/* xdrv_39_thermostat.ino - Thermostat controller for Tasmota Copyright (C) 2020 Javier Arigita This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_THERMOSTAT #define XDRV_39 39 // Enable/disable debugging //#define DEBUG_THERMOSTAT // Enable/disable experimental PI auto-tuning inspired by the Arduino // Autotune Library by Brett Beauregard //#define USE_PI_AUTOTUNING // (Ziegler-Nichols closed loop method) #ifdef DEBUG_THERMOSTAT #define DOMOTICZ_MAX_IDX 4 #define DOMOTICZ_IDX1 791 #define DOMOTICZ_IDX2 792 #define DOMOTICZ_IDX3 799 #define DOMOTICZ_IDX4 800 #define DOMOTICZ_IDX5 801 #endif // DEBUG_THERMOSTAT // Commands #define D_CMND_THERMOSTATMODESET "ThermostatModeSet" #define D_CMND_CLIMATEMODESET "ClimateModeSet" #define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet" #define D_CMND_CONTROLLERMODESET "ControllerModeSet" #define D_CMND_INPUTSWITCHSET "InputSwitchSet" #define D_CMND_INPUTSWITCHUSE "InputSwitchUse" #define D_CMND_OUTPUTRELAYSET "OutputRelaySet" #define D_CMND_TIMEALLOWRAMPUPSET "TimeAllowRampupSet" #define D_CMND_TEMPFORMATSET "TempFormatSet" #define D_CMND_TEMPMEASUREDSET "TempMeasuredSet" #define D_CMND_TEMPTARGETSET "TempTargetSet" #define D_CMND_TEMPMEASUREDGRDREAD "TempMeasuredGrdRead" #define D_CMND_TEMPSENSNUMBERSET "TempSensNumberSet" #define D_CMND_SENSORINPUTSET "SensorInputSet" #define D_CMND_STATEEMERGENCYSET "StateEmergencySet" #define D_CMND_TIMEMANUALTOAUTOSET "TimeManualToAutoSet" #define D_CMND_TIMEONLIMITSET "TimeOnLimitSet" #define D_CMND_PROPBANDSET "PropBandSet" #define D_CMND_TIMERESETSET "TimeResetSet" #define D_CMND_TIMEPICYCLESET "TimePiCycleSet" #define D_CMND_TEMPANTIWINDUPRESETSET "TempAntiWindupResetSet" #define D_CMND_TEMPHYSTSET "TempHystSet" #ifdef USE_PI_AUTOTUNING #define D_CMND_PERFLEVELAUTOTUNE "PerfLevelAutotune" #endif // USE_PI_AUTOTUNING #define D_CMND_TIMEMAXACTIONSET "TimeMaxActionSet" #define D_CMND_TIMEMINACTIONSET "TimeMinActionSet" #define D_CMND_TIMEMINTURNOFFACTIONSET "TimeMinTurnoffActionSet" #define D_CMND_TEMPRUPDELTINSET "TempRupDeltInSet" #define D_CMND_TEMPRUPDELTOUTSET "TempRupDeltOutSet" #define D_CMND_TIMERAMPUPMAXSET "TimeRampupMaxSet" #define D_CMND_TIMERAMPUPCYCLESET "TimeRampupCycleSet" #define D_CMND_TEMPRAMPUPPIACCERRSET "TempRampupPiAccErrSet" #define D_CMND_TIMEPIPROPORTREAD "TimePiProportRead" #define D_CMND_TIMEPIINTEGRREAD "TimePiIntegrRead" #define D_CMND_TIMESENSLOSTSET "TimeSensLostSet" #define D_CMND_DIAGNOSTICMODESET "DiagnosticModeSet" #define D_CMND_CTRDUTYCYCLEREAD "CtrDutyCycleRead" #define D_CMND_ENABLEOUTPUTSET "EnableOutputSet" enum ThermostatModes { THERMOSTAT_OFF, THERMOSTAT_AUTOMATIC_OP, THERMOSTAT_MANUAL_OP, THERMOSTAT_MODES_MAX }; #ifdef USE_PI_AUTOTUNING enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_PI_AUTOTUNE, CTR_MODES_MAX }; enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI, CTR_HYBRID_PI_AUTOTUNE }; enum AutotuneStates { AUTOTUNE_OFF, AUTOTUNE_ON, AUTOTUNE_MAX }; enum AutotunePerformanceParam { AUTOTUNE_PERF_FAST, AUTOTUNE_PERF_NORMAL, AUTOTUNE_PERF_SLOW, AUTOTUNE_PERF_MAX }; #else enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_MODES_MAX }; enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI }; #endif // USE_PI_AUTOTUNING enum ClimateModes { CLIMATE_HEATING, CLIMATE_COOLING, CLIMATE_MODES_MAX }; enum InterfaceStates { IFACE_OFF, IFACE_ON }; enum InputUsage { INPUT_NOT_USED, INPUT_USED }; enum CtrCycleStates { CYCLE_OFF, CYCLE_ON }; enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON }; enum SensorType { SENSOR_MQTT, SENSOR_LOCAL, SENSOR_MAX }; enum TempFormat { TEMP_CELSIUS, TEMP_FAHRENHEIT }; enum TempConvType { TEMP_CONV_ABSOLUTE, TEMP_CONV_RELATIVE }; enum DiagnosticModes { DIAGNOSTIC_OFF, DIAGNOSTIC_ON }; enum ThermostatSupportedInputSwitches { THERMOSTAT_INPUT_NONE, THERMOSTAT_INPUT_SWT1 = 1, // Buttons THERMOSTAT_INPUT_SWT2, THERMOSTAT_INPUT_SWT3, THERMOSTAT_INPUT_SWT4, THERMOSTAT_INPUT_SWT5, THERMOSTAT_INPUT_SWT6, THERMOSTAT_INPUT_SWT7, THERMOSTAT_INPUT_SWT8 }; enum ThermostatSupportedOutputRelays { THERMOSTAT_OUTPUT_NONE, THERMOSTAT_OUTPUT_REL1 = 1, // Relays THERMOSTAT_OUTPUT_REL2, THERMOSTAT_OUTPUT_REL3, THERMOSTAT_OUTPUT_REL4, THERMOSTAT_OUTPUT_REL5, THERMOSTAT_OUTPUT_REL6, THERMOSTAT_OUTPUT_REL7, THERMOSTAT_OUTPUT_REL8 }; typedef union { uint32_t data; struct { uint32_t thermostat_mode : 2; // Operation mode of the thermostat system uint32_t controller_mode : 2; // Operation mode of the thermostat controller uint32_t climate_mode : 1; // Climate mode of the thermostat (0 = heating / 1 = cooling) uint32_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active) uint32_t sensor_type : 1; // Sensor type: MQTT/local uint32_t temp_format : 1; // Temperature format (0 = Celsius, 1 = Fahrenheit) uint32_t command_output : 1; // Flag stating the desired command to the output (0 = inactive, 1 = active) uint32_t status_output : 1; // Flag stating state of the output (0 = inactive, 1 = active) uint32_t status_input : 1; // Flag stating state of the input (0 = inactive, 1 = active) uint32_t use_input : 1; // Flag stating if the input switch shall be used to switch to manual mode uint32_t phase_hybrid_ctr : 2; // Phase of the hybrid controller (Ramp-up, PI or Autotune) uint32_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF) uint32_t counter_seconds : 6; // Second counter used to track minutes uint32_t output_relay_number : 4; // Output relay number uint32_t input_switch_number : 3; // Input switch number uint32_t enable_output : 1; // Enables / disables the physical output #ifdef USE_PI_AUTOTUNING uint32_t autotune_flag : 1; // Enable/disable autotune uint32_t autotune_perf_mode : 2; // Autotune performance mode #else uint32_t free : 3; // Free bits #endif // USE_PI_AUTOTUNING }; } ThermostatStateBitfield; typedef union { uint8_t data; struct { uint8_t state_emergency : 1; // State for thermostat emergency uint8_t diagnostic_mode : 1; // Diagnostic mode selected uint8_t output_inconsist_ctr : 2; // Counter of the minutes where the output state is inconsistent with the command }; } ThermostatDiagBitfield; #ifdef DEBUG_THERMOSTAT const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}"; uint16_t Domoticz_Virtual_Switches[DOMOTICZ_MAX_IDX] = { DOMOTICZ_IDX1, DOMOTICZ_IDX3, DOMOTICZ_IDX4, DOMOTICZ_IDX5 }; #endif // DEBUG_THERMOSTAT const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CMND_CLIMATEMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" #ifdef USE_PI_AUTOTUNING D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_PERFLEVELAUTOTUNE "|" D_CMND_TIMEMAXACTIONSET "|" #else D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" #endif // USE_PI_AUTOTUNING D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET "|" D_CMND_CTRDUTYCYCLEREAD "|" D_CMND_ENABLEOUTPUTSET; void (* const ThermostatCommand[])(void) PROGMEM = { &CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, #ifdef USE_PI_AUTOTUNING &CmndPerfLevelAutotune, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, #else &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, #endif // USE_PI_AUTOTUNING &CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet, &CmndCtrDutyCycleRead, &CmndEnableOutputSet }; struct THERMOSTAT { ThermostatStateBitfield status; // Bittfield including states as well as several flags uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement update uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous) uint32_t timestamp_output_off = 0; // Timestamp of latest thermostat output Off state uint32_t timestamp_input_on = 0; // Timestamp of latest input On state uint32_t time_thermostat_total = 0; // Time thermostat on within a specific timeframe uint32_t time_ctr_checkpoint = 0; // Time to finalize the control cycle within the PI strategy or to switch to PI from Rampup in seconds uint32_t time_ctr_changepoint = 0; // Time until switching off output within the controller in seconds int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour int16_t temp_target_level = THERMOSTAT_TEMP_INIT; // Target level of the thermostat in tenths of degrees int16_t temp_target_level_ctr = THERMOSTAT_TEMP_INIT; // Target level set for the controller int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in hundredths of degrees int16_t temp_pi_error = 0; // Temperature error for the PI controller in hundredths of degrees int32_t time_proportional_pi; // Time proportional part of the PI controller int32_t time_integral_pi; // Time integral part of the PI controller int32_t time_total_pi; // Time total (proportional + integral) of the PI controller uint16_t kP_pi = 0; // kP value for the PI controller multiplied by 100 (to avoid floating point operations) uint16_t kI_pi = 0; // kI value for the PI controller multiplied by 100 (to avoid floating point operations) int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees celsius per hour calculated during ramp-up uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started uint32_t time_rampup_deadtime = 0; // Time constant of the thermostat system (step response time) uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees celsius int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees celsius uint8_t time_output_delay = THERMOSTAT_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed) uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles uint8_t temp_rampup_pi_acc_error = THERMOSTAT_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI in hundreths of degrees celsius uint8_t temp_rampup_delta_out = THERMOSTAT_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius uint8_t temp_rampup_delta_in = THERMOSTAT_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius uint8_t val_prop_band = THERMOSTAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in minutes uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost in minutes uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes uint32_t time_reset = THERMOSTAT_TIME_RESET; // Reset time of the PI controller in seconds uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in minutes uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION; // Maximum thermostat time per cycle in minutes uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION; // Minimum thermostat time per cycle in minutes uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will stay on uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius ThermostatDiagBitfield diag; // Bittfield including diagnostic flags #ifdef USE_PI_AUTOTUNING uint8_t dutycycle_step_autotune = THERMOSTAT_DUTYCYCLE_AUTOTUNE; // Duty cycle for the step response of the autotune PI function in % uint8_t peak_ctr = 0; // Peak counter for the autotuning function uint8_t temp_band_no_peak_det = THERMOSTAT_TEMP_BAND_NO_PEAK_DET; // Temperature band in thenths of degrees celsius within no peak will be detected uint8_t val_prop_band_atune = 0; // Proportional band calculated from the the PI autotune function in degrees celsius uint32_t time_reset_atune = 0; // Reset time calculated from the PI autotune function in seconds uint16_t pU_pi_atune = 0; // pU value ("Ultimate" period) period of self-sustaining oscillations determined when the controller gain was set to Ku in minutes (for PI autotune) uint16_t kU_pi_atune = 0; // kU value ("Ultimate" gain) determined by increasing controller gain until self-sustaining oscillations are achieved (for PI autotune) uint16_t kP_pi_atune = 0; // kP value calculated by the autotune PI function multiplied by 100 (to avoid floating point operations) uint16_t kI_pi_atune = 0; // kI value calulated by the autotune PI function multiplied by 100 (to avoid floating point operations) int16_t temp_peaks_atune[THERMOSTAT_PEAKNUMBER_AUTOTUNE]; // Array to store temperature peaks to be used by the autotune PI function int16_t temp_abs_max_atune; // Max temperature reached within autotune int16_t temp_abs_min_atune; // Min temperature reached within autotune uint16_t time_peak_timestamps_atune[THERMOSTAT_PEAKNUMBER_AUTOTUNE]; // Array to store timestamps in minutes of the temperature peaks to be used by the autotune PI function uint16_t time_std_dev_peak_det_ok = THERMOSTAT_TIME_STD_DEV_PEAK_DET_OK; // Standard deviation in minutes of the oscillation periods within the peak detection is successful #endif // USE_PI_AUTOTUNING } Thermostat[THERMOSTAT_CONTROLLER_OUTPUTS]; /*********************************************************************************************/ void ThermostatInit(uint8_t ctr_output) { // Init Thermostat[ctr_output].status bitfield: Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF; Thermostat[ctr_output].status.controller_mode = CTR_HYBRID; Thermostat[ctr_output].status.climate_mode = CLIMATE_HEATING; Thermostat[ctr_output].status.sensor_alive = IFACE_OFF; Thermostat[ctr_output].status.sensor_type = SENSOR_MQTT; Thermostat[ctr_output].status.temp_format = TEMP_CELSIUS; Thermostat[ctr_output].status.command_output = IFACE_OFF; Thermostat[ctr_output].status.status_output = IFACE_OFF; Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI; Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF; Thermostat[ctr_output].diag.state_emergency = EMERGENCY_OFF; Thermostat[ctr_output].status.counter_seconds = 0; Thermostat[ctr_output].status.output_relay_number = (THERMOSTAT_RELAY_NUMBER + ctr_output); Thermostat[ctr_output].status.input_switch_number = (THERMOSTAT_SWITCH_NUMBER + ctr_output); Thermostat[ctr_output].status.use_input = INPUT_NOT_USED; Thermostat[ctr_output].status.enable_output = IFACE_ON; Thermostat[ctr_output].diag.output_inconsist_ctr = 0; Thermostat[ctr_output].diag.diagnostic_mode = DIAGNOSTIC_ON; #ifdef USE_PI_AUTOTUNING Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF; Thermostat[ctr_output].status.autotune_perf_mode = AUTOTUNE_PERF_FAST; #endif // USE_PI_AUTOTUNING // Make sure the Output is OFF if (Thermostat[ctr_output].status.enable_output == IFACE_ON) { ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_OFF, SRC_THERMOSTAT); } } bool ThermostatMinuteCounter(uint8_t ctr_output) { bool result = false; Thermostat[ctr_output].status.counter_seconds++; // increment time if ((Thermostat[ctr_output].status.counter_seconds % 60) == 0) { result = true; Thermostat[ctr_output].status.counter_seconds = 0; } return result; } inline bool ThermostatSwitchIdValid(uint8_t switchId) { return (switchId >= THERMOSTAT_INPUT_SWT1 && switchId <= THERMOSTAT_INPUT_SWT8); } inline bool ThermostatRelayIdValid(uint8_t relayId) { return (relayId >= THERMOSTAT_OUTPUT_REL1 && relayId <= THERMOSTAT_OUTPUT_REL8); } uint8_t ThermostatInputStatus(uint8_t input_switch) { bool ifId = ThermostatSwitchIdValid(input_switch); uint8_t value = 0; if(ifId) { value = SwitchGetVirtual(ifId - THERMOSTAT_INPUT_SWT1); } return value; } uint8_t ThermostatOutputStatus(uint8_t output_switch) { return (uint8_t)bitRead(TasmotaGlobal.power, (output_switch - 1)); } int16_t ThermostatCelsiusToFahrenheit(const int32_t deg, uint8_t conv_type) { int32_t value; value = (int32_t)(((int32_t)deg * (int32_t)90) / (int32_t)50); if (conv_type == TEMP_CONV_ABSOLUTE) { value += (int32_t)320; } // Protect overflow if (value <= (int32_t)(INT16_MIN)) { value = (int32_t)(INT16_MIN); } else if (value >= (int32_t)INT16_MAX) { value = (int32_t)INT16_MAX; } return (int16_t)value; } int16_t ThermostatFahrenheitToCelsius(const int32_t deg, uint8_t conv_type) { int16_t offset = 0; int32_t value; if (conv_type == TEMP_CONV_ABSOLUTE) { offset = 320; } value = (int32_t)(((deg - (int32_t)offset) * (int32_t)50) / (int32_t)90); // Protect overflow if (value <= (int32_t)(INT16_MIN)) { value = (int32_t)(INT16_MIN); } else if (value >= (int32_t)INT16_MAX) { value = (int32_t)INT16_MAX; } return (int16_t)value; } void ThermostatSignalPreProcessingSlow(uint8_t ctr_output) { // Update input sensor status if ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_temp_measured_update) > ((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)) { Thermostat[ctr_output].status.sensor_alive = IFACE_OFF; Thermostat[ctr_output].temp_measured_gradient = 0; Thermostat[ctr_output].temp_measured = 0; } } void ThermostatSignalPostProcessingSlow(uint8_t ctr_output) { // Increate counter when inconsistent output state exists if ((Thermostat[ctr_output].status.status_output != Thermostat[ctr_output].status.command_output) &&(Thermostat[ctr_output].status.enable_output == IFACE_ON)) { Thermostat[ctr_output].diag.output_inconsist_ctr++; } else { Thermostat[ctr_output].diag.output_inconsist_ctr = 0; } } void ThermostatSignalProcessingFast(uint8_t ctr_output) { // Update real status of the input Thermostat[ctr_output].status.status_input = (uint32_t)ThermostatInputStatus(Thermostat[ctr_output].status.input_switch_number); // Update timestamp of last input if (Thermostat[ctr_output].status.status_input == IFACE_ON) { Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime; } // Update real status of the output Thermostat[ctr_output].status.status_output = (uint32_t)ThermostatOutputStatus(Thermostat[ctr_output].status.output_relay_number); } void ThermostatCtrState(uint8_t ctr_output) { #ifdef USE_PI_AUTOTUNING bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); #endif //USE_PI_AUTOTUNING switch (Thermostat[ctr_output].status.controller_mode) { // Hybrid controller (Ramp-up + PI) case CTR_HYBRID: ThermostatHybridCtrPhase(ctr_output); break; // PI controller case CTR_PI: #ifdef USE_PI_AUTOTUNING // If Autotune has been enabled (via flag) // AND we have just reached the setpoint temperature // AND the temperature gradient is negative for heating and positive for cooling // then switch state to PI autotuning if ((Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_ON) &&(Thermostat[ctr_output].temp_measured == Thermostat[ctr_output].temp_target_level) && ((flag_heating && (Thermostat[ctr_output].temp_measured_gradient < 0)) ||(!flag_heating && (Thermostat[ctr_output].temp_measured_gradient > 0)))) { Thermostat[ctr_output].status.controller_mode = CTR_PI_AUTOTUNE; ThermostatPeakDetectorInit(ctr_output); } #endif // USE_PI_AUTOTUNING break; // Ramp-up controller (predictive) case CTR_RAMP_UP: break; #ifdef USE_PI_AUTOTUNING // PI autotune case CTR_PI_AUTOTUNE: // If autotune finalized (flag Off) // then go back to the PI controller if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF) { Thermostat[ctr_output].status.controller_mode = CTR_PI; } break; #endif //USE_PI_AUTOTUNING } } void ThermostatHybridCtrPhase(uint8_t ctr_output) { bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); if (Thermostat[ctr_output].status.controller_mode == CTR_HYBRID) { switch (Thermostat[ctr_output].status.phase_hybrid_ctr) { // Ramp-up phase with gradient control case CTR_HYBRID_RAMP_UP: // If ramp-up offtime counter has been initalized // AND ramp-up offtime counter value reached if((Thermostat[ctr_output].time_ctr_checkpoint != 0) && (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint)) { // Reset pause period Thermostat[ctr_output].time_ctr_checkpoint = 0; // Reset timers Thermostat[ctr_output].time_ctr_changepoint = 0; // Set PI controller Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI; } break; // PI controller phase case CTR_HYBRID_PI: // If no output action for a pre-defined time // AND temp target has changed // AND value of temp target - actual temperature bigger than threshold for heating and lower for cooling // then go to ramp-up if (((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup)) && (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr) && ( ( (Thermostat[ctr_output].temp_target_level - Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_delta_in) && (flag_heating)) || ( (Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_target_level > Thermostat[ctr_output].temp_rampup_delta_in) && (!flag_heating)))) { Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime; Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_meas_gradient = 0; Thermostat[ctr_output].time_rampup_deadtime = 0; Thermostat[ctr_output].counter_rampup_cycles = 1; Thermostat[ctr_output].time_ctr_changepoint = 0; Thermostat[ctr_output].time_ctr_checkpoint = 0; Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP; } #ifdef USE_PI_AUTOTUNING // If Autotune has been enabled (via flag) // AND we have just reached the setpoint temperature // AND the temperature gradient is negative for heating and positive for cooling // then switch state to PI autotuning if ((Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_ON) &&(Thermostat[ctr_output].temp_measured == Thermostat[ctr_output].temp_target_level) && ((flag_heating && (Thermostat[ctr_output].temp_measured_gradient < 0)) ||(!flag_heating && (Thermostat[ctr_output].temp_measured_gradient > 0)))) { Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI_AUTOTUNE; ThermostatPeakDetectorInit(ctr_output); } #endif // USE_PI_AUTOTUNING break; #ifdef USE_PI_AUTOTUNING // PI autotune controller phase case CTR_HYBRID_PI_AUTOTUNE: // If autotune finalized (flag Off) // then go back to the PI controller if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF) { Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI; } break; #endif // USE_PI_AUTOTUNING } } #ifdef DEBUG_THERMOSTAT ThermostatVirtualSwitchCtrState(ctr_output); #endif // DEBUG_THERMOSTAT } bool ThermostatStateAutoToManual(uint8_t ctr_output) { bool change_state = false; // If input is used // AND switch input is active // OR temperature sensor is not alive // then go to manual if ((Thermostat[ctr_output].status.use_input == INPUT_USED) &&((Thermostat[ctr_output].status.status_input == IFACE_ON) || (Thermostat[ctr_output].status.sensor_alive == IFACE_OFF))) { change_state = true; } return change_state; } bool ThermostatStateManualToAuto(uint8_t ctr_output) { bool change_state = false; // If switch input inactive // AND sensor alive // AND no switch input action (time in current state) bigger than a pre-defined time // then go to automatic if ((Thermostat[ctr_output].status.status_input == IFACE_OFF) &&(Thermostat[ctr_output].status.sensor_alive == IFACE_ON) && ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_input_on) > ((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60))) { change_state = true; } return change_state; } void ThermostatEmergencyShutdown(uint8_t ctr_output) { // Emergency switch to THERMOSTAT_OFF Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF; Thermostat[ctr_output].status.command_output = IFACE_OFF; if (Thermostat[ctr_output].status.enable_output == IFACE_ON) { ThermostatOutputRelay(ctr_output, Thermostat[ctr_output].status.command_output); } } void ThermostatState(uint8_t ctr_output) { switch (Thermostat[ctr_output].status.thermostat_mode) { // State if Off or Emergency case THERMOSTAT_OFF: // No change of state possible without external command break; // State automatic, thermostat active following the command target temp. case THERMOSTAT_AUTOMATIC_OP: if (ThermostatStateAutoToManual(ctr_output)) { // If sensor not alive change to THERMOSTAT_MANUAL_OP Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_MANUAL_OP; } ThermostatCtrState(ctr_output); break; // State manual operation following input switch case THERMOSTAT_MANUAL_OP: if (ThermostatStateManualToAuto(ctr_output)) { // Input switch inactive and timeout reached change to THERMOSTAT_AUTOMATIC_OP Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP; } break; } } void ThermostatOutputRelay(uint8_t ctr_output, uint32_t command) { // If command received to enable output // AND current output status is OFF // then switch output to ON if ((command == IFACE_ON) && (Thermostat[ctr_output].status.status_output == IFACE_OFF)) { //#ifndef DEBUG_THERMOSTAT if (Thermostat[ctr_output].status.enable_output == IFACE_ON) { ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_ON, SRC_THERMOSTAT); } //#endif // DEBUG_THERMOSTAT Thermostat[ctr_output].status.status_output = IFACE_ON; #ifdef DEBUG_THERMOSTAT ThermostatVirtualSwitch(ctr_output); #endif // DEBUG_THERMOSTAT } // If command received to disable output // AND current output status is ON // then switch output to OFF else if ((command == IFACE_OFF) && (Thermostat[ctr_output].status.status_output == IFACE_ON)) { //#ifndef DEBUG_THERMOSTAT if (Thermostat[ctr_output].status.enable_output == IFACE_ON) { ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_OFF, SRC_THERMOSTAT); } //#endif // DEBUG_THERMOSTAT Thermostat[ctr_output].timestamp_output_off = TasmotaGlobal.uptime; Thermostat[ctr_output].status.status_output = IFACE_OFF; #ifdef DEBUG_THERMOSTAT ThermostatVirtualSwitch(ctr_output); #endif // DEBUG_THERMOSTAT } } void ThermostatCalculatePI(uint8_t ctr_output) { // General comment: Some variables have been increased in resolution to avoid loosing accuracy in division operations bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); int32_t aux_temp_error; // Calculate error aux_temp_error = (int32_t)(Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_measured) * 10; // Invert error for cooling if (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING) { aux_temp_error *= -1; } // Protect overflow if (aux_temp_error <= (int32_t)(INT16_MIN)) { Thermostat[ctr_output].temp_pi_error = (int16_t)(INT16_MIN); } else if (aux_temp_error >= (int32_t)INT16_MAX) { Thermostat[ctr_output].temp_pi_error = (int16_t)INT16_MAX; } else { Thermostat[ctr_output].temp_pi_error = (int16_t)aux_temp_error; } // Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller) Thermostat[ctr_output].kP_pi = 100 / (uint16_t)(Thermostat[ctr_output].val_prop_band); // Calculate proportional Thermostat[ctr_output].time_proportional_pi = ((int32_t)(Thermostat[ctr_output].temp_pi_error * (int16_t)Thermostat[ctr_output].kP_pi) * ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) / 10000; // Minimum proportional action limiter // If proportional action is less than the minimum action time // AND proportional > 0 // then adjust to minimum value if ((Thermostat[ctr_output].time_proportional_pi < abs(((int32_t)Thermostat[ctr_output].time_min_action * 60))) && (Thermostat[ctr_output].time_proportional_pi > 0)) { Thermostat[ctr_output].time_proportional_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60); } if (Thermostat[ctr_output].time_proportional_pi < 0) { Thermostat[ctr_output].time_proportional_pi = 0; } else if (Thermostat[ctr_output].time_proportional_pi > ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { Thermostat[ctr_output].time_proportional_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60); } // Calculate integral (resolution increased to avoid use of floats in consequent operations) Thermostat[ctr_output].kI_pi = (uint16_t)((((uint32_t)Thermostat[ctr_output].kP_pi * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].time_reset); // Reset of antiwindup // If error does not lay within the integrator scope range, do not use the integral // and accumulate error = 0 if (abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_reset_anti_windup) { Thermostat[ctr_output].time_integral_pi = 0; Thermostat[ctr_output].temp_pi_accum_error = 0; } // Normal use of integrator // result will be calculated with the cummulated previous error anterior // and current error will be cummulated to the previous one else { // Hysteresis limiter // If error is less than or equal than hysteresis, limit output to 0, when temperature // is rising, never when falling. Limit cummulated error. If this is not done, // there will be very strong control actions from the integral part due to a // very high cummulated error when beingin hysteresis. This triggers high // integral actions // Update accumulated error aux_temp_error = (int32_t)Thermostat[ctr_output].temp_pi_accum_error + (int32_t)Thermostat[ctr_output].temp_pi_error; // Protect overflow if (aux_temp_error <= (int32_t)INT16_MIN) { Thermostat[ctr_output].temp_pi_accum_error = INT16_MIN; } else if (aux_temp_error >= (int32_t)INT16_MAX) { Thermostat[ctr_output].temp_pi_accum_error = INT16_MAX; } else { Thermostat[ctr_output].temp_pi_accum_error = (int16_t)aux_temp_error; } // If we are under setpoint // AND we are within the hysteresis // AND the temperature is rising for heating or sinking for cooling if ( (Thermostat[ctr_output].temp_pi_error >= 0) && (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= (int16_t)Thermostat[ctr_output].temp_hysteresis) && ( ((Thermostat[ctr_output].temp_measured_gradient > 0) && (flag_heating)) || ( (Thermostat[ctr_output].temp_measured_gradient < 0) && (!flag_heating)))) { // Reduce accumulator error 20% in each cycle Thermostat[ctr_output].temp_pi_accum_error *= 0.8; } // If we are over setpoint // AND temperature is rising for heating or sinking for cooling else if ((Thermostat[ctr_output].temp_pi_error < 0) && ( ((Thermostat[ctr_output].temp_measured_gradient > 0) && (flag_heating)) || ( (Thermostat[ctr_output].temp_measured_gradient < 0) && (!flag_heating)))) { // Reduce accumulator error 20% in each cycle Thermostat[ctr_output].temp_pi_accum_error *= 0.8; } // Limit lower limit of acumErr to 0 if (Thermostat[ctr_output].temp_pi_accum_error < 0) { Thermostat[ctr_output].temp_pi_accum_error = 0; } // Integral calculation Thermostat[ctr_output].time_integral_pi = (((int32_t)Thermostat[ctr_output].temp_pi_accum_error * (int32_t)Thermostat[ctr_output].kI_pi) * (int32_t)((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) / 1000000; // Antiwindup of the integrator // If integral calculation is bigger than cycle time, adjust result // to the cycle time and error will not be cummulated if (Thermostat[ctr_output].time_integral_pi > ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { Thermostat[ctr_output].time_integral_pi = ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60); } } // Calculate output Thermostat[ctr_output].time_total_pi = Thermostat[ctr_output].time_proportional_pi + Thermostat[ctr_output].time_integral_pi; // Antiwindup of the output // If result is bigger than cycle time, the result will be adjusted // to the cylce time minus safety time and error will not be cummulated if (Thermostat[ctr_output].time_total_pi >= ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { // Limit to cycle time //at least switch down a minimum time Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60); } else if (Thermostat[ctr_output].time_total_pi < 0) { Thermostat[ctr_output].time_total_pi = 0; } // Target value limiter // If target value has been reached or we are over it for heating or under it for cooling if (Thermostat[ctr_output].temp_pi_error <= 0) { // If we are over the hysteresis or the gradient is positive for heating or negative for cooling if ((abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_hysteresis) || ( ((Thermostat[ctr_output].temp_measured_gradient >= 0) && (flag_heating)) || ( (Thermostat[ctr_output].temp_measured_gradient <= 0) && (!flag_heating)))){ Thermostat[ctr_output].time_total_pi = 0; } } // If target value has not been reached // AND we are within the histeresis // AND gradient is positive for heating or negative for cooling // then set value to 0 else if ((Thermostat[ctr_output].temp_pi_error > 0) && (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= Thermostat[ctr_output].temp_hysteresis) && (((Thermostat[ctr_output].temp_measured_gradient > 0) && (flag_heating)) || ( (Thermostat[ctr_output].temp_measured_gradient < 0) && (!flag_heating)))) { Thermostat[ctr_output].time_total_pi = 0; } // Minimum action limiter // If result is less than the minimum action time, adjust to minimum value if ((Thermostat[ctr_output].time_total_pi <= abs(((uint32_t)Thermostat[ctr_output].time_min_action * 60))) && (Thermostat[ctr_output].time_total_pi != 0)) { Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60); } // Maximum action limiter // If result is more than the maximum action time, adjust to maximum value else if (Thermostat[ctr_output].time_total_pi > abs(((int32_t)Thermostat[ctr_output].time_max_action * 60))) { Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_max_action * 60); } // If switched off less time than safety time, do not switch off else if (Thermostat[ctr_output].time_total_pi > (((int32_t)Thermostat[ctr_output].time_pi_cycle * 60) - ((int32_t)Thermostat[ctr_output].time_min_turnoff_action * 60))) { Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60); } // Adjust output switch point Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (uint32_t)Thermostat[ctr_output].time_total_pi; // Adjust next cycle point Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60); } void ThermostatWorkAutomaticPI(uint8_t ctr_output) { bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); if ( (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint) || (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr) || ( (( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level) && (Thermostat[ctr_output].temp_measured_gradient < 0) && (flag_heating)) || ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level) && (Thermostat[ctr_output].temp_measured_gradient > 0) && (!flag_heating))) && (Thermostat[ctr_output].status.status_cycle_active == CYCLE_OFF))) { Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level; ThermostatCalculatePI(ctr_output); // Reset cycle active Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF; } if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) { Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON; Thermostat[ctr_output].status.command_output = IFACE_ON; } else { Thermostat[ctr_output].status.command_output = IFACE_OFF; } } void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) { uint32_t time_in_rampup; int16_t aux_temp_delta; int16_t temp_delta_rampup; bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); // Update timestamp for temperature at start of ramp-up if temperature still // dropping for heating or rising for cooling if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_start) && (flag_heating)) || ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_start) && (!flag_heating))) { Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured; } // Update time in ramp-up as well as delta temp time_in_rampup = TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_rampup_start; temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_start; // Init command output status to true Thermostat[ctr_output].status.command_output = IFACE_ON; // Update temperature target level for controller Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level; // If time in ramp-up < max time // AND temperature measured < target for heating or > for cooling if ((time_in_rampup <= (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max)) && ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level) && (flag_heating)) || ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level) && (!flag_heating)))){ // DEADTIME point reached // If temperature measured minus temperature at start of ramp-up >= threshold // AND deadtime still 0 if ( (abs(temp_delta_rampup) >= Thermostat[ctr_output].temp_rampup_delta_out) && (Thermostat[ctr_output].time_rampup_deadtime == 0)) { // Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered // minus open time of the valve (arround 3 minutes). If rise/sink very fast limit it to delay of output valve int32_t time_aux; time_aux = ((time_in_rampup / 2) - Thermostat[ctr_output].time_output_delay); if (time_aux >= Thermostat[ctr_output].time_output_delay) { Thermostat[ctr_output].time_rampup_deadtime = (uint32_t)time_aux; } else { Thermostat[ctr_output].time_rampup_deadtime = Thermostat[ctr_output].time_output_delay; } // Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup); Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); // Set auxiliary variables Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max); Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr; } // Gradient calculation every time_rampup_cycle else if ((Thermostat[ctr_output].time_rampup_deadtime > 0) && (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_rampup_nextcycle)) { // Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle // temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle)) temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle; uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60 * Thermostat[ctr_output].counter_rampup_cycles; // Translate into gradient per hour (thousandths of ° per hour) Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup); if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0) && ((flag_heating))) || ((Thermostat[ctr_output].temp_rampup_meas_gradient < 0) && ((!flag_heating)))) { // Calculate time to switch Off and come out of ramp-up // y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec // Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed) // x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime aux_temp_delta =Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_rampup_cycle; Thermostat[ctr_output].time_ctr_changepoint = (uint32_t)(uint32_t)(((uint32_t)(aux_temp_delta) * (uint32_t)(time_total_rampup)) / (uint32_t)temp_delta_rampup) + (uint32_t)Thermostat[ctr_output].time_rampup_nextcycle - (uint32_t)time_total_rampup - (uint32_t)Thermostat[ctr_output].time_rampup_deadtime; // Calculate temperature for switching off the output // y = (((y2-y1)/(x2-x1))*(x-x1)) + y1 Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (TasmotaGlobal.uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle; // Set auxiliary variables Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; // Reset period counter Thermostat[ctr_output].counter_rampup_cycles = 1; } else { // Increase the period counter Thermostat[ctr_output].counter_rampup_cycles++; // Set another period Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); // Reset time_ctr_changepoint and temp_rampup_output_off Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup; Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr; } // Set time to get out of ramp-up Thermostat[ctr_output].time_ctr_checkpoint = Thermostat[ctr_output].time_ctr_changepoint + Thermostat[ctr_output].time_rampup_deadtime; } // Set output switch ON or OFF // If deadtime has not been calculated // or checkpoint has not been calculated // or it is not yet time and temperature to switch it off acc. to calculations // or gradient is <= 0 for heating of >= 0 for cooling if ((Thermostat[ctr_output].time_rampup_deadtime == 0) || (Thermostat[ctr_output].time_ctr_checkpoint == 0) || (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) || ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_output_off) && (flag_heating)) || ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_output_off) && (!flag_heating))) || ( ((Thermostat[ctr_output].temp_rampup_meas_gradient <= 0) && (flag_heating)) || ((Thermostat[ctr_output].temp_rampup_meas_gradient >= 0) && (!flag_heating)))) { Thermostat[ctr_output].status.command_output = IFACE_ON; } else { Thermostat[ctr_output].status.command_output = IFACE_OFF; } } else { // If we have not reached the temperature, start with an initial value for accumulated error for the PI controller if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level_ctr) && (flag_heating)) || ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level_ctr) && (!flag_heating))) { Thermostat[ctr_output].temp_pi_accum_error = Thermostat[ctr_output].temp_rampup_pi_acc_error; } // Set to now time to get out of ramp-up Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime; // Switch Off output Thermostat[ctr_output].status.command_output = IFACE_OFF; } } #ifdef USE_PI_AUTOTUNING void ThermostatPeakDetectorInit(uint8_t ctr_output) { for (uint8_t i = 0; i < THERMOSTAT_PEAKNUMBER_AUTOTUNE; i++) { Thermostat[ctr_output].temp_peaks_atune[i] = 0; } Thermostat[ctr_output].pU_pi_atune = 0; Thermostat[ctr_output].kP_pi_atune = 0; Thermostat[ctr_output].kI_pi_atune = 0; Thermostat[ctr_output].kU_pi_atune = 0; Thermostat[ctr_output].peak_ctr = 0; Thermostat[ctr_output].temp_abs_max_atune = 0; Thermostat[ctr_output].temp_abs_min_atune = 100; Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + THERMOSTAT_TIME_MAX_AUTOTUNE; } void ThermostatPeakDetector(uint8_t ctr_output) { uint8_t peak_num = Thermostat[ctr_output].peak_ctr; int16_t peak_avg = 0; bool peak_transition = false; // Update Max/Min Thermostat[ctr_output].temp_abs_max_atune if (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_abs_max_atune) { Thermostat[ctr_output].temp_abs_max_atune = Thermostat[ctr_output].temp_measured; } if (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_abs_min_atune) { Thermostat[ctr_output].temp_abs_min_atune = Thermostat[ctr_output].temp_measured; } // For heating, even peak numbers look for maxes, odd for minds, the contrary for cooling // If we did not found all peaks yet if (peak_num < THERMOSTAT_PEAKNUMBER_AUTOTUNE) { bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); bool cond_peak_1 = ( (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_peaks_atune[peak_num]) && (flag_heating) || (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_peaks_atune[peak_num]) && (!flag_heating)); bool cond_peak_2 = ( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_peaks_atune[peak_num]) && (flag_heating) || (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_peaks_atune[peak_num]) && (!flag_heating)); bool cond_gradient_1 = ( (Thermostat[ctr_output].temp_measured_gradient > 0) && (flag_heating) || (Thermostat[ctr_output].temp_measured_gradient < 0) && (!flag_heating)); bool cond_gradient_2 = ( (Thermostat[ctr_output].temp_measured_gradient < 0) && (flag_heating) || (Thermostat[ctr_output].temp_measured_gradient > 0) && (!flag_heating)); // If peak number is even (look for max if heating and min if cooling) if ((peak_num % 2) == 0) { // If current temperature higher (heating) or lower (cooling) than registered value for peak // AND temperature gradient > 0 for heating or < 0 for cooling // then, update value if (cond_peak_1 && cond_gradient_1) { Thermostat[ctr_output].temp_peaks_atune[peak_num] = Thermostat[ctr_output].temp_measured; } // Else if current temperature lower (heating) or higher (cooling) then registered value for peak // AND difference to peak is outside of the peak no detection band // then the current peak value is the peak (max for heating, min for cooling), switch detection if ( (cond_peak_2) && (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) { // Register peak timestamp; Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60); Thermostat[ctr_output].peak_ctr++; peak_transition = true; } } // Peak number is odd (look for min if heating and max if cooling) else { // If current temperature lower (heating) or higher (cooling) than registered value for peak // AND temperature gradient < 0 for heating or > 0 for cooling // then, update value if (cond_peak_2 && cond_gradient_2) { Thermostat[ctr_output].temp_peaks_atune[peak_num] = Thermostat[ctr_output].temp_measured; } // Else if current temperature higher (heating) or lower (cooling) then registered value for peak // AND difference to peak is outside of the peak no detection band // then the current peak value is the peak (min for heating, max for cooling), switch detection if ( (cond_peak_1) && (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) { // Calculate period // Register peak timestamp; Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60); Thermostat[ctr_output].peak_ctr++; peak_transition = true; } } } else { // Peak detection done, proceed to evaluate results ThermostatAutotuneParamCalc(ctr_output); Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF; } // If peak detection not finalized but bigger than 3 and we have just found a peak, check if results can be extracted if ((Thermostat[ctr_output].peak_ctr > 2) && (peak_transition)) { //Update peak_num peak_num = Thermostat[ctr_output].peak_ctr; // Calculate average value among the last 3 peaks peak_avg = (abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 1] - Thermostat[ctr_output].temp_peaks_atune[peak_num - 2]) + abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 2] - Thermostat[ctr_output].temp_peaks_atune[peak_num - 3])) / 2; if ((20 * (int32_t)peak_avg) < (int32_t)(Thermostat[ctr_output].temp_abs_max_atune - Thermostat[ctr_output].temp_abs_min_atune)) { // Calculate average temperature among all peaks for (uint8_t i = 0; i < peak_num; i++) { peak_avg += Thermostat[ctr_output].temp_peaks_atune[i]; } peak_avg /= peak_num; // If last period crosses the average value, result valid if (10 * abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 1] - Thermostat[ctr_output].temp_peaks_atune[peak_num - 2]) < (Thermostat[ctr_output].temp_abs_max_atune - peak_avg)) { // Peak detection done, proceed to evaluate results ThermostatAutotuneParamCalc(ctr_output); Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF; } } } peak_transition = false; } void ThermostatAutotuneParamCalc(uint8_t ctr_output) { uint8_t peak_num = Thermostat[ctr_output].peak_ctr; // Calculate the tunning parameters // Resolution increased to avoid float operations Thermostat[ctr_output].kU_pi_atune = (uint16_t)(100 * ((uint32_t)400000 * (uint32_t)(Thermostat[ctr_output].dutycycle_step_autotune)) / ((uint32_t)(Thermostat[ctr_output].temp_abs_max_atune - Thermostat[ctr_output].temp_abs_min_atune) * (uint32_t)314159)); Thermostat[ctr_output].pU_pi_atune = (Thermostat[ctr_output].time_peak_timestamps_atune[peak_num - 1] - Thermostat[ctr_output].time_peak_timestamps_atune[peak_num - 2]); switch (Thermostat[ctr_output].status.autotune_perf_mode) { case AUTOTUNE_PERF_FAST: // Calculate kP/Ki autotune Thermostat[ctr_output].kP_pi_atune = (4 * Thermostat[ctr_output].kU_pi_atune) / 10; break; case AUTOTUNE_PERF_NORMAL: // Calculate kP/Ki autotune Thermostat[ctr_output].kP_pi_atune = (18 * Thermostat[ctr_output].kU_pi_atune) / 100; break; case AUTOTUNE_PERF_SLOW: // Calculate kP/Ki autotune Thermostat[ctr_output].kP_pi_atune = (13 * Thermostat[ctr_output].kU_pi_atune) / 100; break; } // Resolution increased to avoid float operations Thermostat[ctr_output].kI_pi_atune = (12 * (6000 * Thermostat[ctr_output].kU_pi_atune / Thermostat[ctr_output].pU_pi_atune)) / 10; // Calculate PropBand Autotune Thermostat[ctr_output].val_prop_band_atune = 100 / Thermostat[ctr_output].kP_pi_atune; // Calculate Reset Time Autotune Thermostat[ctr_output].time_reset_atune = (uint32_t)((((uint32_t)Thermostat[ctr_output].kP_pi_atune * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].kI_pi_atune); } void ThermostatWorkAutomaticPIAutotune(uint8_t ctr_output) { bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING); // If no timeout of the PI Autotune function // AND no change in setpoint if ((TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_checkpoint) &&(Thermostat[ctr_output].temp_target_level_ctr == Thermostat[ctr_output].temp_target_level)) { if (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint) { Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level; // Calculate time_ctr_changepoint Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (((uint32_t)Thermostat[ctr_output].time_pi_cycle * (uint32_t)Thermostat[ctr_output].dutycycle_step_autotune) / (uint32_t)100); // Reset cycle active Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF; } // Set Output On/Off depending on the changepoint if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) { Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON; Thermostat[ctr_output].status.command_output = IFACE_ON; } else { Thermostat[ctr_output].status.command_output = IFACE_OFF; } // Update peak values ThermostatPeakDetector(ctr_output); } else { // Disable Autotune flag Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF; } if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF) { // Set output Off Thermostat[ctr_output].status.command_output = IFACE_OFF; } } #endif //USE_PI_AUTOTUNING void ThermostatCtrWork(uint8_t ctr_output) { switch (Thermostat[ctr_output].status.controller_mode) { // Hybrid controller (Ramp-up + PI) case CTR_HYBRID: switch (Thermostat[ctr_output].status.phase_hybrid_ctr) { case CTR_HYBRID_RAMP_UP: ThermostatWorkAutomaticRampUp(ctr_output); break; case CTR_HYBRID_PI: ThermostatWorkAutomaticPI(ctr_output); break; #ifdef USE_PI_AUTOTUNING // PI autotune case CTR_HYBRID_PI_AUTOTUNE: ThermostatWorkAutomaticPIAutotune(ctr_output); break; #endif //USE_PI_AUTOTUNING } break; // PI controller case CTR_PI: ThermostatWorkAutomaticPI(ctr_output); break; // Ramp-up controller (predictive) case CTR_RAMP_UP: ThermostatWorkAutomaticRampUp(ctr_output); break; #ifdef USE_PI_AUTOTUNING // PI autotune case CTR_PI_AUTOTUNE: ThermostatWorkAutomaticPIAutotune(ctr_output); break; #endif //USE_PI_AUTOTUNING } } void ThermostatWork(uint8_t ctr_output) { switch (Thermostat[ctr_output].status.thermostat_mode) { // State if thermostat Off or Emergency case THERMOSTAT_OFF: Thermostat[ctr_output].status.command_output = IFACE_OFF; break; // State automatic thermostat active following to command target temp. case THERMOSTAT_AUTOMATIC_OP: ThermostatCtrWork(ctr_output); break; // State manual operation following input switch case THERMOSTAT_MANUAL_OP: Thermostat[ctr_output].time_ctr_checkpoint = 0; Thermostat[ctr_output].status.command_output = Thermostat[ctr_output].status.status_input; break; } ThermostatOutputRelay(ctr_output, Thermostat[ctr_output].status.command_output); } void ThermostatDiagnostics(uint8_t ctr_output) { // Diagnostic related to the plausibility of the output state if ((Thermostat[ctr_output].diag.diagnostic_mode == DIAGNOSTIC_ON) &&(Thermostat[ctr_output].diag.output_inconsist_ctr >= THERMOSTAT_TIME_MAX_OUTPUT_INCONSIST)) { Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF; Thermostat[ctr_output].diag.state_emergency = EMERGENCY_ON; } // Diagnostic related to the plausibility of the output power implemented // already into the energy driver // If diagnostics fail, emergency enabled and thermostat shutdown triggered if (Thermostat[ctr_output].diag.state_emergency == EMERGENCY_ON) { ThermostatEmergencyShutdown(ctr_output); } } void ThermostatController(uint8_t ctr_output) { ThermostatState(ctr_output); ThermostatWork(ctr_output); } bool ThermostatTimerArm(uint8_t ctr_output, int16_t tempVal) { bool result = false; // TempVal unit is tenths of degrees celsius if ((tempVal >= -1000) && (tempVal <= 1000) && (tempVal >= (int16_t)Thermostat[ctr_output].temp_frost_protect)) { Thermostat[ctr_output].temp_target_level = tempVal; Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP; result = true; } // Returns true if setpoint plausible and thermostat armed, false on the contrary return result; } void ThermostatTimerDisarm(uint8_t ctr_output) { Thermostat[ctr_output].temp_target_level = THERMOSTAT_TEMP_INIT; Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF; } #ifdef DEBUG_THERMOSTAT void ThermostatVirtualSwitch(uint8_t ctr_output) { char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC; if (ctr_output < DOMOTICZ_MAX_IDX) { Response_P(DOMOTICZ_MES, Domoticz_Virtual_Switches[ctr_output], (0 == Thermostat[ctr_output].status.command_output) ? 0 : 1, ""); MqttPublish(domoticz_in_topic); } } void ThermostatVirtualSwitchCtrState(uint8_t ctr_output) { char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC; Response_P(DOMOTICZ_MES, DOMOTICZ_IDX2, (0 == Thermostat[0].status.phase_hybrid_ctr) ? 0 : 1, ""); MqttPublish(domoticz_in_topic); } void ThermostatDebug(uint8_t ctr_output) { char result_chr[FLOATSZ]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("")); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat Start ------")); dtostrfd(Thermostat[ctr_output].status.counter_seconds, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.counter_seconds: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.thermostat_mode, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.thermostat_mode: %s"), result_chr); dtostrfd(Thermostat[ctr_output].diag.state_emergency, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].diag.state_emergency: %s"), result_chr); dtostrfd(Thermostat[ctr_output].diag.output_inconsist_ctr, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].diag.output_inconsist_ctr: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.controller_mode, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.controller_mode: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.command_output, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.command_output: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.status_output, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_output: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.status_input, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_input: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.phase_hybrid_ctr, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.phase_hybrid_ctr: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.sensor_alive, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.sensor_alive: %s"), result_chr); dtostrfd(Thermostat[ctr_output].status.status_cycle_active, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_cycle_active: %s"), result_chr); dtostrfd(Thermostat[ctr_output].temp_pi_error, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_pi_error: %s"), result_chr); dtostrfd(Thermostat[ctr_output].temp_pi_accum_error, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_pi_accum_error: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_proportional_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_proportional_pi: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_integral_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_integral_pi: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_total_pi, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_total_pi: %s"), result_chr); dtostrfd(Thermostat[ctr_output].temp_measured_gradient, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_measured_gradient: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_rampup_deadtime, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_rampup_deadtime: %s"), result_chr); dtostrfd(Thermostat[ctr_output].temp_rampup_meas_gradient, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_rampup_meas_gradient: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_ctr_changepoint, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_ctr_changepoint: %s"), result_chr); dtostrfd(Thermostat[ctr_output].temp_rampup_output_off, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_rampup_output_off: %s"), result_chr); dtostrfd(Thermostat[ctr_output].time_ctr_checkpoint, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_ctr_checkpoint: %s"), result_chr); dtostrfd(TasmotaGlobal.uptime, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("uptime: %s"), result_chr); dtostrfd(TasmotaGlobal.power, 0, result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("power: %s"), result_chr); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat End ------")); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("")); } #endif // DEBUG_THERMOSTAT void ThermostatGetLocalSensor(uint8_t ctr_output) { String buf = TasmotaGlobal.mqtt_data; // copy the string into a new buffer that will be modified JsonParser parser((char*)buf.c_str()); JsonParserObject root = parser.getRootObject(); if (root) { JsonParserToken value_token = root[PSTR(THERMOSTAT_SENSOR_NAME)].getObject()[PSTR("Temperature")]; if (value_token.isNum()) { int16_t value = value_token.getFloat() * 10; if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatFahrenheitToCelsius(value, TEMP_CONV_ABSOLUTE); } if ( (value >= -1000) && (value <= 1000) && (Thermostat[ctr_output].status.sensor_type == SENSOR_LOCAL)) { uint32_t timestamp = TasmotaGlobal.uptime; // Calculate temperature gradient if temperature value has changed if (value != Thermostat[ctr_output].temp_measured) { int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour Thermostat[ctr_output].temp_measured = value; Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp; } Thermostat[ctr_output].timestamp_temp_measured_update = timestamp; Thermostat[ctr_output].status.sensor_alive = IFACE_ON; } } } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void CmndThermostatModeSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data)); if ((value >= THERMOSTAT_OFF) && (value < THERMOSTAT_MODES_MAX)) { Thermostat[ctr_output].status.thermostat_mode = value; Thermostat[ctr_output].timestamp_input_on = 0; // Reset last manual switch timer if command set externally } } ResponseCmndNumber((int)Thermostat[ctr_output].status.thermostat_mode); } } void CmndClimateModeSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data)); if ((value >= CLIMATE_HEATING) && (value < CLIMATE_MODES_MAX)) { Thermostat[ctr_output].status.climate_mode = value; // Trigger a restart of the controller Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.climate_mode); } } void CmndTempFrostProtectSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; int16_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (int16_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE); } else { value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= 0) && (value <= 127)) { Thermostat[ctr_output].temp_frost_protect = (uint8_t)value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_frost_protect, TEMP_CONV_ABSOLUTE); } else { value = (int16_t)Thermostat[ctr_output].temp_frost_protect; } ResponseCmndFloat((float)value / 10, 1); } } void CmndControllerModeSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= CTR_HYBRID) && (value < CTR_MODES_MAX)) { Thermostat[ctr_output].status.controller_mode = value; // Reset controller variables Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime; Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_meas_gradient = 0; Thermostat[ctr_output].time_rampup_deadtime = 0; Thermostat[ctr_output].counter_rampup_cycles = 1; Thermostat[ctr_output].time_ctr_changepoint = 0; Thermostat[ctr_output].time_ctr_checkpoint = 0; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.controller_mode); } } void CmndInputSwitchSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if (ThermostatSwitchIdValid(value)) { Thermostat[ctr_output].status.input_switch_number = value; Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.input_switch_number); } } void CmndInputSwitchUse(void) { if ((XdrvMailbox.index >= INPUT_NOT_USED) && (XdrvMailbox.index <= INPUT_USED)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { Thermostat[ctr_output].status.use_input = (uint32_t)(XdrvMailbox.payload); } ResponseCmndNumber((int)Thermostat[ctr_output].status.use_input); } } void CmndSensorInputSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= SENSOR_MQTT) && (value < SENSOR_MAX)) { Thermostat[ctr_output].status.sensor_type = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.sensor_type); } } void CmndOutputRelaySet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if (ThermostatRelayIdValid(value)) { Thermostat[ctr_output].status.output_relay_number = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.output_relay_number); } } void CmndTimeAllowRampupSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value < 1440)) { Thermostat[ctr_output].time_allow_rampup = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_allow_rampup)); } } void CmndTempFormatSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= TEMP_FAHRENHEIT)) { Thermostat[ctr_output].status.temp_format = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.temp_format); } } void CmndTempMeasuredSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; int16_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE); } else { value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= -1000) && (value <= 1000) && (Thermostat[ctr_output].status.sensor_type == SENSOR_MQTT)) { uint32_t timestamp = TasmotaGlobal.uptime; // Calculate temperature gradient if temperature value has changed if (value != Thermostat[ctr_output].temp_measured) { int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour Thermostat[ctr_output].temp_measured = value; Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp; } Thermostat[ctr_output].timestamp_temp_measured_update = timestamp; Thermostat[ctr_output].status.sensor_alive = IFACE_ON; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_measured, TEMP_CONV_ABSOLUTE); } else { value = Thermostat[ctr_output].temp_measured; } ResponseCmndFloat((float)value / 10, 1); } } void CmndTempTargetSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; int16_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE); } else { value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= -1000) && (value <= 1000) && (value >= (int16_t)Thermostat[ctr_output].temp_frost_protect)) { Thermostat[ctr_output].temp_target_level = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_target_level, TEMP_CONV_ABSOLUTE); } else { value = Thermostat[ctr_output].temp_target_level; } ResponseCmndFloat((float)value / 10, 1); } } void CmndTempMeasuredGrdRead(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; int16_t value; if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_measured_gradient, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_measured_gradient; } ResponseCmndFloat(((float)value) / 1000, 1); } } void CmndStateEmergencySet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1)) { Thermostat[ctr_output].diag.state_emergency = (uint16_t)value; } } ResponseCmndNumber((int)Thermostat[ctr_output].diag.state_emergency); } } void CmndTimeManualToAutoSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_manual_to_auto = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto)); } } void CmndPropBandSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 20)) { Thermostat[ctr_output].val_prop_band = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].val_prop_band); } } void CmndTimeResetSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 86400)) { Thermostat[ctr_output].time_reset = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].time_reset); } } void CmndTimePiProportRead(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi); } } void CmndTimePiIntegrRead(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi); } } void CmndTimePiCycleSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_pi_cycle = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle)); } } void CmndTempAntiWindupResetSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE); } else { value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= 0) && (value <= 100)) { Thermostat[ctr_output].temp_reset_anti_windup = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_reset_anti_windup, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_reset_anti_windup; } ResponseCmndFloat((float)value / 10, 1); } } void CmndTempHystSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; int8_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (int8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE); } else { value = (int8_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= -100) && (value <= 100)) { Thermostat[ctr_output].temp_hysteresis = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_hysteresis, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_hysteresis; } ResponseCmndFloat((float)value / 10, 1); } } #ifdef USE_PI_AUTOTUNING void CmndPerfLevelAutotune(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= AUTOTUNE_PERF_MAX)) { Thermostat[ctr_output].status.autotune_perf_mode = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.autotune_perf_mode); } } #endif // USE_PI_AUTOTUNING void CmndTimeMaxActionSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_max_action = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action)); } } void CmndTimeMinActionSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_min_action = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action)); } } void CmndTimeSensLostSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_sens_lost = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost)); } } void CmndTimeMinTurnoffActionSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action)); } } void CmndTempRupDeltInSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE); } else { value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= 0) && (value <= 100)) { Thermostat[ctr_output].temp_rampup_delta_in = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_delta_in, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_rampup_delta_in; } ResponseCmndFloat((float)value / 10, 1); } } void CmndTempRupDeltOutSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE); } else { value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10); } if ( (value >= 0) && (value <= 100)) { Thermostat[ctr_output].temp_rampup_delta_out = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_delta_out, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_rampup_delta_out; } ResponseCmndFloat((float)value / 10, 1); } } void CmndTimeRampupMaxSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_rampup_max = (uint16_t)value; } } ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_rampup_max)); } } void CmndTimeRampupCycleSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_rampup_cycle = (uint16_t)value; } } ResponseCmndNumber((int)Thermostat[ctr_output].time_rampup_cycle); } } void CmndTempRampupPiAccErrSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; uint16_t value; if (XdrvMailbox.data_len > 0) { if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = (uint16_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 100), TEMP_CONV_RELATIVE); } else { value = (uint16_t)(CharToFloat(XdrvMailbox.data) * 100); } if ( (value >= 0) && (value <= 2500)) { Thermostat[ctr_output].temp_rampup_pi_acc_error = value; } } if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) { value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_pi_acc_error, TEMP_CONV_RELATIVE); } else { value = Thermostat[ctr_output].temp_rampup_pi_acc_error; } ResponseCmndFloat((float)value / 100, 1); } } void CmndDiagnosticModeSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data)); if ((value >= DIAGNOSTIC_OFF) && (value <= DIAGNOSTIC_ON)) { Thermostat[ctr_output].diag.diagnostic_mode = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].diag.diagnostic_mode); } } void CmndCtrDutyCycleRead(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t value = 0; if ( (Thermostat[ctr_output].status.controller_mode == CTR_PI) || ((Thermostat[ctr_output].status.controller_mode == CTR_HYBRID) &&(Thermostat[ctr_output].status.phase_hybrid_ctr == CTR_HYBRID_PI))) { value = Thermostat[ctr_output].time_total_pi / Thermostat[ctr_output].time_pi_cycle; } else if ( (Thermostat[ctr_output].status.controller_mode == CTR_RAMP_UP) || ((Thermostat[ctr_output].status.controller_mode == CTR_HYBRID) &&(Thermostat[ctr_output].status.phase_hybrid_ctr == CTR_HYBRID_RAMP_UP))) { if (Thermostat[ctr_output].status.status_output == IFACE_ON) { value = 100; } else { value = 0; } } ResponseCmndNumber((int)value); } } void CmndEnableOutputSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data)); if ((value >= IFACE_OFF) && (value <= IFACE_ON)) { Thermostat[ctr_output].status.enable_output = value; } } ResponseCmndNumber((int)Thermostat[ctr_output].status.enable_output); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv39(uint8_t function) { bool result = false; uint8_t ctr_output; switch (function) { case FUNC_INIT: for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) { ThermostatInit(ctr_output); } break; case FUNC_LOOP: for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) { if (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF) { ThermostatSignalProcessingFast(ctr_output); ThermostatDiagnostics(ctr_output); } } break; case FUNC_SERIAL: break; case FUNC_EVERY_SECOND: for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) { if ((ThermostatMinuteCounter(ctr_output)) && (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF)) { ThermostatSignalPreProcessingSlow(ctr_output); ThermostatController(ctr_output); ThermostatSignalPostProcessingSlow(ctr_output); #ifdef DEBUG_THERMOSTAT ThermostatDebug(ctr_output); #endif // DEBUG_THERMOSTAT } } break; case FUNC_SHOW_SENSOR: for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) { if (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF) { ThermostatGetLocalSensor(ctr_output); } } break; case FUNC_COMMAND: result = DecodeCommand(kThermostatCommands, ThermostatCommand); break; } return result; } #endif // USE_THERMOSTAT