/* xsns_02_analog.ino - ADC support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ADC /*********************************************************************************************\ * ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39 \*********************************************************************************************/ #define XSNS_02 2 #ifdef ESP8266 #define ANALOG_RESOLUTION 10 // 12 = 4095, 11 = 2047, 10 = 1023 #define ANALOG_RANGE 1023 // 4095 = 12, 2047 = 11, 1023 = 10 #define ANALOG_PERCENT 10 // backward compatible div10 range #endif // ESP8266 #ifdef ESP32 #undef ANALOG_RESOLUTION #define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023 #undef ANALOG_RANGE #define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10 #undef ANALOG_PERCENT #define ANALOG_PERCENT ((ANALOG_RANGE + 50) / 100) // approximation to 1% ADC range #endif // ESP32 #define TO_CELSIUS(x) ((x) - 273.15) #define TO_KELVIN(x) ((x) + 273.15) // Parameters for equation #define ANALOG_V33 3.3 // ESP8266 / ESP32 Analog voltage #define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celsius in Kelvin (= 298.15) // Mode 0 : Shelly 2.5 NTC Thermistor // 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd // | // ADC0 // Mode 1 : NTC towards 3V3 (Sinilink Thermostat Relay Board (XY-WFT1) // 3V3 --- NTC ---v--- ANALOG_NTC_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor #define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance #define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient // LDR parameters // 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor #define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental #define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental // CT Based Apparrent Power Measurement Parameters // 3V3 --- R1 ----v--- R1 --- Gnd // | // CT+ CT- // | // ADC0 // Default settings for a 20A/1V Current Transformer. // Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER #define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use #define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1 #define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V #define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total // Buttons // ---- Inverted // 3V3 ---| |----| // | // 3V3 --- R1 ----|--- R1 --- Gnd // | // |---| |--- Gnd // | ---- // ADC #define ANALOG_BUTTON 128 // Add resistor tolerance // Odroid joysticks // ---- Up // 3V3 ---| |------------ // | // ---- Dn |--- R10k --- Gnd // 3V3 ---| |--- R10k ---| // | // ADC // Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2 #define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance // pH scale minimum and maximum values #define ANALOG_PH_MAX 14.0 #define ANALOG_PH_MIN 0.0 // Default values for calibration solution with lower PH #define ANALOG_PH_CALSOLUTION_LOW_PH 4.0 #define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282 // Default values for calibration solution with higher PH #define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18 #define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435 // Multiplier used to store pH with 2 decimal places in a non decimal datatype #define ANALOG_PH_DECIMAL_MULTIPLIER 100.0 // MQ-X sensor (MQ-02, MQ-03, MQ-04, MQ-05, MQ-06, MQ-07, MQ-08, MQ-09, MQ-131, MQ-135) // // A0 ------------------- // | // GND ----------- | // | | // VCC --- | | // | | | // 3V3 GND ADC <- (A0 for nodemcu, wemos; GPIO34,35,36,39 and other analog IN/OUT pin for esp32) //means mq type (ex for mq-02 use 2, mq-131 use 131) #define ANALOG_MQ_TYPE 2 //exponential regression a params #define ANALOG_MQ_A 574.25 //exponential regression b params #define ANALOG_MQ_B -2.222 /* Exponential regression: Gas | a | b LPG | 44771 | -3.245 CH4 | 2*10^31| 19.01 CO | 521853 | -3.821 Alcohol| 0.3934 | -1.504 Benzene| 4.8387 | -2.68 Hexane | 7585.3 | -2.849 NOx | -462.43 | -2.204 CL2 | 47.209 | -1.186 O3 | 23.943 | -1.11 */ //ratio for alarm, NOT USED yet (RS / R0 = 15 ppm) #define ANALOG_MQ_RatioMQCleanAir 15.0 // Multiplier used to store pH with 2 decimal places in a non decimal datatype #define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0 // lenght of filter #define ANALOG_MQ_SAMPLES 60 struct { uint8_t present = 0; uint8_t type = 0; } Adcs; struct { float temperature = 0; float current = 0; float energy = 0; uint32_t param1 = 0; uint32_t param2 = 0; int param3 = 0; int param4 = 0; uint32_t previous_millis = 0; uint16_t last_value = 0; uint8_t type = 0; uint8_t pin = 0; float mq_samples[ANALOG_MQ_SAMPLES]; int indexOfPointer = -1; } Adc[MAX_ADCS]; #ifdef ESP8266 bool adcAttachPin(uint8_t pin) { return (ADC0_PIN == pin); } #endif void AdcSaveSettings(uint32_t idx) { char parameters[32]; snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"), Adc[idx].type, Adc[idx].param1, Adc[idx].param2, Adc[idx].param3, Adc[idx].param4); SettingsUpdateText(SET_ADC_PARAM1 + idx, parameters); } void AdcGetSettings(uint32_t idx) { char parameters[32]; Adcs.type = 0; Adc[idx].param1 = 0; Adc[idx].param2 = 0; Adc[idx].param3 = 0; Adc[idx].param4 = 0; if (strchr(SettingsText(SET_ADC_PARAM1 + idx), ',') != nullptr) { Adcs.type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 1)); Adc[idx].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 2)); Adc[idx].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 3)); Adc[idx].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 4)); Adc[idx].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 5)); } } void AdcInitParams(uint8_t idx) { if ((Adcs.type != Adc[idx].type) || (Adc[idx].param1 > 1000000)) { if (ADC_TEMP == Adc[idx].type) { // Default Shelly 2.5 and 1PM parameters Adc[idx].param1 = ANALOG_NTC_BRIDGE_RESISTANCE; Adc[idx].param2 = ANALOG_NTC_RESISTANCE; Adc[idx].param3 = ANALOG_NTC_B_COEFFICIENT * 10000; Adc[idx].param4 = 0; // Default to Shelly mode with NTC towards GND } else if (ADC_LIGHT == Adc[idx].type) { Adc[idx].param1 = ANALOG_LDR_BRIDGE_RESISTANCE; Adc[idx].param2 = ANALOG_LDR_LUX_CALC_SCALAR; Adc[idx].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; } else if (ADC_RANGE == Adc[idx].type) { Adc[idx].param1 = 0; Adc[idx].param2 = ANALOG_RANGE; Adc[idx].param3 = 0; Adc[idx].param4 = 100; } else if (ADC_CT_POWER == Adc[idx].type) { Adc[idx].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0 Adc[idx].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000 Adc[idx].param3 = ANALOG_CT_VOLTAGE; // (int) 10 } else if (ADC_PH == Adc[idx].type) { Adc[idx].param1 = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 1, which is the one with the lower PH Adc[idx].param2 = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 1 Adc[idx].param3 = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 2, which is the one with the higher PH Adc[idx].param4 = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 2 } else if (ADC_MQ == Adc[idx].type) { Adc[idx].param1 = ANALOG_MQ_TYPE; // Could be MQ-002, MQ-004, MQ-131 .... Adc[idx].param2 = (int)(ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param3 = (int)(ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param4 = (int)(ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression } } if ((Adcs.type != Adc[idx].type) || (0 == Adc[idx].param1) || (Adc[idx].param1 > ANALOG_RANGE)) { if ((ADC_BUTTON == Adc[idx].type) || (ADC_BUTTON_INV == Adc[idx].type)) { Adc[idx].param1 = ANALOG_BUTTON; } else if (ADC_JOY == Adc[idx].type) { Adc[idx].param1 = ANALOG_JOYSTICK; } } } void AdcAttach(uint32_t pin, uint8_t type) { if (Adcs.present == MAX_ADCS) { return; } Adc[Adcs.present].pin = pin; if (adcAttachPin(Adc[Adcs.present].pin)) { Adc[Adcs.present].type = type; // analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default Adcs.present++; } } void AdcInit(void) { Adcs.present = 0; for (uint32_t i = 0; i < MAX_ADCS; i++) { if (PinUsed(GPIO_ADC_INPUT, i)) { AdcAttach(Pin(GPIO_ADC_INPUT, i), ADC_INPUT); } if (PinUsed(GPIO_ADC_TEMP, i)) { AdcAttach(Pin(GPIO_ADC_TEMP, i), ADC_TEMP); } if (PinUsed(GPIO_ADC_LIGHT, i)) { AdcAttach(Pin(GPIO_ADC_LIGHT, i), ADC_LIGHT); } if (PinUsed(GPIO_ADC_RANGE, i)) { AdcAttach(Pin(GPIO_ADC_RANGE, i), ADC_RANGE); } if (PinUsed(GPIO_ADC_CT_POWER, i)) { AdcAttach(Pin(GPIO_ADC_CT_POWER, i), ADC_CT_POWER); } if (PinUsed(GPIO_ADC_JOY, i)) { AdcAttach(Pin(GPIO_ADC_JOY, i), ADC_JOY); } if (PinUsed(GPIO_ADC_PH, i)) { AdcAttach(Pin(GPIO_ADC_PH, i), ADC_PH); } if (PinUsed(GPIO_ADC_MQ, i)) { AdcAttach(Pin(GPIO_ADC_MQ, i), ADC_MQ); } } for (uint32_t i = 0; i < MAX_KEYS; i++) { if (PinUsed(GPIO_ADC_BUTTON, i)) { AdcAttach(Pin(GPIO_ADC_BUTTON, i), ADC_BUTTON); } else if (PinUsed(GPIO_ADC_BUTTON_INV, i)) { AdcAttach(Pin(GPIO_ADC_BUTTON_INV, i), ADC_BUTTON_INV); } } if (Adcs.present) { #ifdef ESP32 analogSetClockDiv(1); // Default 1 #if CONFIG_IDF_TARGET_ESP32 analogSetWidth(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095) #endif // CONFIG_IDF_TARGET_ESP32 analogSetAttenuation(ADC_11db); // Default 11db #endif for (uint32_t idx = 0; idx < Adcs.present; idx++) { AdcGetSettings(idx); AdcInitParams(idx); AdcSaveSettings(idx); } } } uint16_t AdcRead(uint32_t pin, uint32_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint32_t samples = 1 << factor; uint32_t analog = 0; for (uint32_t i = 0; i < samples; i++) { analog += analogRead(pin); delay(1); } analog >>= factor; return analog; } #ifdef USE_RULES void AdcEvery250ms(void) { char adc_idx[3] = { 0 }; uint32_t offset = 0; for (uint32_t idx = 0; idx < Adcs.present; idx++) { #ifdef ESP32 snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1); offset = 1; #endif if (ADC_INPUT == Adc[idx].type) { uint16_t new_value = AdcRead(Adc[idx].pin, 5); if ((new_value < Adc[idx].last_value -ANALOG_PERCENT) || (new_value > Adc[idx].last_value +ANALOG_PERCENT)) { Adc[idx].last_value = new_value; uint16_t value = Adc[idx].last_value / ANALOG_PERCENT; Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx + offset, (value > 99) ? 100 : value); XdrvRulesProcess(0); } } else if (ADC_JOY == Adc[idx].type) { uint16_t new_value = AdcRead(Adc[idx].pin, 1); if (new_value && (new_value != Adc[idx].last_value)) { Adc[idx].last_value = new_value; uint16_t value = new_value / Adc[idx].param1; Response_P(PSTR("{\"ANALOG\":{\"Joy%s\":%d}}"), adc_idx, value); XdrvRulesProcess(0); } else { Adc[idx].last_value = 0; } } } } #endif // USE_RULES uint8_t AdcGetButton(uint32_t pin) { for (uint32_t idx = 0; idx < Adcs.present; idx++) { if (Adc[idx].pin == pin) { if (ADC_BUTTON_INV == Adc[idx].type) { return (AdcRead(Adc[idx].pin, 1) < Adc[idx].param1); } else if (ADC_BUTTON == Adc[idx].type) { return (AdcRead(Adc[idx].pin, 1) > Adc[idx].param1); } } } return 0; } uint16_t AdcGetLux(uint32_t idx) { int adc = AdcRead(Adc[idx].pin, 2); // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33; double ldrVoltage = ANALOG_V33 - resistorVoltage; double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[idx].param1; double ldrLux = (double)Adc[idx].param2 * FastPrecisePow(ldrResistance, (double)Adc[idx].param3 / 10000); return (uint16_t)ldrLux; } void AddSampleMq(uint32_t idx){ // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Adding sample for mq-sensor")); int _adc = AdcRead(Adc[idx].pin, 2); // init af array at same value if (Adc[idx].indexOfPointer==-1) { // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Init samples for mq-sensor")); for (int i = 0; i < ANALOG_MQ_SAMPLES; i ++) { Adc[idx].mq_samples[i] = _adc; } } else { Adc[idx].mq_samples[Adc[idx].indexOfPointer] = _adc; } Adc[idx].indexOfPointer++; if (Adc[idx].indexOfPointer==ANALOG_MQ_SAMPLES) { Adc[idx].indexOfPointer=0; } } float AdcGetMq(uint32_t idx) { // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Getting value for mq-sensor")); float avg = 0.0; for (int i = 0; i < ANALOG_MQ_SAMPLES; i ++) { avg += Adc[idx].mq_samples[i]; } float voltage = (avg / ANALOG_MQ_SAMPLES) * ANALOG_V33 / ANALOG_RANGE; float _RL = 10; // Value in KiloOhms float _RS_Calc = ((ANALOG_V33 * _RL) / voltage) -_RL; // Get value of RS in a gas if (_RS_Calc < 0) { _RS_Calc = 0; // No negative values accepted. } float _R0 = 10; float _ratio = _RS_Calc / _R0; // Get ratio RS_gas/RS_air float ppm = Adc[idx].param2 / ANALOG_MQ_DECIMAL_MULTIPLIER * FastPrecisePow(_ratio, Adc[idx].param3 / ANALOG_MQ_DECIMAL_MULTIPLIER); // Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents if (ppm < 0) { ppm = 0; } // No negative values accepted or upper datasheet recomendation. if (ppm > 100000) { ppm = 100000; } // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Ppm read. ADC-RAW: %2_f, ppm: %2_f"), &voltage, &ppm); return ppm; } float AdcGetPh(uint32_t idx) { int adc = AdcRead(Adc[idx].pin, 2); float y1 = (float)Adc[idx].param1 / ANALOG_PH_DECIMAL_MULTIPLIER; int32_t x1 = Adc[idx].param2; float y2 = (float)Adc[idx].param3 / ANALOG_PH_DECIMAL_MULTIPLIER; int32_t x2 = Adc[idx].param4; float m = (y2 - y1) / (float)(x2 - x1); float ph = m * (float)(adc - x1) + y1; // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Analog pH read. ADC-RAW: %d, cal-low(pH=ADC): %2_f = %d, cal-high(pH=ADC): %2_f = %d"), adc, &y1, x1, &y2, x2); return ph; } float AdcGetRange(uint32_t idx) { // formula for calibration: value, fromLow, fromHigh, toLow, toHigh // Example: 514, 632, 236, 0, 100 // int( (( - ) / ( - ) ) * ( - ) ) + ) int adc = AdcRead(Adc[idx].pin, 5); double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 ); return (float)adcrange; } void AdcGetCurrentPower(uint8_t idx, uint8_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint8_t samples = 1 << factor; uint16_t analog = 0; uint16_t analog_min = ANALOG_RANGE; uint16_t analog_max = 0; if (0 == Adc[idx].param1) { for (uint32_t i = 0; i < samples; i++) { analog = analogRead(Adc[idx].pin); if (analog < analog_min) { analog_min = analog; } if (analog > analog_max) { analog_max = analog; } delay(1); } Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Adc[idx].param2) / 100000); } else { analog = AdcRead(Adc[idx].pin, 5); if (analog > Adc[idx].param1) { Adc[idx].current = ((float)(analog) - (float)Adc[idx].param1) * ((float)(Adc[idx].param2) / 100000); } else { Adc[idx].current = 0; } } float power = Adc[idx].current * (float)(Adc[idx].param3) / 10; uint32_t current_millis = millis(); Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000); Adc[idx].previous_millis = current_millis; } void AdcEverySecond(void) { for (uint32_t idx = 0; idx < Adcs.present; idx++) { if (ADC_TEMP == Adc[idx].type) { int adc = AdcRead(Adc[idx].pin, 2); // Steinhart-Hart equation for thermistor as temperature sensor: // double Rt = (adc * Adc[idx].param1 * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (double)adc * MAX_ADC_V); // MAX_ADC_V in ESP8266 is 1 // MAX_ADC_V in ESP32 is 3.3 double Rt; #ifdef ESP8266 if (Adc[idx].param4) { // Alternate mode Rt = (double)Adc[idx].param1 * (ANALOG_RANGE * ANALOG_V33 - (double)adc) / (double)adc; } else { Rt = (double)Adc[idx].param1 * (double)adc / (ANALOG_RANGE * ANALOG_V33 - (double)adc); } #else if (Adc[idx].param4) { // Alternate mode Rt = (double)Adc[idx].param1 * (ANALOG_RANGE - (double)adc) / (double)adc; } else { Rt = (double)Adc[idx].param1 * (double)adc / (ANALOG_RANGE - (double)adc); } #endif double BC = (double)Adc[idx].param3 / 10000; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT) double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[idx].param2)); // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE) Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T)); } else if (ADC_CT_POWER == Adc[idx].type) { AdcGetCurrentPower(idx, 5); } else if (ADC_MQ == Adc[idx].type) { AddSampleMq(idx); AdcGetMq(idx); } } } void AdcShowContinuation(bool *jsonflg) { if (*jsonflg) { ResponseAppend_P(PSTR(",")); } else { ResponseAppend_P(PSTR(",\"ANALOG\":{")); *jsonflg = true; } } void AdcShow(bool json) { bool domo_flag[ADC_END] = { false }; char adc_name[10] = { 0 }; // ANALOG8 char adc_idx[3] = { 0 }; uint32_t offset = 0; bool jsonflg = false; for (uint32_t idx = 0; idx < Adcs.present; idx++) { #ifdef ESP32 snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), idx +1); snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1); offset = 1; #endif switch (Adc[idx].type) { case ADC_INPUT: { uint16_t analog = AdcRead(Adc[idx].pin, 5); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"A%d\":%d"), idx + offset, analog); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ANALOG, "", idx + offset, analog); #endif // USE_WEBSERVER } break; } case ADC_TEMP: { if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "%s\":%*_f"), adc_idx, Settings->flag2.temperature_resolution, &Adc[idx].temperature); if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_TEMP])) { #ifdef USE_DOMOTICZ DomoticzFloatSensor(DZ_TEMP, Adc[idx].temperature); domo_flag[ADC_TEMP] = true; #endif // USE_DOMOTICZ #ifdef USE_KNX KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature); #endif // USE_KNX } #ifdef USE_WEBSERVER } else { WSContentSend_Temp(adc_name, Adc[idx].temperature); #endif // USE_WEBSERVER } break; } case ADC_LIGHT: { uint16_t adc_light = AdcGetLux(idx); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_ILLUMINANCE "%s\":%d"), adc_idx, adc_light); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_LIGHT])) { DomoticzSensor(DZ_ILLUMINANCE, adc_light); domo_flag[ADC_LIGHT] = true; } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light); #endif // USE_WEBSERVER } break; } case ADC_RANGE: { float adc_range = AdcGetRange(idx); char range_chr[FLOATSZ]; dtostrfd(adc_range, Settings->flag2.frequency_resolution, range_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_RANGE "%s\":%s"), adc_idx, range_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_RANGE_CHR, adc_name, range_chr); #endif // USE_WEBSERVER } break; } case ADC_CT_POWER: { AdcGetCurrentPower(idx, 5); float voltage = (float)(Adc[idx].param3) / 10; char voltage_chr[FLOATSZ]; dtostrfd(voltage, Settings->flag2.voltage_resolution, voltage_chr); char current_chr[FLOATSZ]; dtostrfd(Adc[idx].current, Settings->flag2.current_resolution, current_chr); char power_chr[FLOATSZ]; dtostrfd(voltage * Adc[idx].current, Settings->flag2.wattage_resolution, power_chr); char energy_chr[FLOATSZ]; dtostrfd(Adc[idx].energy, Settings->flag2.energy_resolution, energy_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"CTEnergy%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"), adc_idx, energy_chr, power_chr, voltage_chr, current_chr); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_CT_POWER])) { DomoticzSensor(DZ_POWER_ENERGY, power_chr); DomoticzSensor(DZ_VOLTAGE, voltage_chr); DomoticzSensor(DZ_CURRENT, current_chr); domo_flag[ADC_CT_POWER] = true; } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr); WSContentSend_PD(HTTP_SNS_CURRENT, current_chr); WSContentSend_PD(HTTP_SNS_POWER, power_chr); WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr); #endif // USE_WEBSERVER } break; } case ADC_JOY: { uint16_t new_value = AdcRead(Adc[idx].pin, 1); uint16_t value = new_value / Adc[idx].param1; if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"Joy%s\":%d"), adc_idx, value); } break; } case ADC_PH: { float ph = AdcGetPh(idx); char ph_chr[FLOATSZ]; dtostrfd(ph, 2, ph_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"pH%d\":%s"), idx + offset, ph_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_PH, "", ph_chr); #endif // USE_WEBSERVER } break; } case ADC_MQ: { float mq = AdcGetMq(idx); char mq_chr[FLOATSZ]; dtostrfd(mq, 2, mq_chr); float mqnumber =Adc[idx].param1; char mqnumber_chr[FLOATSZ]; dtostrfd(mqnumber, 0, mqnumber_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"MQ%d_%d\":%s"), Adc[idx].param1, idx + offset, mq_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_MQ, mqnumber_chr, mq_chr); #endif // USE_WEBSERVER } break; } } } if (jsonflg) { ResponseJsonEnd(); } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ const char kAdcCommands[] PROGMEM = "|" // No prefix D_CMND_ADCPARAM; void (* const AdcCommand[])(void) PROGMEM = { &CmndAdcParam }; void CmndAdcParam(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) { uint8_t idx = XdrvMailbox.index -1; if (XdrvMailbox.data_len) { if (XdrvMailbox.payload > ADC_INPUT) { AdcGetSettings(idx); if (ArgC() > 3) { // Process parameter entry char argument[XdrvMailbox.data_len]; // AdcParam 2, 32000, 10000, 3350 ADC_TEMP Shelly mode // AdcParam 2, 32000, 10000, 3350, 1 ADC_TEMP Alternate mode // AdcParam 3, 10000, 12518931, -1.405 // AdcParam 4, 128, 0, 0 // AdcParam 5, 128, 0, 0 // AdcParam 6, 0, ANALOG_RANGE, 0, 100 // AdcParam 7, 0, 2146, 0.23 // AdcParam 8, 1000, 0, 0 Adc[idx].type = XdrvMailbox.payload; Adc[idx].param1 = strtol(ArgV(argument, 2), nullptr, 10); Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); if (ADC_RANGE == XdrvMailbox.payload) { Adc[idx].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10)); Adc[idx].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10)); } else { Adc[idx].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000); if (ArgC() > 4) { Adc[idx].param4 = (int)(CharToFloat(ArgV(argument, 5)) * 10000); } else{ Adc[idx].param4 = 0; } } if (ADC_PH == XdrvMailbox.payload) { float phLow = CharToFloat(ArgV(argument, 2)); float phHigh = CharToFloat(ArgV(argument, 4)); Adc[idx].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); Adc[idx].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER; Adc[idx].param4 = strtol(ArgV(argument, 5), nullptr, 10); // AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[idx].param2, &phHigh, Adc[idx].param4); } if (ADC_CT_POWER == XdrvMailbox.payload) { if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) { for (uint32_t idx = 0; idx < MAX_ADCS; idx++) { Adc[idx].energy = 0; } Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag } } if (ADC_MQ == XdrvMailbox.payload) { float a = CharToFloat(ArgV(argument, 3)); float b = CharToFloat(ArgV(argument, 4)); float ratioMQCleanAir = CharToFloat(ArgV(argument, 5)); if (a==0 && b==0 && ratioMQCleanAir==0) { if (Adc[idx].param1==2) { a=574.25; b=-2.222; ratioMQCleanAir=9.83; } if (Adc[idx].param1==4) { a=1012.7; b=-2.786; ratioMQCleanAir=4.4; } if (Adc[idx].param1==7) { a=99.042; b=-1.518; ratioMQCleanAir=27.5; } if (Adc[idx].param1==131) { a=23.943; b=-1.11; ratioMQCleanAir=15; } } Adc[idx].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression // AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[idx].param1, &a, &b, &ratioMQCleanAir); } } else { // Set default values based on current adc type // AdcParam 2 // AdcParam 3 // AdcParam 4 // AdcParam 5 // AdcParam 6 // AdcParam 7 // AdcParam 8 Adcs.type = 0; AdcInitParams(idx); } AdcSaveSettings(idx); } } // AdcParam AdcGetSettings(idx); Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2); if ((ADC_RANGE == Adc[idx].type) || (ADC_MQ == Adc[idx].type)){ ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4); } else { int value = Adc[idx].param3; uint8_t precision; for (precision = 4; precision > 0; precision--) { if (value % 10) { break; } value /= 10; } char param3[FLOATSZ]; dtostrfd(((double)Adc[idx].param3)/10000, precision, param3); ResponseAppend_P(PSTR(",%s,%d"), param3, Adc[idx].param4); } ResponseAppend_P(PSTR("]}")); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns02(uint32_t function) { bool result = false; switch (function) { case FUNC_COMMAND: result = DecodeCommand(kAdcCommands, AdcCommand); break; case FUNC_MODULE_INIT: AdcInit(); break; default: if (Adcs.present) { switch (function) { #ifdef USE_RULES case FUNC_EVERY_250_MSECOND: AdcEvery250ms(); break; #endif // USE_RULES case FUNC_EVERY_SECOND: AdcEverySecond(); break; case FUNC_JSON_APPEND: AdcShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: AdcShow(0); break; #endif // USE_WEBSERVER } } } return result; } #endif // USE_ADC