/* xsns_25_sdm630.ino - Eastron SDM630-Modbus energy meter support for Sonoff-Tasmota Copyright (C) 2019 Gennaro Tortone This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SDM630 /*********************************************************************************************\ * Eastron SDM630-Modbus energy meter * * Based on: https://github.com/reaper7/SDM_Energy_Meter \*********************************************************************************************/ #define XSNS_25 25 #include TasmotaSerial *SDM630Serial; uint8_t sdm630_type = 1; //uint8_t sdm630_state = 0; float sdm630_voltage[] = {0,0,0}; float sdm630_current[] = {0,0,0}; float sdm630_active_power[] = {0,0,0}; float sdm630_reactive_power[] = {0,0,0}; float sdm630_power_factor[] = {0,0,0}; float sdm630_energy_total = 0; bool SDM630_ModbusReceiveReady(void) { return (SDM630Serial->available() > 1); } void SDM630_ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count) { uint8_t frame[8]; frame[0] = 0x01; // default SDM630 Modbus address frame[1] = function_code; frame[2] = (uint8_t)(start_address >> 8); frame[3] = (uint8_t)(start_address); frame[4] = (uint8_t)(register_count >> 8); frame[5] = (uint8_t)(register_count); uint16_t crc = SDM630_calculateCRC(frame, 6); // calculate out crc only from first 6 bytes frame[6] = lowByte(crc); frame[7] = highByte(crc); while (SDM630Serial->available() > 0) { // read serial if any old data is available SDM630Serial->read(); } SDM630Serial->flush(); SDM630Serial->write(frame, sizeof(frame)); } uint8_t SDM630_ModbusReceive(float *value) { uint8_t buffer[9]; *value = NAN; uint8_t len = 0; while (SDM630Serial->available() > 0) { buffer[len++] = (uint8_t)SDM630Serial->read(); } if (len < 9) return 3; // SDM_ERR_NOT_ENOUGHT_BYTES if (len == 9) { if (buffer[0] == 0x01 && buffer[1] == 0x04 && buffer[2] == 4) { // check node number, op code and reply bytes count if((SDM630_calculateCRC(buffer, 7)) == ((buffer[8] << 8) | buffer[7])) { //calculate crc from first 7 bytes and compare with received crc (bytes 7 & 8) ((uint8_t*)value)[3] = buffer[3]; ((uint8_t*)value)[2] = buffer[4]; ((uint8_t*)value)[1] = buffer[5]; ((uint8_t*)value)[0] = buffer[6]; } else return 1; // SDM_ERR_CRC_ERROR } else return 2; // SDM_ERR_WRONG_BYTES } return 0; // SDM_ERR_NO_ERROR } uint16_t SDM630_calculateCRC(uint8_t *frame, uint8_t num) { uint16_t crc, flag; crc = 0xFFFF; for (uint8_t i = 0; i < num; i++) { crc ^= frame[i]; for (uint8_t j = 8; j; j--) { if ((crc & 0x0001) != 0) { // If the LSB is set crc >>= 1; // Shift right and XOR 0xA001 crc ^= 0xA001; } else { // Else LSB is not set crc >>= 1; // Just shift right } } } return crc; } /*********************************************************************************************/ const uint16_t sdm630_start_addresses[] { 0x0000, // L1 - SDM630_VOLTAGE [V] 0x0002, // L2 - SDM630_VOLTAGE [V] 0x0004, // L3 - SDM630_VOLTAGE [V] 0x0006, // L1 - SDM630_CURRENT [A] 0x0008, // L2 - SDM630_CURRENT [A] 0x000A, // L3 - SDM630_CURRENT [A] 0x000C, // L1 - SDM630_POWER [W] 0x000E, // L2 - SDM630_POWER [W] 0x0010, // L3 - SDM630_POWER [W] 0x0018, // L1 - SDM630_REACTIVE_POWER [VAR] 0x001A, // L2 - SDM630_REACTIVE_POWER [VAR] 0x001C, // L3 - SDM630_REACTIVE_POWER [VAR] 0x001E, // L1 - SDM630_POWER_FACTOR 0x0020, // L2 - SDM630_POWER_FACTOR 0x0022, // L3 - SDM630_POWER_FACTOR 0x0156 // Total - SDM630_TOTAL_ACTIVE_ENERGY [Wh] }; uint8_t sdm630_read_state = 0; uint8_t sdm630_send_retry = 0; void SDM630250ms(void) // Every 250 mSec { // sdm630_state++; // if (6 == sdm630_state) { // Every 300 mSec // sdm630_state = 0; float value = 0; bool data_ready = SDM630_ModbusReceiveReady(); if (data_ready) { uint8_t error = SDM630_ModbusReceive(&value); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "SDM630 response error %d"), error); } else { switch(sdm630_read_state) { case 0: sdm630_voltage[0] = value; break; case 1: sdm630_voltage[1] = value; break; case 2: sdm630_voltage[2] = value; break; case 3: sdm630_current[0] = value; break; case 4: sdm630_current[1] = value; break; case 5: sdm630_current[2] = value; break; case 6: sdm630_active_power[0] = value; break; case 7: sdm630_active_power[1] = value; break; case 8: sdm630_active_power[2] = value; break; case 9: sdm630_reactive_power[0] = value; break; case 10: sdm630_reactive_power[1] = value; break; case 11: sdm630_reactive_power[2] = value; break; case 12: sdm630_power_factor[0] = value; break; case 13: sdm630_power_factor[1] = value; break; case 14: sdm630_power_factor[2] = value; break; case 15: sdm630_energy_total = value; break; } // end switch sdm630_read_state++; if (sizeof(sdm630_start_addresses)/2 == sdm630_read_state) { sdm630_read_state = 0; } } } // end data ready if (0 == sdm630_send_retry || data_ready) { sdm630_send_retry = 5; SDM630_ModbusSend(0x04, sdm630_start_addresses[sdm630_read_state], 2); } else { sdm630_send_retry--; } // } // end 300 ms } void SDM630Init(void) { sdm630_type = 0; if ((pin[GPIO_SDM630_RX] < 99) && (pin[GPIO_SDM630_TX] < 99)) { SDM630Serial = new TasmotaSerial(pin[GPIO_SDM630_RX], pin[GPIO_SDM630_TX], 1); #ifdef SDM630_SPEED if (SDM630Serial->begin(SDM630_SPEED)) { #else if (SDM630Serial->begin(2400)) { #endif if (SDM630Serial->hardwareSerial()) { ClaimSerial(); } sdm630_type = 1; } } } #ifdef USE_WEBSERVER const char HTTP_SNS_SDM630_DATA[] PROGMEM = "{s}SDM630 " D_VOLTAGE "{m}%s/%s/%s " D_UNIT_VOLT "{e}" "{s}SDM630 " D_CURRENT "{m}%s/%s/%s " D_UNIT_AMPERE "{e}" "{s}SDM630 " D_POWERUSAGE_ACTIVE "{m}%s/%s/%s " D_UNIT_WATT "{e}" "{s}SDM630 " D_POWERUSAGE_REACTIVE "{m}%s/%s/%s " D_UNIT_VAR "{e}" "{s}SDM630 " D_POWER_FACTOR "{m}%s/%s/%s{e}" "{s}SDM630 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; #endif // USE_WEBSERVER void SDM630Show(bool json) { char voltage_l1[33]; dtostrfd(sdm630_voltage[0], Settings.flag2.voltage_resolution, voltage_l1); char voltage_l2[33]; dtostrfd(sdm630_voltage[1], Settings.flag2.voltage_resolution, voltage_l2); char voltage_l3[33]; dtostrfd(sdm630_voltage[2], Settings.flag2.voltage_resolution, voltage_l3); char current_l1[33]; dtostrfd(sdm630_current[0], Settings.flag2.current_resolution, current_l1); char current_l2[33]; dtostrfd(sdm630_current[1], Settings.flag2.current_resolution, current_l2); char current_l3[33]; dtostrfd(sdm630_current[2], Settings.flag2.current_resolution, current_l3); char active_power_l1[33]; dtostrfd(sdm630_active_power[0], Settings.flag2.wattage_resolution, active_power_l1); char active_power_l2[33]; dtostrfd(sdm630_active_power[1], Settings.flag2.wattage_resolution, active_power_l2); char active_power_l3[33]; dtostrfd(sdm630_active_power[2], Settings.flag2.wattage_resolution, active_power_l3); char reactive_power_l1[33]; dtostrfd(sdm630_reactive_power[0], Settings.flag2.wattage_resolution, reactive_power_l1); char reactive_power_l2[33]; dtostrfd(sdm630_reactive_power[1], Settings.flag2.wattage_resolution, reactive_power_l2); char reactive_power_l3[33]; dtostrfd(sdm630_reactive_power[2], Settings.flag2.wattage_resolution, reactive_power_l3); char power_factor_l1[33]; dtostrfd(sdm630_power_factor[0], 2, power_factor_l1); char power_factor_l2[33]; dtostrfd(sdm630_power_factor[1], 2, power_factor_l2); char power_factor_l3[33]; dtostrfd(sdm630_power_factor[2], 2, power_factor_l3); char energy_total[33]; dtostrfd(sdm630_energy_total, Settings.flag2.energy_resolution, energy_total); if (json) { ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":[%s,%s,%s],\"" D_JSON_REACTIVE_POWERUSAGE "\":[%s,%s,%s],\"" D_JSON_POWERFACTOR "\":[%s,%s,%s],\"" D_JSON_VOLTAGE "\":[%s,%s,%s],\"" D_JSON_CURRENT "\":[%s,%s,%s]}"), energy_total, active_power_l1, active_power_l2, active_power_l3, reactive_power_l1, reactive_power_l2, reactive_power_l3, power_factor_l1, power_factor_l2, power_factor_l3, voltage_l1, voltage_l2, voltage_l3, current_l1, current_l2, current_l3); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_SDM630_DATA, voltage_l1, voltage_l2, voltage_l3, current_l1, current_l2, current_l3, active_power_l1, active_power_l2, active_power_l3, reactive_power_l1, reactive_power_l2, reactive_power_l3, power_factor_l1, power_factor_l2, power_factor_l3, energy_total); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns25(uint8_t function) { bool result = false; if (sdm630_type) { switch (function) { case FUNC_INIT: SDM630Init(); break; case FUNC_EVERY_250_MSECOND: SDM630250ms(); break; case FUNC_JSON_APPEND: SDM630Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: SDM630Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif