/*
xsns_61_MI_NRF24.ino - MI-BLE-sensors via nrf24l01 support for Tasmota
Copyright (C) 2020 Christian Baars and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
--------------------------------------------------------------------------------------------
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.8.2 20201015 integrate - adaptions for HASS, fix some payload glitches
---
0.9.8.1 20200918 integrate - add MHOC303, ATC-custom FW, allow lower case commands
---
0.9.8.0 20200705 integrate - add YEE-RC, NLIGHT and MJYD2S, add NRFUSE
---
0.9.7.0 20200624 integrate - fix BEARSSL-decryption, remove MBEDTLS, prepare night light sensors
---
0.9.6.1 20200622 integrate - use BEARSSL-lib for decryption as default, make decryption optional
---
0.9.6.0 20200618 integrate - add decryption for LYWSD03
---
0.9.5.0 20200328 integrate - add dew point, multi-page-web ui, refactoring, command interface,
simple beacon
---
0.9.4.0 20200304 integrate - sensor types can be ignored (default for LYWSD03),
add CGD1 (Alarm clock), correct PDU-types for LYWSD02
---
0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI,
add CGG1
---
0.9.2.0 20200212 integrate - "backports" from MI-MINRF, change reading pattern,
add missing PDU-types, renaming driver
---
0.9.1.0 20200117 integrate - Added support for the LYWSD02
---
0.9.0.0 20191127 started - further development by Christian Baars
base - code base from cbm80amiga, floe, Dmitry.GR
forked - from arendst/tasmota - https://github.com/arendst/Tasmota
*/
#ifdef USE_SPI
#ifdef USE_NRF24
#ifdef USE_MIBLE
#ifdef DEBUG_TASMOTA_SENSOR
#define MINRF_LOG_BUFFER(x) MINRFshowBuffer(x);
#else
#define MINRF_LOG_BUFFER(x)
#endif
#define USE_MI_DECRYPTION
/*********************************************************************************************\
* MINRF
* BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02, GCx, ...
*
* Usage: Configure NRF24
\*********************************************************************************************/
#define XSNS_61 61
#include
#ifdef USE_MI_DECRYPTION
#include
#endif //USE_MI_DECRYPTION
#define FLORA 1
#define MJ_HT_V1 2
#define LYWSD02 3
#define LYWSD03 4
#define CGG1 5
#define CGD1 6
#define NLIGHT 7
#define MJYD2S 8
#define YEERC 9
#define MHOC401 10
#define MHOC303 11
#define ATC 12
#define MI_TYPES 12 //count this manually
#define D_CMND_NRF "NRF"
const char S_JSON_NRF_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_NRF "%s\":%d}";
const char S_JSON_NRF_COMMAND[] PROGMEM = "{\"" D_CMND_NRF "%s\":\"%s\"}";
const char kNRF_Commands[] PROGMEM = "Ignore|Use|Page|Scan|Beacon|Chan|Nlight"
#ifdef USE_MI_DECRYPTION
"|Mjyd2s"
"|Key"
#endif //USE_MI_DECRYPTION
;
enum NRF_Commands { // commands useable in console or rules
CMND_NRF_IGNORE, // ignore specific sensor type (1-9) --- DEPRECATED!!!!
CMND_NRF_USE, // use specific sensor type (1-9)
CMND_NRF_PAGE, // sensor entries per web page, which will be shown alternated
CMND_NRF_SCAN, // simplified passive BLE adv scan
CMND_NRF_BEACON, // even more simplified Beacon, reports time since last sighting
CMND_NRF_CHAN, // ignore channel 0-2 (translates to 37-39)
CMND_NRF_NLIGHT // add Philips night light via MAC
#ifdef USE_MI_DECRYPTION
, CMND_NRF_MJYD2S // add MJYD2S night light via bind_key to a MAC for payload decryption
, CMND_NRF_KEY // add bind_key to a MAC for payload decryption
#endif //USE_MI_DECRYPTION
};
const uint16_t kMINRFDeviceID[MI_TYPES]={ 0x0098, // Flora
0x01aa, // MJ_HT_V1
0x045b, // LYWSD02
0x055b, // LYWSD03
0x0347, // CGG1
0x0576, // CGD1
0x03dd, // NLIGHT
0x07f6, // MJYD2S
0x0153, // yee-rc
0x0387, // MHO-C401
0x06d3, // MHO-C303
0x0a1c // ATC -> this is a fake ID
};
const char kMINRFDeviceType1[] PROGMEM = "Flora";
const char kMINRFDeviceType2[] PROGMEM = "MJ_HT_V1";
const char kMINRFDeviceType3[] PROGMEM = "LYWSD02";
const char kMINRFDeviceType4[] PROGMEM = "LYWSD03";
const char kMINRFDeviceType5[] PROGMEM = "CGG1";
const char kMINRFDeviceType6[] PROGMEM = "CGD1";
const char kMINRFDeviceType7[] PROGMEM = "NLIGHT";
const char kMINRFDeviceType8[] PROGMEM = "MJYD2S";
const char kMINRFDeviceType9[] PROGMEM = "YEERC";
const char kMINRFDeviceType10[] PROGMEM = "MHOC401";
const char kMINRFDeviceType11[] PROGMEM = "MHOC303";
const char kMINRFDeviceType12[] PROGMEM = "ATC";
const char * kMINRFDeviceType[] PROGMEM = {kMINRFDeviceType1,kMINRFDeviceType2,kMINRFDeviceType3,kMINRFDeviceType4,kMINRFDeviceType5,kMINRFDeviceType6,kMINRFDeviceType7,kMINRFDeviceType8,kMINRFDeviceType9,kMINRFDeviceType10,kMINRFDeviceType11,kMINRFDeviceType12};
// PDU's or different channels 37-39
const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46};
const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5};
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71dafb46};
const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0x33049deb}; //encrypted - 58 58
// const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58
const uint32_t kMINRFCGGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd};
const uint32_t kMINRFCGDPDU[3] = {0x5da0d752,0xc10c16e7,0x29c497c1};
// const uint32_t kMINRFNLIPDU[3] = {0x4760C56E,0xDBCC04DB,0x0330485FD}; //NLIGHT
const uint32_t kMINRFYRCPDU[3] = {0x216D63E2,0x5C3DD47E,0x0A5D0E96}; //yee-rc - 50 30
const uint32_t kMINRFATCPDU[3] = {0xA6E4D00A,0xD0CDAD5A,0x8B03FB3A}; //ATC
// start-LSFR for different channels 37-39
const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGx
const uint8_t kMINRFlsfrList_C[3] = {0x38,0x25,0x2e}; // yee-rc
const uint8_t kMINRFlsfrList_D[3] = {0x26,0x23,0x20}; // ATC
#pragma pack(1) // important!!
struct mi_beacon_t{
uint16_t PID;
uint8_t counter;
uint8_t MAC[6];
uint8_t spare; // not on MJ_HT_V1 and CGG1
uint8_t type;
uint8_t ten;
uint8_t size;
union {
struct{ //0d
int16_t temp;
uint16_t hum;
}HT;
uint8_t bat; //0a
uint16_t temp; //04
uint16_t hum; //06
uint32_t lux:24; //07
uint8_t moist; //08
uint16_t fert; //09
struct{ //01
uint16_t num;
uint8_t longPress;
}Btn;
};
};
struct CGDPacket_t { // related to the whole 32-byte-packet/buffer
uint8_t MAC[6];
uint16_t mode;
union {
struct {
int16_t temp; // -9 - 59 °C
uint16_t hum;
};
uint8_t bat;
};
};
struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24
uint8_t pduType;
uint8_t payloadSize;
uint8_t MAC[6];
};
#ifdef USE_MI_DECRYPTION
struct encPayload_t {
uint8_t cipher[5];
uint8_t ExtCnt[3];
uint8_t tag[4];
};
struct encPacket_t{
// the packet is longer, but this part is enough to decrypt
uint16_t PID;
uint8_t frameCnt;
uint8_t MAC[6];
encPayload_t payload;
};
struct mjysd02_Packet_t{
uint8_t padding[11];
uint8_t payloadSize;
uint8_t padding3;
uint16_t UUID;
uint16_t frameCtrl;
uint16_t PID;
uint8_t frameCnt;
uint8_t data[18];
};
struct ATCPacket_t{
uint8_t MAC[6];
int16_t temp; //sadly this is in wrong endianess
uint8_t hum;
uint8_t batPer;
uint16_t batMV;
uint8_t frameCnt;
};
union mi_bindKey_t{
struct{
uint8_t key[16];
uint8_t MAC[6];
};
uint8_t buf[22];
};
#endif //USE_MI_DECRYPTION
union FIFO_t{
bleAdvPacket_t bleAdv;
mi_beacon_t miBeacon;
CGDPacket_t CGDPacket;
uint8_t raw[32];
};
#pragma pack(0)
struct {
const uint8_t channel[3] = {37,38,39}; // BLE advertisement channel number
const uint8_t frequency[3] = { 2,26,80}; // real frequency (2400+x MHz)
uint16_t timer;
uint16_t ignore = 0; //bitfield: 2^sensor type
uint8_t currentChan=0;
uint8_t channelIgnore = 0; //bitfield: 2^channel (0=37,1=38,2=39)
uint8_t confirmedSensors = 0;
uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - 9 "special" sensor packets
uint8_t perPage = 4;
uint8_t firstUsedPacketMode = 1;
uint8_t activeLight = 0;
FIFO_t buffer;
struct {
uint8_t MAC[6];
uint32_t time;
uint32_t PDU[3];
bool active = false;
} beacon;
struct {
uint32_t allwaysAggregate:1; // always show all known values of one sensor in brdigemode
// uint32_t ignoreBogusBattery:1;
uint32_t noSummary:1; // no sensor values at TELE-period
uint32_t minimalSummary:1; // DEPRECATED!!
uint32_t directBridgeMode:1; // send every received BLE-packet as a MQTT-message in real-time
} option;
struct {
uint32_t shallTriggerTele:1;
uint32_t triggeredTele:1;
uint32_t activeScan:1;
uint32_t stopScan:1;
// uint32_t stopScan:1;
} mode;
// bool activeScan = false;
// bool stopScan = false;
// bool triggeredTELE = false;
#ifdef DEBUG_TASMOTA_SENSOR
uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes
uint8_t lsfrBuffer[sizeof(buffer)]; // corresponding lfsr-bytes for the buffer, probably only useful for a BLE-packet
#endif // DEBUG_TASMOTA_SENSOR
} MINRF;
struct mi_sensor_t{
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6; YEERC=9
uint8_t lastCnt; //device generated counter of the packet
uint8_t shallSendMQTT;
uint8_t showedUp;
uint8_t MAC[6];
union {
struct {
uint32_t temp:1;
uint32_t hum:1;
uint32_t tempHum:1; //every hum sensor has temp too, easier to use Tasmota dew point functions
uint32_t lux:1;
uint32_t moist:1;
uint32_t fert:1;
uint32_t bat:1;
uint32_t NMT:1;
uint32_t PIR:1;
uint32_t Btn:1;
};
uint32_t raw;
} feature;
union {
struct {
uint32_t temp:1;
uint32_t hum:1;
uint32_t tempHum:1; //can be combined from the sensor
uint32_t lux:1;
uint32_t moist:1;
uint32_t fert:1;
uint32_t bat:1;
uint32_t NMT:1;
uint32_t motion:1;
uint32_t noMotion:1;
uint32_t Btn:1;
};
uint32_t raw;
} eventType;
uint32_t lastTime;
uint32_t lux;
float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union {
struct {
uint8_t moisture;
uint16_t fertility;
}; // Flora
struct {
float hum;
}; // MJ_HT_V1, LYWSD0x
struct {
uint16_t events; //"alarms" since boot
uint32_t NMT; // no motion time in seconds for the MJYD2S
};
uint16_t Btn;
};
union {
uint8_t bat; // many values seem to be hard-coded garbage (LYWSD0x, GCD1)
};
};
struct mi_light_t{
uint8_t MAC[6];
uint32_t PDU[3];
uint8_t type; // NLIGHT=7, MJYD2S=8
uint8_t bat;
struct {
uint16_t events; //"alarms" since boot
uint8_t lastCnt; //device generated counter of the packet
uint8_t shallSendMQTT;
};
uint32_t NMT; // no motion time in seconds for the MJYD2S
uint32_t lastTime;
uint8_t lux; //1 or 64 for the MJYD2S
uint8_t eventType; //internal type of actual event for the MJYD2S
};
struct scan_entry_t {
uint8_t MAC[6];
uint16_t cid;
uint16_t svc;
uint16_t uuid;
uint8_t showedUp;
};
std::vector MIBLEsensors;
std::vector MINRFscanResult;
#ifdef USE_MI_DECRYPTION
std::vector MIBLEbindKeys;
#endif //USE_MI_DECRYPTION
std::vector MIBLElights;
static union{
scan_entry_t MINRFdummyEntry;
uint8_t MINRFtempBuf[23];
};
/********************************************************************************************/
void MINRFinit(void){
MINRFinitBLE(1);
MINRF.option.allwaysAggregate = 1;
// MINRF.option.ignoreBogusBattery = 1; // from advertisements
MINRF.option.noSummary = 0;
MINRF.option.minimalSummary = 0;
MINRF.option.directBridgeMode = 0;
}
/********************************************************************************************/
/**
* @brief
*
* @param _mode Packet mode 0-9
* @return true If no error occured
* @return false If NRF24L01 is not connected
*/
bool MINRFinitBLE(uint8_t _mode)
{
if (MINRF.timer%1000 == 0){ // only re-init every 20 seconds
NRF24radio.begin(Pin(GPIO_SPI_CS),Pin(GPIO_SPI_DC));
NRF24radio.setAutoAck(false);
NRF24radio.setDataRate(RF24_1MBPS);
NRF24radio.disableCRC();
NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] );
NRF24radio.setRetries(0,0);
NRF24radio.setPALevel(RF24_PA_MIN); // we only receive
NRF24radio.setAddressWidth(4);
// NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171)
// NRF24radio.openWritingPipe( 0x6B7D9171); // not used ATM
NRF24radio.powerUp();
}
if(NRF24radio.isChipConnected()){
// DEBUG_SENSOR_LOG(PSTR("MINRF chip connected"));
MINRFchangePacketModeTo(_mode);
return true;
}
// AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF chip NOT !!!! connected"));
return false;
}
/**
* @brief cycle through the channels 37-39, skip ignored channel
*
*/
void MINRFhopChannel()
{
for (uint32_t i = 0; i<3;i++){
MINRF.currentChan++;
if(bitRead(MINRF.channelIgnore,MINRF.currentChan)) continue;
if(MINRF.currentChan >= sizeof(MINRF.channel)) {
MINRF.currentChan = 0;
if(bitRead(MINRF.channelIgnore,MINRF.currentChan)) continue;
}
break;
}
NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] );
}
/**
* @brief Read out FIFO-buffer, swap buffer and whiten
*
* @return true - If something is in the buffer
* @return false - Nothing is in the buffer
*/
bool MINRFreceivePacket(void)
{
if(!NRF24radio.available()) {
return false;
}
while(NRF24radio.available()) {
// static uint8_t _lsfr = 0; //-> for testing out suitable lsfr-start-values for yet unknown packets
// _lsfr++;
NRF24radio.read( &MINRF.buffer, sizeof(MINRF.buffer) );
#ifdef DEBUG_TASMOTA_SENSOR
memcpy(&MINRF.streamBuffer, &MINRF.buffer, sizeof(MINRF.buffer));
#endif // DEBUG_TASMOTA_SENSOR
MINRFswapbuf((uint8_t*)&MINRF.buffer, sizeof(MINRF.buffer) );
// MINRF_LOG_BUFFER();
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: _lsfrlist: %x, chan: %u, mode: %u"),_lsfrlist[MINRF.currentChan],MINRF.currentChan, MINRF.packetMode);
switch (MINRF.packetMode) {
case 0: case NLIGHT: case MJYD2S:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40); // "BEACON" mode, "NLIGHT" mode, "MJYD2S" mode
break;
case FLORA: case LYWSD02: case MHOC303:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_A[MINRF.currentChan]); // "flora" mode, "LYWSD02" mode
break;
case MJ_HT_V1: case LYWSD03: case CGG1: case CGD1: case MHOC401:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "MJ_HT_V1" mode, LYWSD03" mode, "CGG1" mode, "CGD1" mode
break;
case YEERC:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_C[MINRF.currentChan]); // "YEE-RC" mode
break;
case ATC:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_D[MINRF.currentChan]); // ATC
break;
}
// DEBUG_SENSOR_LOG(PSTR("NRF: LSFR:%x"),_lsfr);
// if (_lsfr>254) _lsfr=0;
}
// DEBUG_SENSOR_LOG(PSTR("NRF: did read FIFO"));
return true;
}
// #ifdef DEBUG_TASMOTA_SENSOR
void MINRFshowBuffer(uint8_t (&buf)[32]){ // we use this only for the 32-byte-FIFO-buffer, so 32 is hardcoded
// DEBUG_SENSOR_LOG(PSTR("NRF: Buffer: %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c")
DEBUG_SENSOR_LOG(PSTR("NRF: Buffer: %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x ")
,buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9],buf[10],buf[11],
buf[12],buf[13],buf[14],buf[15],buf[16],buf[17],buf[18],buf[19],buf[20],buf[21],buf[22],buf[23],
buf[24],buf[25],buf[26],buf[27],buf[28],buf[29],buf[30],buf[31]
);
}
// #endif // DEBUG_TASMOTA_SENSOR
/**
* @brief change lsfrBuffer content to "wire bit order"
*
* @param len Buffer lenght (could be hardcoded to 32)
*/
void MINRFswapbuf(uint8_t *buf, uint8_t len)
{
// uint8_t* buf = (uint8_t*)&MINRF.buffer;
while(len--) {
uint8_t a = *buf;
uint8_t v = 0;
if (a & 0x80) v |= 0x01;
if (a & 0x40) v |= 0x02;
if (a & 0x20) v |= 0x04;
if (a & 0x10) v |= 0x08;
if (a & 0x08) v |= 0x10;
if (a & 0x04) v |= 0x20;
if (a & 0x02) v |= 0x40;
if (a & 0x01) v |= 0x80;
*(buf++) = v;
}
}
/**
* @brief Whiten the packet buffer
*
* @param buf The packet buffer
* @param len Lenght of the packet buffer
* @param lfsr Start lsfr-byte
*/
void MINRFwhiten(uint8_t *buf, uint8_t len, uint8_t lfsr)
{
while(len--) {
uint8_t res = 0;
// LFSR in "wire bit order"
for (uint8_t i = 1; i; i <<= 1) {
if (lfsr & 0x01) {
lfsr ^= 0x88;
res |= i;
}
lfsr >>= 1;
}
*(buf++) ^= res;
#ifdef DEBUG_TASMOTA_SENSOR
MINRF.lsfrBuffer[31-len] = lfsr;
#endif //DEBUG_TASMOTA_SENSOR
}
}
/*********************************************************************************************\
* Beacon functions
\*********************************************************************************************/
bool MINRFhandleBeacon(scan_entry_t * entry, uint32_t offset);
/**
* @brief handle a generic BLE-packet in the scan process
*
*/
void MINRFhandleScan(void){
if(MINRFscanResult.size()>20 || MINRF.mode.stopScan) {
MINRF.mode.activeScan=false;
MINRFcomputefirstUsedPacketMode();
uint32_t i = 0; // pass counter as reference to lambda
MINRFscanResult.erase(std::remove_if(MINRFscanResult.begin(),
MINRFscanResult.end(),
[&i](scan_entry_t e) {
if(e.showedUp>2) AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: Beacon %02u: %02X%02X%02X%02X%02X%02X Cid: %04X Svc: %04X UUID: %04X"),i,e.MAC[0],e.MAC[1],e.MAC[2],e.MAC[3],e.MAC[4],e.MAC[5],e.cid,e.svc,e.uuid);
i++;
return ((e.showedUp < 3));
}),
MINRFscanResult.end());
MINRF.mode.stopScan=false;
return;
}
MINRFreverseMAC(MINRF.buffer.bleAdv.MAC);
for(uint32_t i=0; iregular BLE-ADV, 6->"cutted" BLE-ADV with MAC as PDU
* @return true - when name, cid, uuid or svc is found with any value
* @return false - name, cid, uuid and svc are not found
*/
bool MINRFhandleBeacon(scan_entry_t * entry, uint32_t offset){
bool success = false;
uint8_t _buf[32+offset];
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40);
MINRFswapbuf((uint8_t*)&MINRF.buffer,sizeof(MINRF.buffer));
memcpy((uint8_t*)&_buf+offset,MINRF.buffer.raw,32);
MINRFswapbuf((uint8_t*)&_buf,sizeof(_buf));
MINRFwhiten((uint8_t *)&_buf, sizeof(_buf), MINRF.channel[MINRF.currentChan] | 0x40);
if (offset == 6) MINRFreverseMAC((uint8_t*)&_buf[2]);
if(memcmp((uint8_t*)&_buf[2],MINRF.beacon.MAC,2)==0){ // always at least 2 undestroyed bytes left
if(_buf[8]!=2 && _buf[9]!=1){
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: unsupported ADV %02x %02x"), _buf[8],_buf[9]);
return success;
}
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Beacon:____________"));
for (uint32_t i = 8; i<32+offset;i++){
uint32_t size = _buf[i];
if (size>30) break;
uint32_t ADtype = _buf[i+1];
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Size: %u AD: %x i:%u"), size, ADtype,i);
if (size+i>32+offset) size=32-i+offset-2;
if (size>30) break;
char _stemp[(size*2)];
uint32_t backupSize;
switch(ADtype){
case 0x01:
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Flags: %02x"), _buf[i+2]);
break;
case 0x02: case 0x03:
entry->uuid = _buf[i+3]*256 + _buf[i+2];
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: UUID: %04x"), entry->uuid);
success = true;
break;
case 0x08: case 0x09:
backupSize = _buf[i+size+1];
_buf[i+size+1] = 0;
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Name: %s"), (char*)&_buf[i+2]);
success = true;
_buf[i+size+1] = backupSize;
break;
case 0x0a:
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: TxPow: %02u"), _buf[i+2]);
break;
case 0xff:
entry->cid = _buf[i+3]*256 + _buf[i+2];
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Cid: %04x"), entry->cid);
ToHex_P((unsigned char*)&_buf+i+4,size-3,_stemp,(size*2));
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp);
success = true;
break;
case 0x16:
entry->svc = _buf[i+3]*256 + _buf[i+2];
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Svc: %04x"), entry->svc);
ToHex_P((unsigned char*)&_buf+i+4,size-3,_stemp,(size*2));
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp);
success = true;
break;
default:
ToHex_P((unsigned char*)&_buf+i+2,size-1,_stemp,(size*2));
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s"),_stemp);
}
i+=size;
}
MINRF.beacon.time = 0;
}
return success;
}
/**
* @brief increase beacon timer every second and process the result
*
*/
void MINRFbeaconCounter(void) {
if (MINRF.beacon.active) {
MINRF.beacon.time++;
/*
char stemp[20];
snprintf_P(stemp, sizeof(stemp),PSTR("{%s:{\"Beacon\": %u}}"),D_CMND_NRF, MINRF.beacon.time);
AddLog_P2(LOG_LEVEL_DEBUG, stemp);
RulesProcessEvent(stemp);
*/
Response_P(PSTR("{%s:{\"Beacon\":%u}}"), D_CMND_NRF, MINRF.beacon.time);
XdrvRulesProcess();
}
}
/**
* @brief compute "PDU" from MAC for each possible channel and store it globally
*
*/
void MINRFcomputeBeaconPDU(uint8_t (&_MAC)[6], uint32_t (&PDU)[3], uint32_t offset){
uint32_t _PDU[3];
for (uint32_t i = 0; i<3; i++){
bleAdvPacket_t packet;
memcpy((uint8_t *)&packet.MAC, (uint8_t *)&_MAC, sizeof(packet.MAC));
MINRFreverseMAC(packet.MAC);
MINRFwhiten((uint8_t *)&packet, sizeof(packet), MINRF.channel[i] | 0x40);
MINRFswapbuf((uint8_t*)&packet,sizeof(packet));
uint32_t pdu = packet.MAC[0+offset]<<24 | packet.MAC[1+offset]<<16 | packet.MAC[2+offset]<<8 | packet.MAC[3+offset];
_PDU[i] = pdu;
}
memcpy(PDU,_PDU,sizeof(_PDU));
}
#ifdef USE_MI_DECRYPTION
int MINRFdecryptPacket(char *_buf){
encPacket_t *packet = (encPacket_t*)_buf;
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("to decrypt: %02x %02x %02x %02x %02x %02x %02x %02x"),(uint8_t)_buf[0],(uint8_t)_buf[1],(uint8_t)_buf[2],(uint8_t)_buf[3],(uint8_t)_buf[4],(uint8_t)_buf[5],(uint8_t)_buf[6],(uint8_t)_buf[7]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR(" : %02x %02x %02x %02x %02x %02x %02x %02x"),(uint8_t)_buf[8],(uint8_t)_buf[9],(uint8_t)_buf[10],(uint8_t)_buf[11],(uint8_t)_buf[12],(uint8_t)_buf[13],(uint8_t)_buf[14],(uint8_t)_buf[15]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR(" : %02x %02x %02x %02x %02x "),(uint8_t)_buf[16],(uint8_t)_buf[17],(uint8_t)_buf[18],(uint8_t)_buf[19],(uint8_t)_buf[20]);
int ret = 0;
unsigned char output[16] = {0};
uint8_t nonce[12];
const unsigned char authData[1] = {0x11};
// nonce: device MAC, device type, frame cnt, ext. cnt
for (uint32_t i = 0; i<6; i++){
nonce[i] = packet->MAC[5-i];
}
memcpy((uint8_t*)&nonce+6,(uint8_t*)&packet->PID,2);
nonce[8] = packet->frameCnt;
memcpy((uint8_t*)&nonce+9,(uint8_t*)&packet->payload.ExtCnt,3);
uint8_t _bindkey[16] = {0x0};
for(uint32_t i=0; iMAC,MIBLEbindKeys[i].MAC,sizeof(packet->MAC))==0){
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("have key"));
memcpy(_bindkey,MIBLEbindKeys[i].key,sizeof(_bindkey));
break;
}
// else{
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MAC in packet: %02x %02x %02x %02x %02x %02x"), packet->MAC[0], packet->MAC[1], packet->MAC[2], packet->MAC[3], packet->MAC[4], packet->MAC[5]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MAC in vector: %02x %02x %02x %02x %02x %02x"), MIBLEbindKeys[i].MAC[0], MIBLEbindKeys[i].MAC[1], MIBLEbindKeys[i].MAC[2], MIBLEbindKeys[i].MAC[3], MIBLEbindKeys[i].MAC[4], MIBLEbindKeys[i].MAC[5]);
// }
}
memcpy(output,packet->payload.cipher, sizeof(packet->payload.cipher));
br_aes_small_ctrcbc_keys keyCtx;
br_aes_small_ctrcbc_init(&keyCtx, _bindkey, sizeof(_bindkey));
br_ccm_context ctx;
br_ccm_init(&ctx, &keyCtx.vtable);
br_ccm_reset(&ctx, nonce, sizeof(nonce), sizeof(authData),sizeof(packet->payload.cipher),sizeof(packet->payload.tag));
br_ccm_aad_inject(&ctx, authData, sizeof(authData));
br_ccm_flip(&ctx);
br_ccm_run(&ctx, 0, output, sizeof(packet->payload.cipher));
ret = br_ccm_check_tag(&ctx, packet->payload.tag);
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: Err:%i, Decrypted : %02x %02x %02x %02x %02x "), ret, output[0],output[1],output[2],output[3],output[4]);
memcpy((uint8_t*)(packet->payload.cipher)+1,output,sizeof(packet->payload.cipher));
return ret;
}
int MINRFdecryptMJYD2SPacket(char *_buf, uint8_t _light, char* _output){
int ret = 0;
uint8_t nonce[12];
const unsigned char authData[1] = {0x11};
uint8_t tag[4];
mjysd02_Packet_t *packet = (mjysd02_Packet_t*)_buf;
// nonce: device MAC, device type, frame cnt, ext. cnt
for (uint32_t i = 0; i<6; i++){
nonce[i] = MIBLElights[_light-1].MAC[5-i];
}
memcpy((uint8_t*)&nonce+6,(uint8_t*)&packet->PID,2);
nonce[8] = packet->frameCnt;
memcpy((uint8_t*)&nonce+9,(uint8_t*)&packet->padding[0] + packet->payloadSize + 5, 3);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("nonce: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x"), nonce[0], nonce[1], nonce[2], nonce[3], nonce[4], nonce[5], nonce[6], nonce[7], nonce[8], nonce[9], nonce[10], nonce[11]);
uint8_t _bindkey[16];
for(uint32_t i=0; iMAC[0], packet->MAC[1], packet->MAC[2], packet->MAC[3], packet->MAC[4], packet->MAC[5]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MAC in vector: %02x %02x %02x %02x %02x %02x"), MIBLEbindKeys[i].MAC[0], MIBLEbindKeys[i].MAC[1], MIBLEbindKeys[i].MAC[2], MIBLEbindKeys[i].MAC[3], MIBLEbindKeys[i].MAC[4], MIBLEbindKeys[i].MAC[5]);
// }
}
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("size %u"),packet->payloadSize);
uint32_t _size;
int32_t _offset;
uint32_t _tagSize;
switch (packet->payloadSize){
case 22:
_size = 7;
_offset = 2;
_tagSize = 4;
break;
case 25:
_size = packet->payloadSize - 21;
_offset = -1;
_tagSize = 4;
break;
case 27:
_size = packet->payloadSize - 21;
_offset = 1;
_tagSize = 3;
break;
default:
return 0;
break;
}
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("size %u , offset %u"),_size,_offset);
memcpy(_output,(uint8_t*)&packet->padding[0] + packet->payloadSize - _offset, _size);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("BEARSSL: Output : %02x %02x %02x %02x %02x %02x %02x"), _output[0], _output[1],_output[2],_output[3],_output[4],_output[5],_output[6]);
br_aes_small_ctrcbc_keys keyCtx;
br_aes_small_ctrcbc_init(&keyCtx, _bindkey, sizeof(_bindkey));
br_ccm_context ctx;
br_ccm_init(&ctx, &keyCtx.vtable);
br_ccm_reset(&ctx, nonce, sizeof(nonce), sizeof(authData),_size,4);
br_ccm_aad_inject(&ctx, authData, sizeof(authData));
br_ccm_flip(&ctx);
br_ccm_run(&ctx, 0, _output, _size);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("BEARSSL: Err:%i, Decrypted : %02x %02x %02x %02x %02x %02x %02x"), ret, _output[0], _output[1],_output[2],_output[3],_output[4],_output[5],_output[6]);
br_ccm_get_tag(&ctx, tag);
ret = memcmp(tag,(uint8_t*)&packet->padding[0] + packet->payloadSize + 8, _tagSize);
return ret;
}
#endif //USE_MI_DECRYPTION
/*********************************************************************************************\
* helper functions
\*********************************************************************************************/
/**
* @brief reverse 6-byte-array, hard-coded size of 6
*
* @param _MAC pass an uint_t[6]
*/
void MINRFreverseMAC(uint8_t _MAC[]){
uint8_t _reversedMAC[6];
for (uint8_t i=0; i<6; i++){
_reversedMAC[5-i] = _MAC[i];
}
memcpy(_MAC,_reversedMAC, sizeof(_reversedMAC));
}
#ifdef USE_MI_DECRYPTION
void MINRFAddKey(char* payload){
mi_bindKey_t keyMAC;
memset(keyMAC.buf,0,sizeof(keyMAC));
MINRFKeyMACStringToBytes(payload,keyMAC.buf);
bool unknownKey = true;
for(uint32_t i=0; i= '0' && c <= '9')
value = (c - '0');
else if (c >= 'A' && c <= 'F')
value = (10 + (c - 'A'));
_keyMAC[(index/2)] += value << (((index + 1) % 2) * 4);
index++;
}
DEBUG_SENSOR_LOG(PSTR("NRF: %s to:"),_string);
DEBUG_SENSOR_LOG(PSTR("NRF: key-array: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X"),_keyMAC[0],_keyMAC[1],_keyMAC[2],_keyMAC[3],_keyMAC[4],_keyMAC[5],_keyMAC[6],_keyMAC[7],_keyMAC[8],_keyMAC[9],_keyMAC[10],_keyMAC[11],_keyMAC[12],_keyMAC[13],_keyMAC[14],_keyMAC[15]);
DEBUG_SENSOR_LOG(PSTR("NRF: MAC-array: %02X%02X%02X%02X%02X%02X"),_keyMAC[16],_keyMAC[17],_keyMAC[18],_keyMAC[19],_keyMAC[20],_keyMAC[21]);
}
#endif //USE_MI_DECRYPTION
/**
* @brief
*
* @param _string input string in format: AABBCCDDEEFF (upper case!)
* @param _MAC target byte array with fixed size of 6
*/
void MINRFMACStringToBytes(char* _string, uint8_t _MAC[]) { //uppercase
uint32_t index = 0;
UpperCase(_string,_string);
while (index < 12) {
char c = _string[index];
uint8_t value = 0;
if(c >= '0' && c <= '9')
value = (c - '0');
else if (c >= 'A' && c <= 'F')
value = (10 + (c - 'A'));
_MAC[(index/2)] += value << (((index + 1) % 2) * 4);
index++;
}
// DEBUG_SENSOR_LOG(PSTR("NRF: %s to MAC-array: %02X%02X%02X%02X%02X%02X"),_string,_MAC[0],_MAC[1],_MAC[2],_MAC[3],_MAC[4],_MAC[5]);
}
/**
* @brief helper function, to avoid to start with an ignored sensor type
*
*/
void MINRFcomputefirstUsedPacketMode(void){
for (uint32_t i = 0; iMI_TYPES) MINRF.firstUsedPacketMode=0;
break;
}
}
}
/**
* @brief Recalculates the receive buffer with an offset in relation to a standard BLE advertisement.
* Used for custom PDU, typically based on a MAC
*
* @param _buf - The receive buffer
* @param offset - in bytes
*/
void MINRFrecalcBuffer(uint8_t *_buf, uint32_t offset){
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40);
MINRFswapbuf((uint8_t*)&MINRF.buffer,sizeof(MINRF.buffer));
memcpy(_buf+offset,MINRF.buffer.raw,32);
MINRFswapbuf(_buf,32+offset);
MINRFwhiten(_buf, 32+offset, MINRF.channel[MINRF.currentChan] | 0x40);
}
/**
* @brief Set packet mode and fitting PDU-type of the NRF24L01
*
* @param _mode The internal packet mode number
*/
void MINRFchangePacketModeTo(uint8_t _mode) {
uint32_t (_nextchannel) = MINRF.currentChan+1;
if (_nextchannel>2) _nextchannel=0;
switch(_mode){
case 0: // normal BLE advertisement
NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171)
break;
case FLORA: // special flora packet
NRF24radio.openReadingPipe(0,kMINRFFloPDU[_nextchannel]); // 95 fe 71 20 -> flora
break;
case MJ_HT_V1: // special MJ_HT_V1 packet
NRF24radio.openReadingPipe(0,kMINRFMJPDU[_nextchannel]); // 95 fe 50 20 -> MJ_HT_V1
break;
case LYWSD02: case MHOC303: // special LYWSD02 packet
NRF24radio.openReadingPipe(0,kMINRFL2PDU[_nextchannel]);// 95 fe 70 20 -> LYWSD02
break;
case LYWSD03: case MHOC401: // special LYWSD03 packet, MHOC401 has the same
NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 58 -> LYWSD03 (= encrypted data message)
break;
case CGG1: // special CGG1 packet
NRF24radio.openReadingPipe(0,kMINRFCGGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1
break;
case CGD1: // special CGD1 packet
NRF24radio.openReadingPipe(0,kMINRFCGDPDU[_nextchannel]); // cd fd 08 0c -> CGD1
break;
case NLIGHT: case MJYD2S:// MAC based LIGHT packet
if (MIBLElights.size()==0) break;
NRF24radio.openReadingPipe(0,MIBLElights[MINRF.activeLight].PDU[_nextchannel]); // computed from MAC -> NLIGHT and MJYSD2S
MINRF.activeLight++;
break;
case YEERC: // YEE-RC packet
NRF24radio.openReadingPipe(0,kMINRFYRCPDU[_nextchannel]);// 95 fe 50 30 -> YEE-RC
break;
case ATC:
NRF24radio.openReadingPipe(0,kMINRFATCPDU[_nextchannel]);// 10 16 1a 18 -> ATC
break;
}
// DEBUG_SENSOR_LOG(PSTR("NRF: Change Mode to %u"),_mode);
MINRF.packetMode = _mode;
}
/**
* @brief Return the slot number of a known sensor or return create new sensor slot
*
* @param _MAC BLE address of the sensor
* @param _type Type number of the sensor
* @return uint32_t Known or new slot in the sensors-vector
*/
uint32_t MINRFgetSensorSlot(uint8_t (&_MAC)[6], uint16_t _type){
DEBUG_SENSOR_LOG(PSTR("NRF: will test ID-type: %x"), _type);
bool _success = false;
for (uint32_t i=0;i 2){
MINRF.confirmedSensors++;
}
}
}
/**
* @brief trigger real-time message for PIR or RC
*
*/
void MINRFtriggerTele(void){
MINRF.mode.triggeredTele= true;
ResponseClear();
if (MqttShowSensor()) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
#ifdef USE_RULES
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_RULES
}
}
/**
* @brief generic MiBeacon parser
*
*/
void MINRFhandleMiBeaconPacket(void){
MINRFreverseMAC(MINRF.buffer.miBeacon.MAC);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.miBeacon.MAC, MINRF.buffer.miBeacon.PID);
if(_slot==0xff) return;
DEBUG_SENSOR_LOG(PSTR("NRF: slot %u, size vector: %u %u"),_slot,MIBLEsensors.size());
mi_sensor_t *_sensorVec = &MIBLEsensors[_slot];
DEBUG_SENSOR_LOG(PSTR("NRF: %u %u %u"),_slot,_sensorVec->type,MINRF.buffer.miBeacon.type);
float _tempFloat;
int decryptRet;
switch(_sensorVec->type){
case MJ_HT_V1: case CGG1: case YEERC:
memcpy(MINRFtempBuf,(uint8_t*)&MINRF.buffer.miBeacon.spare, 32-9); // shift by one byte for the MJ_HT_V1 and CGG1
memcpy((uint8_t*)&MINRF.buffer.miBeacon.type,MINRFtempBuf, 32-9); // shift by one byte for the MJ_HT_V1 and CGG1
break;
#ifdef USE_MI_DECRYPTION
case LYWSD03: case MHOC401:
decryptRet = MINRFdecryptPacket((char*)&MINRF.buffer); //start with PID
if(decryptRet==1) _sensorVec->showedUp=255; // if decryption worked, this must be a valid sensor
break;
#endif //USE_MI_DECRYPTION
}
DEBUG_SENSOR_LOG(PSTR("%s at slot %u"), kNRFSlaveType[_sensorVec->type-1],_slot);
switch(MINRF.buffer.miBeacon.type){
case 0x1:
if(MINRF.buffer.miBeacon.counter==_sensorVec->lastCnt) break;
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: YEE-RC button: %u Long: %u"), MINRF.buffer.miBeacon.Btn.num, MINRF.buffer.miBeacon.Btn.longPress);
_sensorVec->lastCnt=MINRF.buffer.miBeacon.counter;
_sensorVec->Btn=MINRF.buffer.miBeacon.Btn.num + (MINRF.buffer.miBeacon.Btn.longPress/2)*6;
_sensorVec->eventType.Btn = 1;
break;
case 0x04:
_tempFloat=(float)(MINRF.buffer.miBeacon.temp)/10.0f;
if(_tempFloat<60){
_sensorVec->temp=_tempFloat;
_sensorVec->eventType.temp = 1;
DEBUG_SENSOR_LOG(PSTR("Mode 4: temp updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 4: U16: %u Temp"), MINRF.buffer.miBeacon.temp );
break;
case 0x06:
_tempFloat=(float)(MINRF.buffer.miBeacon.hum)/10.0f;
if(_tempFloat<101){
_sensorVec->hum=_tempFloat;
_sensorVec->eventType.hum = 1;
DEBUG_SENSOR_LOG(PSTR("Mode 6: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 6: U16: %u Hum"), MINRF.buffer.miBeacon.hum);
break;
case 0x07:
_sensorVec->lux=MINRF.buffer.miBeacon.lux & 0x00ffffff;
_sensorVec->eventType.lux = 1;
DEBUG_SENSOR_LOG(PSTR("Mode 7: U24: %u Lux"), MINRF.buffer.miBeacon.lux & 0x00ffffff);
break;
case 0x08:
_tempFloat =(float)MINRF.buffer.miBeacon.moist;
if(_tempFloat<100){
_sensorVec->moisture=_tempFloat;
_sensorVec->eventType.moist = 1;
DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 8: U8: %u Moisture"), MINRF.buffer.miBeacon.moist);
break;
case 0x09:
_tempFloat=(float)(MINRF.buffer.miBeacon.fert);
if(_tempFloat<65535){ // ???
_sensorVec->fertility=_tempFloat;
_sensorVec->eventType.fert = 1;
DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 9: U16: %u Fertility"), MINRF.buffer.miBeacon.fert);
break;
case 0x0a:
if(MINRF.buffer.miBeacon.bat<101){
_sensorVec->bat = MINRF.buffer.miBeacon.bat;
_sensorVec->eventType.bat = 1;
DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode a: U8: %u %%"), MINRF.buffer.miBeacon.bat);
break;
case 0x0d:
_tempFloat=(float)(MINRF.buffer.miBeacon.HT.temp)/10.0f;
if(_tempFloat<60){
_sensorVec->temp = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode d: temp updated"));
}
_tempFloat=(float)(MINRF.buffer.miBeacon.HT.hum)/10.0f;
if(_tempFloat<100){
_sensorVec->hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode d: hum updated"));
}
_sensorVec->eventType.tempHum = 1;
DEBUG_SENSOR_LOG(PSTR("Mode d: U16: %x Temp U16: %x Hum"), MINRF.buffer.miBeacon.HT.temp, MINRF.buffer.miBeacon.HT.hum);
break;
}
if(MIBLEsensors[_slot].eventType.raw == 0) return;
MIBLEsensors[_slot].shallSendMQTT = 1;
if (MINRF.option.directBridgeMode) MINRF.mode.shallTriggerTele = 1;
}
/**
* @brief parse the Cleargrass-packet
* Note: battery section is based on "internet data" -> not confirmed yet
*/
void MINRFhandleCGD1Packet(void){ // no MiBeacon
MINRFreverseMAC(MINRF.buffer.CGDPacket.MAC);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.CGDPacket.MAC, 0x0576); // This must be hard-coded, no object-id in Cleargrass-packet
DEBUG_SENSOR_LOG(PSTR("NRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
switch (MINRF.buffer.CGDPacket.mode){
case 0x0401:
float _tempFloat;
_tempFloat=(float)(MINRF.buffer.CGDPacket.temp)/10.0f;
if(_tempFloat<60){
MIBLEsensors[_slot].temp = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: temp updated"));
}
_tempFloat=(float)(MINRF.buffer.CGDPacket.hum)/10.0f;
if(_tempFloat<100){
MIBLEsensors[_slot].hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("CGD1: U16: %x Temp U16: %x Hum"), MINRF.buffer.CGDPacket.temp, MINRF.buffer.CGDPacket.hum);
MIBLEsensors[_slot].eventType.tempHum = 1;
break;
case 0x0102:
if(MINRF.buffer.CGDPacket.bat<101){
MIBLEsensors[_slot].bat = MINRF.buffer.CGDPacket.bat;
DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated"));
}
MIBLEsensors[_slot].eventType.bat = 1;
break;
default:
DEBUG_SENSOR_LOG(PSTR("NRF: unexpected CGD1-packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
}
if(MIBLEsensors[_slot].eventType.raw == 0) return;
MIBLEsensors[_slot].shallSendMQTT = 1;
if (MINRF.option.directBridgeMode) MINRF.mode.shallTriggerTele = 1;
}
void MINRFhandleNlightPacket(void){ // no MiBeacon
uint32_t offset = 6;
uint8_t _buf[32+offset];
MINRFrecalcBuffer((uint8_t*)&_buf,offset);
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: NLIGHT: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x"),_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6],_buf[7],_buf[8],_buf[9],_buf[10],_buf[11],_buf[12],_buf[13],_buf[14],_buf[15],_buf[16],_buf[17],_buf[18]);
uint32_t _frame_PID = _buf[15]<<24 | _buf[16]<<16 | _buf[17]<<8 | _buf[18];
if(_frame_PID!=0x4030dd03) return; // invalid packet
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: NLIGHT:%x"),_frame_PID);
uint32_t _idx = MINRF.activeLight-1;
if((millis() - MIBLElights[_idx].lastTime)<1500) return;
if(_buf[19]!=MIBLElights[_idx].lastCnt){
MIBLElights[_idx].lastCnt = _buf[19];
MIBLElights[_idx].events++;
MIBLElights[_idx].shallSendMQTT = 1;
MIBLElights[_idx].lastTime = millis();
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: NLIGHT %u: events: %u, Cnt:%u"), _idx,MIBLElights[_idx].events, MIBLElights[_idx].lastCnt);
}
}
void MINRFhandleMJYD2SPacket(void){ // no MiBeacon
uint32_t offset = 8;
uint8_t _buf[32+offset];
MINRFrecalcBuffer((uint8_t*)&_buf,offset);
mjysd02_Packet_t *_packet = (mjysd02_Packet_t*)&_buf;
if(_packet->PID!=0x07f6) return; // invalid packet
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: MJYD2S: %02u %04x %04x %04x %02x"),_packet->payloadSize,_packet->UUID,_packet->frameCtrl,_packet->PID,_packet->frameCnt);
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: PAYLOAD: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x"),_packet->data[0],_packet->data[1],_packet->data[2],_packet->data[3],_packet->data[4],_packet->data[5],_packet->data[6],_packet->data[7],_packet->data[8],_packet->data[9],_packet->data[10],_packet->data[11],_packet->data[12],_packet->data[13],_packet->data[14],_packet->data[15],_packet->data[16],_packet->data[17]);
uint32_t _idx = MINRF.activeLight-1;
switch(_packet->frameCtrl){
case 0x5910:
if(_packet->frameCnt!=MIBLElights[_idx].lastCnt){
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: MJYD2S after motion:%x"),_packet->frameCnt);
MIBLElights[_idx].lastCnt = _packet->frameCnt;
if(millis()-MIBLElights[_idx].lastTime>120000){
MIBLElights[_idx].eventType = 1;
MIBLElights[_idx].events++;
MIBLElights[_idx].shallSendMQTT = 1;
MIBLElights[_idx].lastTime = millis();
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: MJYD2S secondary PIR"));
}
}
break;
case 0x5948: case 0x5958:
uint8_t output[16];
if(_packet->frameCnt==MIBLElights[_idx].lastCnt) break;
int32_t ret = MINRFdecryptMJYD2SPacket((char*)&_buf, MINRF.activeLight,(char*)&output);
if(ret==0){
MIBLElights[_idx].lastCnt = _packet->frameCnt;
switch(output[0]){
case 0x0f:
if(output[1] == 0){
if(millis()-MIBLElights[_idx].lastTime>1000){
MIBLElights[_idx].eventType = 1; //PIR
MIBLElights[_idx].shallSendMQTT = 1;
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: MJYD2S primary PIR"));
MIBLElights[_idx].events++;
}
MIBLElights[_idx].lastTime = millis();
MIBLElights[_idx].lux = output[3];
}
break;
case 0x07:
if(output[1] == 0x10){
MIBLElights[_idx].eventType = 2; //No PIR
MIBLElights[_idx].lux = output[3];
MIBLElights[_idx].shallSendMQTT = 1;
}
break;
case 0x0a:
MIBLElights[_idx].bat = output[3];
break;
case 0x17:
MIBLElights[_idx].NMT = output[6]<<24 | output[5]<<16 | output[4]<<8 | output[3];
MIBLElights[_idx].eventType = 3; // NMT 0, 120, 300, 600, 1800, ... seconds
MIBLElights[_idx].shallSendMQTT = 1;
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("NRF: MJYD2S NMT: %u"), MIBLElights[_idx].NMT );
break;
}
}
}
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: NLIGHT:%x"),_frame_PID);
}
void MINRFhandleLightPacket(void){
switch(MIBLElights[MINRF.activeLight-1].type){
case NLIGHT:
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: NLIGHT!!"));
MINRFhandleNlightPacket();
break;
case MJYD2S:
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: MJYD2S !!"));
MINRFhandleMJYD2SPacket();
break;
}
if(MIBLElights[MINRF.activeLight-1].shallSendMQTT==1) MINRFtriggerTele();
}
void MINRFaddLight(uint8_t _MAC[], uint8_t _type){ // no MiBeacon
for(uint32_t i=0; iMAC, 0x0a1c); // This must be a hard-coded fake ID
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("known %s at slot %u"), kMINRFDeviceType[MIBLEsensors[_slot].type-1],_slot);
// AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: ATC: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x"),MINRF.buffer.raw[0],MINRF.buffer.raw[1],MINRF.buffer.raw[2],MINRF.buffer.raw[3],MINRF.buffer.raw[4],MINRF.buffer.raw[5],MINRF.buffer.raw[6],MINRF.buffer.raw[7],MINRF.buffer.raw[8],MINRF.buffer.raw[9],MINRF.buffer.raw[10],MINRF.buffer.raw[11]);
if(_slot==0xff) return;
MIBLEsensors[_slot].temp = (float)(__builtin_bswap16(_packet->temp))/10.0f;
MIBLEsensors[_slot].hum = (float)_packet->hum;
MIBLEsensors[_slot].bat = _packet->batPer;
MIBLEsensors[_slot].eventType.tempHum = 1;
MIBLEsensors[_slot].eventType.bat = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
if (MINRF.option.directBridgeMode) MINRF.mode.shallTriggerTele = 1;
}
/*********************************************************************************************\
* Main loop of the driver
\*********************************************************************************************/
void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
if(MINRF.timer>6000){ // happens every 6000/20 = 300 seconds
DEBUG_SENSOR_LOG(PSTR("NRF: check for FAKE sensors"));
MINRFpurgeFakeSensors();
MINRF.timer=0;
}
MINRF.timer++;
if (!MINRFreceivePacket()){
if(MINRF.mode.shallTriggerTele){
MINRFtriggerTele();
MINRF.mode.shallTriggerTele = 0;
}
// DEBUG_SENSOR_LOG(PSTR("NRF: nothing received"));
// if (MINRF.packetMode==ATC) AddLog_P2(LOG_LEVEL_INFO,PSTR("no ATC.."));
}
else {
switch (MINRF.packetMode) {
case 0:
if (MINRF.beacon.active){
MINRFhandleBeacon(&MINRFdummyEntry,6);
}
else MINRFhandleScan();
break;
case FLORA: case MJ_HT_V1: case LYWSD02: case CGG1: case LYWSD03: case YEERC: case MHOC401: case MHOC303:
MINRFhandleMiBeaconPacket();
break;
case CGD1:
MINRFhandleCGD1Packet();
break;
case NLIGHT: //case MJYD2S:
MINRFhandleLightPacket();
break;
case ATC:
MINRFhandleATCPacket();
break;
default:
break;
}
}
if (MINRF.beacon.active || MINRF.mode.activeScan) {
MINRF.firstUsedPacketMode=0;
}
if(MINRF.packetMode==NLIGHT){
if(MINRF.activeLight+1>MIBLElights.size()){
MINRF.activeLight=0;
MINRF.packetMode+=2;
}
else MINRF.packetMode+=2;
}
else{
MINRF.packetMode = (MINRF.packetMode+1>MI_TYPES) ? MINRF.firstUsedPacketMode : MINRF.packetMode+1;
for (uint32_t i = MINRF.packetMode; i 0) {
if (XdrvMailbox.payload == 0) XdrvMailbox.payload = MINRF.perPage; // ignore 0
MINRF.perPage = XdrvMailbox.payload;
}
else XdrvMailbox.payload = MINRF.perPage;
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload);
break;
case CMND_NRF_IGNORE:
if (XdrvMailbox.data_len > 0) {
if (XdrvMailbox.payload == 0){
MINRF.ignore = 0;
MINRF.firstUsedPacketMode = 1;
}
else if (XdrvMailbox.payload < MI_TYPES+1) {
bitSet(MINRF.ignore,XdrvMailbox.payload);
MINRFcomputefirstUsedPacketMode();
MINRF.timer = 5900;
Response_P(S_JSON_NRF_COMMAND, command, kMINRFDeviceType[XdrvMailbox.payload-1]);
}
else if (XdrvMailbox.payload == 65535) {
MINRF.ignore = 65535;
}
}
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, MINRF.ignore);
break;
case CMND_NRF_USE:
if (XdrvMailbox.data_len > 0) {
if (XdrvMailbox.payload == 0){
MINRF.ignore = 65535;
MINRF.firstUsedPacketMode = 1;
}
else if (XdrvMailbox.payload < MI_TYPES+1) {
bitClear(MINRF.ignore,XdrvMailbox.payload);
MINRFcomputefirstUsedPacketMode();
MINRF.timer = 5900;
Response_P(S_JSON_NRF_COMMAND, command, kMINRFDeviceType[XdrvMailbox.payload-1]);
}
else if (XdrvMailbox.payload == 65535) {
MINRF.ignore = 0;
}
}
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, MINRF.ignore);
break;
case CMND_NRF_SCAN:
if (XdrvMailbox.data_len > 0) {
MINRF.beacon.active = false;
switch(XdrvMailbox.payload){
case 0: // new scan
MINRF.mode.activeScan = true;
MINRF.mode.stopScan = false;
MINRFscanResult.erase(std::remove_if(MINRFscanResult.begin(),
MINRFscanResult.end(),
[](scan_entry_t&) { return true; }),
MINRFscanResult.end());
break;
case 1: // append scan
MINRF.mode.activeScan = true;
MINRF.mode.stopScan = false;
break;
case 2: // stop scan
MINRF.mode.stopScan = true;
break;
}
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload);
}
break;
case CMND_NRF_BEACON:
if (XdrvMailbox.data_len > 0) {
if(XdrvMailbox.data_len<3){ // a list entry
if (XdrvMailbox.payload < MINRFscanResult.size()) {
MINRFstartBeacon(XdrvMailbox.payload);
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, XdrvMailbox.payload);
}
}
if (XdrvMailbox.data_len==12){ // a MAC-string
memset(MINRF.beacon.MAC,0,sizeof(MINRF.beacon.MAC));
MINRFMACStringToBytes(XdrvMailbox.data, MINRF.beacon.MAC);
MINRF.beacon.time=0;
MINRF.beacon.active=true;
Response_P(S_JSON_NRF_COMMAND, command, XdrvMailbox.data);
}
MINRFcomputeBeaconPDU(MINRF.beacon.MAC,MINRF.beacon.PDU,0);
}
break;
case CMND_NRF_NLIGHT:
if (XdrvMailbox.data_len > 0) {
if (XdrvMailbox.data_len==12){ // a MAC-string
uint8_t _MAC[6] = {0};
MINRFMACStringToBytes(XdrvMailbox.data, _MAC);
Response_P(S_JSON_NRF_COMMAND, command, XdrvMailbox.data);
MINRFaddLight(_MAC, 7);
}
}
break;
case CMND_NRF_CHAN:
if (XdrvMailbox.data_len == 1) {
switch(XdrvMailbox.payload){
case 0: case 1: case 2:
bitRead(MINRF.channelIgnore,XdrvMailbox.payload) == 0 ? bitSet(MINRF.channelIgnore,XdrvMailbox.payload) : bitClear(MINRF.channelIgnore,XdrvMailbox.payload);
break;
}
}
Response_P(S_JSON_NRF_COMMAND_NVALUE, command, MINRF.channelIgnore);
break;
#ifdef USE_MI_DECRYPTION
case CMND_NRF_MJYD2S:
if (XdrvMailbox.data_len==44){ // a KEY-MAC-string
MINRFAddKey(XdrvMailbox.data);
uint8_t _MAC[6] = {0};
MINRFMACStringToBytes((XdrvMailbox.data)+32, _MAC);
MINRFaddLight(_MAC, 8);
Response_P(S_JSON_NRF_COMMAND, command, XdrvMailbox.data);
}
break;
case CMND_NRF_KEY:
if (XdrvMailbox.data_len==44){ // a KEY-MAC-string
MINRFAddKey(XdrvMailbox.data);
Response_P(S_JSON_NRF_COMMAND, command, XdrvMailbox.data);
}
break;
#endif //USE_MI_DECRYPTION
default:
// else for Unknown command
serviced = false;
break;
}
} else {
return false;
}
return serviced;
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}";
const char HTTP_MINRF_MAC[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}";
const char HTTP_MINRF_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%dus/cm{e}";
const char HTTP_MINRF_HL[] PROGMEM = "{s}
{m}
{e}";
const char HTTP_NRF24NEW[] PROGMEM = "{s}%sL01%c{m}%u%s / %u{e}";
void MINRFShow(bool json)
{
if (json) {
#ifdef USE_HOME_ASSISTANT
bool _noSummarySave = MINRF.option.noSummary;
bool _minimalSummarySave = MINRF.option.minimalSummary;
if(hass_mode==2){
MINRF.option.noSummary = false;
MINRF.option.minimalSummary = false;
}
#endif //USE_HOME_ASSISTANT
if(!MINRF.mode.triggeredTele){
if(MINRF.option.noSummary) return; // no message at TELEPERIOD
}
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
if(MINRF.mode.triggeredTele && MIBLEsensors[i].eventType.raw == 0) continue;
if(MINRF.mode.triggeredTele && MIBLEsensors[i].shallSendMQTT==0) continue;
if(MIBLEsensors[i].showedUp < 3){
DEBUG_SENSOR_LOG(PSTR("NRF: sensor not fully registered yet"));
if(MIBLEsensors[i].type != YEERC) break; // send every RC code, even if there is a potentially false MAC
}
ResponseAppend_P(PSTR(",\"%s-%02x%02x%02x\":"),kMINRFDeviceType[MIBLEsensors[i].type-1],MIBLEsensors[i].MAC[3],MIBLEsensors[i].MAC[4],MIBLEsensors[i].MAC[5]);
uint32_t _positionCurlyBracket = strlen(TasmotaGlobal.mqtt_data); // ... this will be a ',' first, but later be replaced
if((!MINRF.mode.triggeredTele && !MINRF.option.minimalSummary)||MINRF.mode.triggeredTele){
bool tempHumSended = false;
if(MIBLEsensors[i].feature.tempHum){
if(MIBLEsensors[i].eventType.tempHum || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate){
if (!isnan(MIBLEsensors[i].hum) && !isnan(MIBLEsensors[i].temp)
#ifdef USE_HOME_ASSISTANT
||(!hass_mode==2)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(","));
ResponseAppendTHD(MIBLEsensors[i].temp, MIBLEsensors[i].hum);
tempHumSended = true;
}
}
}
if(MIBLEsensors[i].feature.temp && !tempHumSended){
if(MIBLEsensors[i].eventType.temp || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate) {
if (!isnan(MIBLEsensors[i].temp)
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
) {
char temperature[FLOATSZ];
dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%s"), temperature);
}
}
}
if(MIBLEsensors[i].feature.hum && !tempHumSended){
if(MIBLEsensors[i].eventType.hum || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate) {
if (!isnan(MIBLEsensors[i].hum)) {
char hum[FLOATSZ];
dtostrfd(MIBLEsensors[i].hum, Settings.flag2.humidity_resolution, hum);
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), hum);
}
}
}
if (MIBLEsensors[i].feature.lux){
if(MIBLEsensors[i].eventType.lux || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate){
if (MIBLEsensors[i].lux!=0x0ffffff
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
) { // this is the error code -> no lux
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), MIBLEsensors[i].lux);
}
}
}
if (MIBLEsensors[i].feature.moist){
if(MIBLEsensors[i].eventType.moist || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate){
if (MIBLEsensors[i].moisture!=0xff
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%u"), MIBLEsensors[i].moisture);
}
}
}
if (MIBLEsensors[i].feature.fert){
if(MIBLEsensors[i].eventType.fert || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate){
if (MIBLEsensors[i].fertility!=0xffff
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"Fertility\":%u"), MIBLEsensors[i].fertility);
}
}
}
if (MIBLEsensors[i].feature.Btn){
if(MIBLEsensors[i].eventType.Btn){
ResponseAppend_P(PSTR(",\"Btn\":%u"),MIBLEsensors[i].Btn);
}
}
} // minimal summary
if (MIBLEsensors[i].feature.PIR){
if(MIBLEsensors[i].eventType.motion || !MINRF.mode.triggeredTele){
if(MINRF.mode.triggeredTele) ResponseAppend_P(PSTR(",\"PIR\":1")); // only real-time
ResponseAppend_P(PSTR(",\"Events\":%u"),MIBLEsensors[i].events);
}
else if(MIBLEsensors[i].eventType.noMotion && MINRF.mode.triggeredTele){
ResponseAppend_P(PSTR(",\"PIR\":0"));
}
}
if (MIBLEsensors[i].feature.NMT || !MINRF.mode.triggeredTele){
if(MIBLEsensors[i].eventType.NMT){
ResponseAppend_P(PSTR(",\"NMT\":%u"), MIBLEsensors[i].NMT);
}
}
if (MIBLEsensors[i].feature.bat){
if(MIBLEsensors[i].eventType.bat || !MINRF.mode.triggeredTele || MINRF.option.allwaysAggregate){
if (MIBLEsensors[i].bat != 0x00 // this is the error code -> no battery
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors[i].bat);
}
}
}
if(_positionCurlyBracket==strlen(TasmotaGlobal.mqtt_data)) ResponseAppend_P(PSTR(",")); // write some random char, to be overwritten in the next step
ResponseAppend_P(PSTR("}"));
TasmotaGlobal.mqtt_data[_positionCurlyBracket] = '{';
MIBLEsensors[i].eventType.raw = 0;
if(MIBLEsensors[i].shallSendMQTT==1){
MIBLEsensors[i].shallSendMQTT = 0;
continue;
}
}
for(uint32_t i=0; iMINRF.confirmedSensors){
j = MINRF.confirmedSensors;
}
char stemp[5] ={0};
if (MINRF.confirmedSensors-(_page*MINRF.perPage)>1 && MINRF.perPage!=1) {
sprintf_P(stemp,"-%u",j);
}
if (MINRF.confirmedSensors==0) i=-1; // only for the GUI
WSContentSend_PD(HTTP_NRF24NEW, NRF24type, NRF24.chipType, i+1,stemp,MINRF.confirmedSensors);
for (i ; i no valid value
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kMINRFDeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].lux);
}
if(!isnan(MIBLEsensors[i].moisture)){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_MOISTURE, kMINRFDeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].moisture);
}
if(!isnan(MIBLEsensors[i].fertility)){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_MINRF_FLORA_DATA, kMINRFDeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].fertility);
}
}
if (MIBLEsensors[i].type>FLORA){ // everything "above" Flora
WSContentSend_THD(kMINRFDeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].temp, MIBLEsensors[i].hum);
if(MIBLEsensors[i].bat!=0x00){ // without "juice" nothing can be done
WSContentSend_PD(HTTP_BATTERY, kMINRFDeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].bat);
}
}
}
if(MINRF.beacon.active){
WSContentSend_PD(HTTP_MINRF_HL);
WSContentSend_PD(HTTP_MINRF_HL);
WSContentSend_PD(HTTP_MINRF_MAC, F("Beacon"), D_MAC_ADDRESS, MINRF.beacon.MAC[0], MINRF.beacon.MAC[1],MINRF.beacon.MAC[2],MINRF.beacon.MAC[3],MINRF.beacon.MAC[4],MINRF.beacon.MAC[5]);
WSContentSend_PD(PSTR("{s}Beacon Time{m}%u seconds{e}"),MINRF.beacon.time);
}
for(uint32_t i=0; i0){
WSContentSend_PD(HTTP_BATTERY, kMINRFDeviceType[MIBLElights[i].type-1], MIBLElights[i].bat);
}
if(MIBLElights[i].lux>0){
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kMINRFDeviceType[MIBLElights[i].type-1], MIBLElights[i].lux);
}
}
}
if(counter>3) {
_page++;
counter = 0;
}
counter++;
if(MINRF.confirmedSensors%MINRF.perPage==0 && _page==MINRF.confirmedSensors/MINRF.perPage) _page=0;
if(_page>MINRF.confirmedSensors/MINRF.perPage) _page=0;
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns61(uint8_t function)
{
bool result = false;
if (NRF24.chipType) {
switch (function) {
case FUNC_INIT:
MINRFinit();
AddLog_P2(LOG_LEVEL_INFO,PSTR("NRF: started"));
break;
case FUNC_EVERY_50_MSECOND:
MINRF_EVERY_50_MSECOND();
break;
case FUNC_EVERY_SECOND:
MINRFbeaconCounter();
break;
case FUNC_COMMAND:
result = NRFCmd();
break;
case FUNC_JSON_APPEND:
MINRFShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
MINRFShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MIBLE
#endif // USE_NRF24
#endif // USE_SPI