/* xsns_02_analog.ino - ESP8266 ADC support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef USE_ADC_VCC /*********************************************************************************************\ * ADC support \*********************************************************************************************/ #define XSNS_02 2 #define TO_CELSIUS(x) ((x) - 273.15) #define TO_KELVIN(x) ((x) + 273.15) // Parameters for equation #define ANALOG_V33 3.3 // ESP8266 Analog voltage #define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15) // Shelly 2.5 NTC Thermistor // 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd // | // ADC0 #define ANALOG_NTC_BRIDGE_RESISTANCE 32000.0 // NTC Voltage bridge resistor #define ANALOG_NTC_RESISTANCE 10000.0 // NTC Resistance #define ANALOG_NTC_B_COEFFICIENT 3350.0 // NTC Beta Coefficient // LDR parameters // 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_LDR_BRIDGE_RESISTANCE 10000.0 // LDR Voltage bridge resistor #define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental #define ANALOG_LDR_LUX_CALC_EXPONENT -1.405 // Experimental uint16_t adc_last_value = 0; float adc_temp = 0; uint16_t AdcRead(uint8_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint8_t samples = 1 << factor; uint16_t analog = 0; for (uint8_t i = 0; i < samples; i++) { analog += analogRead(A0); delay(1); } analog >>= factor; return analog; } #ifdef USE_RULES void AdcEvery250ms(void) { if (ADC0_INPUT == my_adc0) { uint16_t new_value = AdcRead(5); if ((new_value < adc_last_value -10) || (new_value > adc_last_value +10)) { adc_last_value = new_value; uint16_t value = adc_last_value / 10; Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value); XdrvRulesProcess(); } } } #endif // USE_RULES uint16_t AdcGetLux() { int adc = AdcRead(2); // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ double resistorVoltage = ((double)adc / 1023) * ANALOG_V33; double ldrVoltage = ANALOG_V33 - resistorVoltage; double ldrResistance = ldrVoltage / resistorVoltage * ANALOG_LDR_BRIDGE_RESISTANCE; double ldrLux = ANALOG_LDR_LUX_CALC_SCALAR * FastPrecisePow(ldrResistance, ANALOG_LDR_LUX_CALC_EXPONENT); return (uint16_t)ldrLux; } void AdcEverySecond(void) { if (ADC0_TEMP == my_adc0) { int adc = AdcRead(2); // Steinhart-Hart equation for thermistor as temperature sensor double Rt = (adc * ANALOG_NTC_BRIDGE_RESISTANCE) / (1024.0 * ANALOG_V33 - (double)adc); double T = ANALOG_NTC_B_COEFFICIENT / (ANALOG_NTC_B_COEFFICIENT / ANALOG_T0 + TaylorLog(Rt / ANALOG_NTC_RESISTANCE)); adc_temp = ConvertTemp(TO_CELSIUS(T)); } } void AdcShow(bool json) { if (ADC0_INPUT == my_adc0) { uint16_t analog = AdcRead(5); if (json) { ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog); #endif // USE_WEBSERVER } } else if (ADC0_TEMP == my_adc0) { char temperature[33]; dtostrfd(adc_temp, Settings.flag2.temperature_resolution, temperature); if (json) { ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_TEMP, temperature); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (0 == tele_period) { KnxSensor(KNX_TEMPERATURE, adc_temp); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit()); #endif // USE_WEBSERVER } } else if (ADC0_LIGHT == my_adc0) { uint16_t adc_light = AdcGetLux(); if (json) { ResponseAppend_P(JSON_SNS_ILLUMINANCE, "ANALOG", adc_light); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_ILLUMINANCE, adc_light); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ILLUMINANCE, "", adc_light); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns02(uint8_t function) { bool result = false; if ((ADC0_INPUT == my_adc0) || (ADC0_TEMP == my_adc0) || (ADC0_LIGHT == my_adc0)) { switch (function) { #ifdef USE_RULES case FUNC_EVERY_250_MSECOND: AdcEvery250ms(); break; #endif // USE_RULES case FUNC_EVERY_SECOND: AdcEverySecond(); break; case FUNC_JSON_APPEND: AdcShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: AdcShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_ADC_VCC