/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2019 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #include #include typedef struct Z_Device { uint16_t shortaddr; // unique key if not null, or unspecified if null uint64_t longaddr; // 0x00 means unspecified uint32_t firstSeen; // date when the device was first seen uint32_t lastSeen; // date when the device was last seen String manufacturerId; String modelId; String friendlyName; std::vector endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId std::vector clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number std::vector clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number } Z_Device; // All devices are stored in a Vector // Invariants: // - shortaddr is unique if not null // - longaddr is unique if not null // - shortaddr and longaddr cannot be both null // - clusters_in and clusters_out containt only endpoints listed in endpoints class Z_Devices { public: Z_Devices() {}; // Add new device, provide ShortAddr and optional longAddr // If it is already registered, update information, otherwise create the entry void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0); // Add an endpoint to a device void addEndoint(uint16_t shortaddr, uint8_t endpoint); // Add endpoint profile void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId); // Add cluster void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out); uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster); void setManufId(uint16_t shortaddr, const char * str); void setModelId(uint16_t shortaddr, const char * str); void setFriendlyNameId(uint16_t shortaddr, const char * str); // device just seen on the network, update the lastSeen field void updateLastSeen(uint16_t shortaddr); // Dump json String dump(uint8_t dump_mode) const; private: std::vector _devices = {}; template < typename T> static bool findInVector(const std::vector & vecOfElements, const T & element); template < typename T> static int32_t findEndpointInVector(const std::vector & vecOfElements, const T & element); // find the first endpoint match for a cluster static int32_t findClusterEndpoint(const std::vector & vecOfElements, uint16_t element); Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist int32_t findShortAddr(uint16_t shortaddr); int32_t findLongAddr(uint64_t longaddr); void _updateLastSeen(Z_Device &device) { if (&device != nullptr) { device.lastSeen = Rtc.utc_time; } }; // Create a new entry in the devices list - must be called if it is sure it does not already exist Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0); }; Z_Devices zigbee_devices = Z_Devices(); // https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/ template < typename T> bool Z_Devices::findInVector(const std::vector & vecOfElements, const T & element) { // Find given element in vector auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element); if (it != vecOfElements.end()) { return true; } else { return false; } } template < typename T> int32_t Z_Devices::findEndpointInVector(const std::vector & vecOfElements, const T & element) { // Find given element in vector int32_t found = 0; for (auto &elem : vecOfElements) { if ((elem >> 16) & 0xFF == element) { return found; } found++; } return -1; } // // Find the first endpoint match for a cluster, whether in or out // Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number) // In: // _devices.clusters_in or _devices.clusters_out // cluster number looked for // Out: // Index of found Endpoint_Cluster number, or -1 if not found // int32_t Z_Devices::findClusterEndpoint(const std::vector & vecOfElements, uint16_t cluster) { int32_t found = 0; for (auto &elem : vecOfElements) { if ((elem & 0xFFFF) == cluster) { return found; } found++; } return -1; } // // Create a new Z_Device entry in _devices. Only to be called if you are sure that no // entry with same shortaddr or longaddr exists. // Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) { if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null Z_Device device = { shortaddr, longaddr, Rtc.utc_time, Rtc.utc_time, String(), // ManufId String(), // DeviceId String(), // FriendlyName std::vector(), std::vector(), std::vector() }; _devices.push_back(device); return _devices.back(); } // // Scan all devices to find a corresponding shortaddr // Looks info device.shortaddr entry // In: // shortaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findShortAddr(uint16_t shortaddr) { if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost) int32_t found = 0; if (shortaddr) { for (auto &elem : _devices) { if (elem.shortaddr == shortaddr) { return found; } found++; } } return -1; } // // Scan all devices to find a corresponding longaddr // Looks info device.longaddr entry // In: // longaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findLongAddr(uint64_t longaddr) { if (!longaddr) { return -1; } int32_t found = 0; if (longaddr) { for (auto &elem : _devices) { if (elem.longaddr == longaddr) { return found; } found++; } } return -1; } // // We have a seen a shortaddr on the network, get the corresponding // Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) { if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal int32_t found = findShortAddr(shortaddr); if (found >= 0) { return _devices[found]; } //Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found); return createDeviceEntry(shortaddr, 0); } // find the Device object by its longaddr (unique key if not null) Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) { if (!longaddr) { return *(Z_Device*) nullptr; } int32_t found = findLongAddr(longaddr); if (found > 0) { return _devices[found]; } return createDeviceEntry(0, longaddr); } // // We have just seen a device on the network, update the info based on short/long addr // In: // shortaddr // longaddr (both can't be null at the same time) void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) { int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered if (s_found == l_found) { updateLastSeen(shortaddr); // short/long addr match, all good } else { // they don't match // the device with longaddr got a new shortaddr _devices[l_found].shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr // erase the previous shortaddr _devices.erase(_devices.begin() + s_found); updateLastSeen(shortaddr); } } else if (s_found >= 0) { // shortaddr already exists but longaddr not // add the longaddr to the entry _devices[s_found].longaddr = longaddr; updateLastSeen(shortaddr); } else if (l_found >= 0) { // longaddr entry exists, update shortaddr _devices[l_found].shortaddr = shortaddr; } else { // neither short/lonf addr are found. if (shortaddr || longaddr) { createDeviceEntry(shortaddr, longaddr); } } } // // Add an endpoint to a shortaddr // void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) { if (!shortaddr) { return; } uint32_t ep_profile = (endpoint << 16); Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); if (findEndpointInVector(device.endpoints, ep_profile) < 0) { device.endpoints.push_back(ep_profile); } } void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) { if (!shortaddr) { return; } uint32_t ep_profile = (endpoint << 16) | profileId; Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); int32_t found = findEndpointInVector(device.endpoints, ep_profile); if (found < 0) { device.endpoints.push_back(ep_profile); } else { device.endpoints[found] = ep_profile; } } void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) { if (!shortaddr) { return; } Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); uint32_t ep_cluster = (endpoint << 16) | cluster; if (!out) { if (!findInVector(device.clusters_in, ep_cluster)) { device.clusters_in.push_back(ep_cluster); } } else { // out if (!findInVector(device.clusters_out, ep_cluster)) { device.clusters_out.push_back(ep_cluster); } } } // Look for the best endpoint match to send a command for a specific Cluster ID // return 0x00 if none found uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){ int32_t short_found = findShortAddr(shortaddr); if (short_found < 0) return 0; // avoid creating an entry if the device was never seen Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return 0; } // don't crash if not found int32_t found = findClusterEndpoint(device.clusters_in, cluster); if (found >= 0) { return (device.clusters_in[found] >> 16) & 0xFF; } else { return 0; } } void Z_Devices::setManufId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.manufacturerId = str; } void Z_Devices::setModelId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.modelId = str; } void Z_Devices::setFriendlyNameId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.friendlyName = str; } // device just seen on the network, update the lastSeen field void Z_Devices::updateLastSeen(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); } // Dump the internal memory of Zigbee devices // Mode = 1: simple dump of devices addresses and names // Mode = 2: Mode 1 + also dump the endpoints, profiles and clusters String Z_Devices::dump(uint8_t dump_mode) const { DynamicJsonBuffer jsonBuffer; JsonArray& json = jsonBuffer.createArray(); JsonArray& devices = json; //JsonArray& devices = json.createNestedArray(F("ZigbeeDevices")); for (std::vector::const_iterator it = _devices.begin(); it != _devices.end(); ++it) { const Z_Device& device = *it; uint16_t shortaddr = device.shortaddr; char hex[20]; JsonObject& dev = devices.createNestedObject(); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); dev[F(D_JSON_ZIGBEE_DEVICE)] = hex; if (device.friendlyName.length() > 0) { dev[F(D_JSON_ZIGBEE_NAME)] = device.friendlyName; } if (1 == dump_mode) { Uint64toHex(device.longaddr, hex, 64); dev[F("IEEEAddr")] = hex; if (device.modelId.length() > 0) { dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId; } if (device.manufacturerId.length() > 0) { dev[F("Manufacturer")] = device.manufacturerId; } } // If dump_mode == 2, dump a lot more details if (2 == dump_mode) { JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints")); for (std::vector::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) { uint32_t ep_profile = *ite; uint8_t endpoint = (ep_profile >> 16) & 0xFF; uint16_t profileId = ep_profile & 0xFFFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonObject& ep = dev_endpoints.createNestedObject(hex); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId); ep[F("ProfileId")] = hex; int32_t found = -1; for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) { if (pgm_read_word(&Z_ProfileIds[i]) == profileId) { found = i; break; } } if (found > 0) { GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames); ep[F("ProfileIdName")] = hex; } ep.createNestedArray(F("ClustersIn")); ep.createNestedArray(F("ClustersOut")); } for (std::vector::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } for (std::vector::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } } } String payload = ""; payload.reserve(200); json.printTo(payload); return payload; } #endif // USE_ZIGBEE