
if ((value > 45000) && (value < 65000)) { // Between 45Hz and 65Hz
XdrvMailbox.payload = value;
mcp_calibrate |= MCP_CALIBRATE_FREQUENCY;
McpGetFrequency();
}
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg04(uint32_t function)
{
bool result = false;
switch (function) {
case FUNC_LOOP:
if (McpSerial) { McpSerialInput(); }
break;
case FUNC_ENERGY_EVERY_SECOND:
if (McpSerial) { McpEverySecond(); }
break;
case FUNC_COMMAND:
result = McpCommand();
break;
case FUNC_INIT:
McpSnsInit();
break;
case FUNC_PRE_INIT:
McpDrvInit();
break;
}
return result;
}
#endif // USE_MCP39F501
#endif // USE_ENERGY_SENSOR