/* xsns_ds18x20.ino - DS18x20 temperature sensor support for Sonoff-Tasmota Copyright (C) 2017 Heiko Krupp and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_DS18x20 /*********************************************************************************************\ * DS18B20 - Temperature \*********************************************************************************************/ #define DS18S20_CHIPID 0x10 #define DS18B20_CHIPID 0x28 #define MAX31850_CHIPID 0x3B #define W1_SKIP_ROM 0xCC #define W1_CONVERT_TEMP 0x44 #define W1_READ_SCRATCHPAD 0xBE #define DS18X20_MAX_SENSORS 8 #include OneWire *ds = NULL; uint8_t ds18x20_addr[DS18X20_MAX_SENSORS][8]; uint8_t ds18x20_idx[DS18X20_MAX_SENSORS]; uint8_t ds18x20_snsrs = 0; char dsbstype[9]; void ds18x20_init() { ds = new OneWire(pin[GPIO_DSB]); } void ds18x20_search() { uint8_t num_sensors=0; uint8_t sensor = 0; uint8_t i; ds->reset_search(); for (num_sensors = 0; num_sensors < DS18X20_MAX_SENSORS; num_sensors) { if (!ds->search(ds18x20_addr[num_sensors])) { ds->reset_search(); break; } // If CRC Ok and Type DS18S20, DS18B20 or MAX31850 if ((OneWire::crc8(ds18x20_addr[num_sensors], 7) == ds18x20_addr[num_sensors][7]) && ((ds18x20_addr[num_sensors][0]==DS18S20_CHIPID) || (ds18x20_addr[num_sensors][0]==DS18B20_CHIPID) || (ds18x20_addr[num_sensors][0]==MAX31850_CHIPID))) { num_sensors++; } } for (int i = 0; i < num_sensors; i++) { ds18x20_idx[i] = i; } for (int i = 0; i < num_sensors; i++) { for (int j = i + 1; j < num_sensors; j++) { if (uint32_t(ds18x20_addr[ds18x20_idx[i]]) > uint32_t(ds18x20_addr[ds18x20_idx[j]])) { std::swap(ds18x20_idx[i], ds18x20_idx[j]); } } } ds18x20_snsrs = num_sensors; } uint8_t ds18x20_sensors() { return ds18x20_snsrs; } String ds18x20_address(uint8_t sensor) { char addrStr[20]; uint8_t i; for (i = 0; i < 8; i++) { sprintf(addrStr+2*i, "%02X", ds18x20_addr[ds18x20_idx[sensor]][i]); } return String(addrStr); } void ds18x20_convert() { ds->reset(); ds->write(W1_SKIP_ROM); // Address all Sensors on Bus ds->write(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end // delay(750); // 750ms should be enough for 12bit conv } boolean ds18x20_read(uint8_t sensor, float &t) { byte data[12]; int8_t sign = 1; uint8_t i = 0; float temp9 = 0.0; uint8_t present = 0; t = NAN; ds->reset(); ds->select(ds18x20_addr[ds18x20_idx[sensor]]); ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad for (i = 0; i < 9; i++) { data[i] = ds->read(); } if (OneWire::crc8(data, 8) == data[8]) { switch(ds18x20_addr[ds18x20_idx[sensor]][0]) { case DS18S20_CHIPID: // DS18S20 /* // App_note AN162.pdf page 9 int temp_lsb, temp_msb; temp_msb = data[1]; // Sign byte + lsbit temp_lsb = data[0]; // Temp data plus lsb if (temp_msb <= 0x80) temp_lsb = (temp_lsb/2); // Shift to get whole degree temp_msb = temp_msb & 0x80; // Mask all but the sign bit if (temp_msb >= 0x80) { // Negative temperature temp_lsb = (~temp_lsb)+1; // Twos complement temp_lsb = (temp_lsb/2); // Shift to get whole degree temp_lsb = ((-1)*temp_lsb); // Add sign bit } t = (int)temp_lsb; // Temperature in whole degree */ if (data[1] > 0x80) { data[0] = (~data[0]) +1; sign = -1; // App-Note fix possible sign error } if (data[0] & 1) { temp9 = ((data[0] >> 1) + 0.5) * sign; } else { temp9 = (data[0] >> 1) * sign; } t = convertTemp((temp9 - 0.25) + ((16.0 - data[6]) / 16.0)); break; case DS18B20_CHIPID: // DS18B20 case MAX31850_CHIPID: // MAX31850 uint16_t temp12 = (data[1] << 8) + data[0]; if (temp12 > 2047) { temp12 = (~temp12) +1; sign = -1; } t = convertTemp(sign * temp12 * 0.0625); break; } } return (!isnan(t)); } /*********************************************************************************************\ * Presentation \*********************************************************************************************/ void ds18x20_type(uint8_t sensor) { strcpy_P(dsbstype, PSTR("DS18x20")); switch(ds18x20_addr[ds18x20_idx[sensor]][0]) { case DS18S20_CHIPID: strcpy_P(dsbstype, PSTR("DS18S20")); break; case DS18B20_CHIPID: strcpy_P(dsbstype, PSTR("DS18B20")); break; case MAX31850_CHIPID: strcpy_P(dsbstype, PSTR("MAX31850")); break; } } void ds18x20_mqttPresent(uint8_t* djson) { char stemp1[10]; char stemp2[10]; float t; byte dsxflg = 0; for (byte i = 0; i < ds18x20_sensors(); i++) { if (ds18x20_read(i, t)) { // Check if read failed ds18x20_type(i); dtostrfd(t, sysCfg.flag.temperature_resolution, stemp2); if (!dsxflg) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s, \"DS18x20\":{"), mqtt_data); *djson = 1; stemp1[0] = '\0'; } dsxflg++; snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"DS%d\":{\"" D_TYPE "\":\"%s\", \"" D_ADDRESS "\":\"%s\", \"" D_TEMPERATURE "\":%s}"), mqtt_data, stemp1, i +1, dsbstype, ds18x20_address(i).c_str(), stemp2); strcpy(stemp1, ", "); #ifdef USE_DOMOTICZ if (1 == dsxflg) { domoticz_sensor(0, stemp2); } #endif // USE_DOMOTICZ } } if (dsxflg) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data); } } #ifdef USE_WEBSERVER String ds18x20_webPresent() { String page = ""; char stemp[10]; char stemp2[16]; char sensor[80]; float t; for (byte i = 0; i < ds18x20_sensors(); i++) { if (ds18x20_read(i, t)) { // Check if read failed ds18x20_type(i); dtostrfi(t, sysCfg.flag.temperature_resolution, stemp); snprintf_P(stemp2, sizeof(stemp2), PSTR("%s-%d"), dsbstype, i +1); snprintf_P(sensor, sizeof(sensor), HTTP_SNS_TEMP, stemp2, stemp, tempUnit()); page += sensor; } } ds18x20_search(); // Check for changes in sensors number ds18x20_convert(); // Start Conversion, takes up to one second return page; } #endif // USE_WEBSERVER #endif // USE_DS18x20