/*
  xdrv_03_energy.ino - Energy sensor support for Tasmota

  Copyright (C) 2021  Theo Arends

  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifdef ESP8266
#ifdef USE_ENERGY_SENSOR
/*********************************************************************************************\
 * Energy for ESP8266 and legacy ESP32 with max three phases/channels using Settings from flash
\*********************************************************************************************/

#define XDRV_03                3
#define XSNS_03                3

//#define USE_ENERGY_MARGIN_DETECTION
//  #define USE_ENERGY_POWER_LIMIT

#define ENERGY_NONE            0
#define ENERGY_WATCHDOG        4        // Allow up to 4 seconds before deciding no valid data present

#undef ENERGY_MAX_PHASES
#define ENERGY_MAX_PHASES      3

#include <Ticker.h>

#define D_CMND_POWERCAL "PowerCal"
#define D_CMND_VOLTAGECAL "VoltageCal"
#define D_CMND_CURRENTCAL "CurrentCal"
#define D_CMND_FREQUENCYCAL "FrequencyCal"
#define D_CMND_TARIFF "Tariff"
#define D_CMND_MODULEADDRESS "ModuleAddress"

enum EnergyCalibration {
  ENERGY_POWER_CALIBRATION, ENERGY_VOLTAGE_CALIBRATION, ENERGY_CURRENT_CALIBRATION, ENERGY_FREQUENCY_CALIBRATION };

enum EnergyCommands {
  CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL,
  CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG };

const char kEnergyCommands[] PROGMEM = "|"  // No prefix
  D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|"
  D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|"
#ifdef USE_ENERGY_MARGIN_DETECTION
  D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
#ifdef USE_ENERGY_POWER_LIMIT
  D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
  D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
#endif  // USE_ENERGY_POWER_LIMIT
#endif  // USE_ENERGY_MARGIN_DETECTION
  D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYEXPORTACTIVE "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF;

void (* const EnergyCommand[])(void) PROGMEM = {
  &CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal,
  &CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig,
#ifdef USE_ENERGY_MARGIN_DETECTION
  &CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
#ifdef USE_ENERGY_POWER_LIMIT
  &CmndMaxEnergy, &CmndMaxEnergyStart,
  &CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
#endif  // USE_ENERGY_POWER_LIMIT
#endif  // USE_ENERGY_MARGIN_DETECTION
  &CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyExportActive, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff};

typedef struct {
  float voltage[ENERGY_MAX_PHASES];             // 123.1 V
  float current[ENERGY_MAX_PHASES];             // 123.123 A
  float active_power[ENERGY_MAX_PHASES];        // 123.1 W
  float apparent_power[ENERGY_MAX_PHASES];      // 123.1 VA
  float reactive_power[ENERGY_MAX_PHASES];      // 123.1 var
  float power_factor[ENERGY_MAX_PHASES];        // 0.12
  float frequency[ENERGY_MAX_PHASES];           // 123.1 Hz
  float import_active[ENERGY_MAX_PHASES];       // 123.123 kWh
  float export_active[ENERGY_MAX_PHASES];       // 123.123 kWh
  float start_energy[ENERGY_MAX_PHASES];        // 12345.12345 kWh total previous
  float start_export_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous
  float daily[ENERGY_MAX_PHASES];               // 123.123 kWh
  float total[ENERGY_MAX_PHASES];               // 12345.12345 kWh total energy
  float daily_sum;                              // 123.123 kWh
  float total_sum;                              // 12345.12345 kWh total energy
  float yesterday_sum;                          // 123.123 kWh
  float daily_sum_import_balanced;              // 123.123 kWh
  float daily_sum_export_balanced;              // 123.123 kWh

  int32_t kWhtoday_delta[ENERGY_MAX_PHASES];    // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy->kWhtoday (HLW and CSE only)
  int32_t kWhtoday_offset[ENERGY_MAX_PHASES];   // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
  int32_t kWhtoday[ENERGY_MAX_PHASES];          // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
  int32_t kWhtoday_export[ENERGY_MAX_PHASES];   // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
  int32_t period[ENERGY_MAX_PHASES];            // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily

  char* value;

  uint8_t fifth_second;
  uint8_t command_code;
  uint8_t data_valid[ENERGY_MAX_PHASES];

  uint8_t phase_count;                          // Number of phases active
  bool voltage_common;                          // Use common voltage
  bool frequency_common;                        // Use common frequency
  bool use_overtemp;                            // Use global temperature as overtemp trigger on internal energy monitor hardware
  bool kWhtoday_offset_init;

  bool voltage_available;                       // Enable if voltage is measured
  bool current_available;                       // Enable if current is measured
  bool local_energy_active_export;              // Enable if support for storing energy_active

  bool type_dc;
  bool power_on;

#ifdef USE_ENERGY_MARGIN_DETECTION
  uint16_t power_history[3][ENERGY_MAX_PHASES];
  uint8_t power_steady_counter;                 // Allow for power on stabilization
  uint8_t margin_stable;
  bool min_power_flag;
  bool max_power_flag;
  bool min_voltage_flag;
  bool max_voltage_flag;
  bool min_current_flag;
  bool max_current_flag;

#ifdef USE_ENERGY_POWER_LIMIT
  uint16_t mpl_hold_counter;
  uint16_t mpl_window_counter;
  uint8_t mpl_retry_counter;
  uint8_t max_energy_state;
#endif  // USE_ENERGY_POWER_LIMIT
#endif  // USE_ENERGY_MARGIN_DETECTION
} tEnergy;

tEnergy *Energy = nullptr;

Ticker ticker_energy;

/********************************************************************************************/

const uint16_t GUISZ = 300;                 // Max number of characters in WebEnergyFmt string

bool EnergyFmtMalloc(void) {
  if (Energy->value == nullptr) {
    Energy->value = (char*)malloc(GUISZ);
    if (!Energy->value) { return false; }
  }
  return true;
}

void EnergyFmtFree(void) {
//  free(Energy->value);                    // Let's keep it for future use reducing heap fragmentation
//  Energy->value = nullptr;
}

char* EnergyFmt(float* input, uint32_t resolution, uint32_t single = 0);
char* EnergyFmt(float* input, uint32_t resolution, uint32_t single) {
  // single = 0 - Energy->phase_count - xx or [xx,xx] or [xx,xx,xx]
  // single = 1 - Energy->voltage_common or Energy->frequency_common - xx
  // single = 2 - Sum of Energy->phase_count if SO129 0 - xx or if SO129 1 - [xx,xx,xx]
  // single = 5 - single &0x03 = 1 - xx
  // single = 6 - single &0x03 = 2 - [xx,xx] - used by tarriff
  // single = 7 - single &0x03 = 3 - [xx,xx,xx]

  if (!EnergyFmtMalloc()) { return EmptyStr; }

  uint32_t index = (single > 3) ? single &0x03 : (0 == single) ? Energy->phase_count : 1;  // 1,2,3
  if (single > 2) { single = 0; }                        // 0,1,2
  float input_sum = 0.0f;
  if (single > 1) {
    if (!Settings->flag5.energy_phase) {                 // SetOption129 - (Energy) Show phase information
      for (uint32_t i = 0; i < Energy->phase_count; i++) {
        if (!isnan(input[i])) {
          input_sum += input[i];
        }
      }
      input = &input_sum;
    } else {
      index = Energy->phase_count;
    }
  }
  Energy->value[0] = '\0';
  for (uint32_t i = 0; i < index; i++) {
    ext_snprintf_P(Energy->value, GUISZ, PSTR("%s%s%*_f%s"), Energy->value, (0==i)?(1==index)?"":"[":",", resolution, &input[i], (index-1==i)?(1==index)?"":"]":"");
  }
  return Energy->value;
}

#ifdef USE_WEBSERVER
char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single = 0);
char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single) {
  // single = 0 - Energy->phase_count - xx / xx / xx or multi column
  // single = 1 - Energy->voltage_common or Energy->frequency_common - xx or single column using colspan (if needed)
  // single = 2 - Sum of Energy->phase_count if SO129 0 - xx or single column using colspan (if needed) or if SO129 1 - xx / xx / xx or multi column
  // single = 3 - Sum of Energy->phase_count xx or single column using colspan (if needed)

  if (!EnergyFmtMalloc()) { return EmptyStr; }

  float input_sum = 0.0f;
  if (single > 1) {                                        // Sum and/or Single column
    if ((3 == single) || !Settings->flag5.energy_phase) {  // SetOption129 - (Energy) Show phase information
      for (uint32_t i = 0; i < Energy->phase_count; i++) {
        if (!isnan(input[i])) {
          input_sum += input[i];
        }
      }
      input = &input_sum;
    } else {
      single = 0;
    }
  }
  ext_snprintf_P(Energy->value, GUISZ, PSTR("</td>"));     // Skip first column
  if ((Energy->phase_count > 1) && single) {               // Need to set colspan so need new columns
    // </td><td colspan='3' style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    // </td><td colspan='5' style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    // </td><td colspan='7' style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td colspan='%d' style='text-align:%s'>%*_f</td><td>&nbsp;</td>"),
      Energy->value, (Energy->phase_count *2) -1, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("center"), resolution, &input[0]);
  } else {
    // </td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    // </td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    // </td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    // </td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td style='text-align:right'>1.23</td><td>&nbsp;</td><td>
    for (uint32_t i = 0; i < Energy->phase_count; i++) {
      ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td style='text-align:%s'>%*_f</td><td>&nbsp;</td>"),
        Energy->value, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("left"), resolution, &input[i]);
    }
  }
  ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td>"), Energy->value);
  return Energy->value;
}
#endif  // USE_WEBSERVER

/********************************************************************************************/

bool EnergyTariff1Active() {  // Off-Peak hours
  if (Settings->mbflag2.tariff_forced) {
    return 1 == Settings->mbflag2.tariff_forced;
  }
  uint8_t dst = 0;
  if (IsDst() && (Settings->tariff[0][1] != Settings->tariff[1][1])) {
    dst = 1;
  }
  if (Settings->tariff[0][dst] != Settings->tariff[1][dst]) {
    if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) ||   // CMND_TARIFF
                                          (RtcTime.day_of_week == 7))) {
      return true;
    }
    uint32_t minutes = MinutesPastMidnight();
    if (Settings->tariff[0][dst] > Settings->tariff[1][dst]) {
      // {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
      return ((minutes >= Settings->tariff[0][dst]) || (minutes < Settings->tariff[1][dst]));
    } else {
      // {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
      return ((minutes >= Settings->tariff[0][dst]) && (minutes < Settings->tariff[1][dst]));
    }
  } else {
    return false;
  }
}

void EnergyUpdateToday(void) {
  Energy->total_sum = 0.0f;
  Energy->yesterday_sum = 0.0f;
  Energy->daily_sum = 0.0f;
  int32_t delta_sum_balanced = 0;

  for (uint32_t i = 0; i < Energy->phase_count; i++) {
    if (abs(Energy->kWhtoday_delta[i]) > 1000) {
      int32_t delta = Energy->kWhtoday_delta[i] / 1000;
      delta_sum_balanced += delta;
      Energy->kWhtoday_delta[i] -= (delta * 1000);
      if (!Settings->flag6.no_export_energy_today || (delta > 0)) {  // SetOption162 - (Energy) Do not add export energy to energy today (1)
        Energy->kWhtoday[i] += delta;
      }
      if (delta < 0) {     // Export energy
        Energy->kWhtoday_export[i] += (delta *-1);
        if (Energy->kWhtoday_export[i] > 100) {
          int32_t delta_export = Energy->kWhtoday_export[i] / 100;
          Energy->kWhtoday_export[i] -= (delta_export * 100);
          RtcSettings.energy_kWhexport_ph[i] += delta_export;
        }
      }
    }

    RtcSettings.energy_kWhtoday_ph[i] = Energy->kWhtoday_offset[i] + Energy->kWhtoday[i];
    Energy->daily[i] = (float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000;
    Energy->total[i] = ((float)(RtcSettings.energy_kWhtotal_ph[i]) / 1000) + ((float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000);
    if (Energy->local_energy_active_export) {
      Energy->export_active[i] = (float)(RtcSettings.energy_kWhexport_ph[i]) / 1000;
    }

    Energy->total_sum += Energy->total[i];
    Energy->yesterday_sum += (float)Settings->energy_kWhyesterday_ph[i] / 100000;
    Energy->daily_sum += Energy->daily[i];
  }

  if (delta_sum_balanced > 0) {
    Energy->daily_sum_import_balanced += (float)delta_sum_balanced / 100000;
  } else {
    Energy->daily_sum_export_balanced += (float)abs(delta_sum_balanced) / 100000;
  }

  if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.

    uint32_t energy_diff = (uint32_t)(Energy->total_sum * 1000) - RtcSettings.energy_usage.last_usage_kWhtotal;
    RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy->total_sum * 1000);

    uint32_t return_diff = 0;
    if (!isnan(Energy->export_active[0])) {
//      return_diff = (uint32_t)(Energy->export_active * 1000) - RtcSettings.energy_usage.last_return_kWhtotal;
//      RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy->export_active * 1000);

      float export_active = 0.0f;
      for (uint32_t i = 0; i < Energy->phase_count; i++) {
        if (!isnan(Energy->export_active[i])) {
          export_active += Energy->export_active[i];
        }
      }
      return_diff = (uint32_t)(export_active * 1000) - RtcSettings.energy_usage.last_return_kWhtotal;
      RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(export_active * 1000);
    }

    if (EnergyTariff1Active()) {  // Tarrif1 = Off-Peak
      RtcSettings.energy_usage.usage1_kWhtotal += energy_diff;
      RtcSettings.energy_usage.return1_kWhtotal += return_diff;
    } else {
      RtcSettings.energy_usage.usage2_kWhtotal += energy_diff;
      RtcSettings.energy_usage.return2_kWhtotal += return_diff;
    }
  }
}

void EnergyUpdateTotal(void) {
  // Provide total import active energy as float Energy->import_active[phase] in kWh: 98Wh = 0.098kWh

  for (uint32_t i = 0; i < Energy->phase_count; i++) {
    AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy->import_active[i]);

    // Try to fix instable input by verifying allowed bandwidth (#17659)
    if ((Energy->start_energy[i] != 0) &&
        (Settings->param[P_CSE7766_INVALID_POWER] > 0) &&
        (Settings->param[P_CSE7766_INVALID_POWER] < 128)) {        // SetOption39 1..127 kWh
      int total = abs((int)Energy->total[i]);                       // We only use kWh
      int import_active = abs((int)Energy->import_active[i]);
      if ((import_active < (total - Settings->param[P_CSE7766_INVALID_POWER])) ||
          (import_active > (total + Settings->param[P_CSE7766_INVALID_POWER]))) {
        AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Outside bandwidth"));
        continue;                                                  // No valid energy value received
      }
    }

    if (0 == Energy->start_energy[i] || (Energy->import_active[i] < Energy->start_energy[i])) {
      Energy->start_energy[i] = Energy->import_active[i];            // Init after restart and handle roll-over if any
      Energy->start_export_energy[i] = (float)(RtcSettings.energy_kWhexport_ph[i]) / 1000;  // Init after restart
    }
    else if (Energy->import_active[i] != Energy->start_energy[i]) {
      if (Energy->local_energy_active_export && (Energy->active_power[i] < 0)) {
        RtcSettings.energy_kWhexport_ph[i] = (int32_t)((Energy->start_export_energy[i] + Energy->import_active[i] - Energy->start_energy[i]) * 1000);
      } else {
        Energy->kWhtoday[i] = (int32_t)((Energy->import_active[i] - Energy->start_energy[i]) * 100000);
      }
    }

    if (Settings->flag3.hardware_energy_total && // SetOption72 - Enable hardware energy total counter as reference (#6561)
        fabs(Energy->total[i] - Energy->import_active[i]) > 0.01f) {   // to avoid continuous updates, check for difference of min 10Wh
      // The following calculation allows total usage (Energy->import_active[i]) up to +/-2147483.647 kWh
      RtcSettings.energy_kWhtotal_ph[i] = (int32_t)((Energy->import_active[i] * 1000) - ((Energy->kWhtoday_offset[i] + Energy->kWhtoday[i]) / 100));
      Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
      Energy->total[i] = Energy->import_active[i];
      Settings->energy_kWhtotal_time = (!Energy->kWhtoday_offset[i]) ? LocalTime() : Midnight();
  //    AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: EnergyTotal updated with hardware value"));
    }
  }

  EnergyUpdateToday();
}

/*********************************************************************************************/

void Energy200ms(void) {
  Energy->power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check;  // SetOption21 - Show voltage even if powered off

  Energy->fifth_second++;
  if (5 == Energy->fifth_second) {
    Energy->fifth_second = 0;

    XnrgCall(FUNC_ENERGY_EVERY_SECOND);

    if (RtcTime.valid) {
      if (!Settings->energy_kWhtotal_time) {
        Settings->energy_kWhtotal_time = LocalTime();
      }

      if (!Energy->kWhtoday_offset_init && (RtcTime.day_of_year == Settings->energy_kWhdoy)) {
        Energy->kWhtoday_offset_init = true;
        for (uint32_t i = 0; i < 3; i++) {
          Energy->kWhtoday_offset[i] = Settings->energy_kWhtoday_ph[i];
//          RtcSettings.energy_kWhtoday_ph[i] = 0;
        }
      }

      bool midnight = (LocalTime() == Midnight());
      if ((midnight || RtcTime.day_of_year != Settings->energy_kWhdoy) && TasmotaGlobal.uptime > 10) {
        Energy->kWhtoday_offset_init = true;
        Settings->energy_kWhdoy = RtcTime.day_of_year;

        for (uint32_t i = 0; i < 3; i++) {
          Settings->energy_kWhyesterday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];

          RtcSettings.energy_kWhtotal_ph[i] += (RtcSettings.energy_kWhtoday_ph[i] / 100);
          Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];

          Settings->energy_kWhexport_ph[i] = RtcSettings.energy_kWhexport_ph[i];

          Energy->period[i] -= RtcSettings.energy_kWhtoday_ph[i];     // this becomes a large unsigned, effectively a negative for EnergyShow calculation
          Energy->kWhtoday[i] = 0;
          Energy->kWhtoday_offset[i] = 0;
          RtcSettings.energy_kWhtoday_ph[i] = 0;
          Settings->energy_kWhtoday_ph[i] = 0;

          Energy->start_energy[i] = 0;
//        Energy->kWhtoday_delta = 0;                                 // dont zero this, we need to carry the remainder over to tomorrow
          Energy->daily_sum_import_balanced = 0.0;
          Energy->daily_sum_export_balanced = 0.0;
        }
        EnergyUpdateToday();
      }
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
      if (midnight) {
        Energy->max_energy_state  = 3;
      }
      if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy->max_energy_state )) {
        Energy->max_energy_state  = 0;
      }
#endif  // USE_ENERGY_POWER_LIMIT

    }
  }

  XnrgCall(FUNC_EVERY_200_MSECOND);
}

void EnergySaveState(void) {
  Settings->energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;

  for (uint32_t i = 0; i < 3; i++) {
    Settings->energy_kWhtoday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
    Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
    Settings->energy_kWhexport_ph[i] = RtcSettings.energy_kWhexport_ph[i];
  }

  Settings->energy_usage = RtcSettings.energy_usage;
}

#ifdef USE_ENERGY_MARGIN_DETECTION
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) {
  bool change;

  if (!margin) return false;
  change = save_flag;
  if (type) {
    flag = (value > margin);
  } else {
    flag = (value < margin);
  }
  save_flag = flag;
  return (change != save_flag);
}

void EnergyMarginCheck(void) {
  if (!Energy->phase_count || (TasmotaGlobal.uptime < 8)) { return; }
  if (Energy->power_steady_counter) {
    Energy->power_steady_counter--;
    return;
  }

  bool jsonflg = false;
  Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));

  int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
  for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
    uint16_t active_power = (uint16_t)(Energy->active_power[phase]);

//    AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy->power_history[0][phase], Energy->power_history[1][phase], Energy->power_history[2][phase]);

    if (Settings->energy_power_delta[phase]) {
      power_diff[phase] = active_power - Energy->power_history[0][phase];
      uint16_t delta = abs(power_diff[phase]);
      bool threshold_met = false;
      if (delta > 0) {
        if (Settings->energy_power_delta[phase] < 101) {  // 1..100 = Percentage
          uint16_t min_power = (Energy->power_history[0][phase] > active_power) ? active_power : Energy->power_history[0][phase];
          if (0 == min_power) { min_power++; }    // Fix divide by 0 exception (#6741)
          delta = (delta * 100) / min_power;
          if (delta >= Settings->energy_power_delta[phase]) {
            threshold_met = true;
          }
        } else {                                  // 101..32000 = Absolute
          if (delta >= (Settings->energy_power_delta[phase] -100)) {
            threshold_met = true;
          }
        }
      }
      if (threshold_met) {
        Energy->power_history[1][phase] = active_power;  // We only want one report so reset history
        Energy->power_history[2][phase] = active_power;
        jsonflg = true;
      } else {
        power_diff[phase] = 0;
      }
    }
    Energy->power_history[0][phase] = Energy->power_history[1][phase];  // Shift in history every second allowing power changes to settle for up to three seconds
    Energy->power_history[1][phase] = Energy->power_history[2][phase];
    Energy->power_history[2][phase] = active_power;
  }
  if (jsonflg) {
    float power_diff_f[Energy->phase_count];
    for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
      power_diff_f[phase] = power_diff[phase];
    }
    ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFmt(power_diff_f, 0));
  }

  uint16_t energy_power_u = (uint16_t)(Energy->active_power[0]);

  if (Energy->power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) {
    uint16_t energy_voltage_u = (uint16_t)(Energy->voltage[0]);
    uint16_t energy_current_u = (uint16_t)(Energy->current[0] * 1000);

    DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);

    bool flag;
    if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy->min_power_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
    if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy->max_power_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
    if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy->min_voltage_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
    if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy->max_voltage_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
    if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy->min_current_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
    if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy->max_current_flag)) {
      ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
      jsonflg = true;
    }
  }
  if (jsonflg) {
    ResponseJsonEndEnd();
    MqttPublishTele(PSTR(D_RSLT_MARGINS));
    EnergyMqttShow();
    Energy->margin_stable = 3;  // Allow 2 seconds to stabilize before reporting
  }

#ifdef USE_ENERGY_POWER_LIMIT
  // Max Power
  if (Settings->energy_max_power_limit) {
    if (energy_power_u > Settings->energy_max_power_limit) {
      if (!Energy->mpl_hold_counter) {
        Energy->mpl_hold_counter = Settings->energy_max_power_limit_hold +1;
      }
      Energy->mpl_hold_counter--;
      if (!Energy->mpl_hold_counter) {
        if (!Energy->mpl_retry_counter) {
          Energy->mpl_retry_counter = Settings->param[P_MAX_POWER_RETRY] +1;  // SetOption33 - Max Power Retry count
        }
        Energy->mpl_retry_counter--;
        if (Energy->mpl_retry_counter) {
          ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u);
        } else {
          ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
        }
        MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
        EnergyMqttShow();
        SetAllPower(POWER_OFF_FORCE, SRC_MAXPOWER);
        Energy->mpl_window_counter = Settings->energy_max_power_limit_window;
      }
    }
    else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) {
      Energy->mpl_hold_counter = 0;
      Energy->mpl_retry_counter = 0;
      Energy->mpl_window_counter = 0;
    }
    if (!TasmotaGlobal.power) {
      if (Energy->mpl_window_counter) {
        Energy->mpl_window_counter--;
      } else {
        if (Energy->mpl_retry_counter) {
          ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
          MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
          RestorePower(true, SRC_MAXPOWER);
        }
      }
    }
  }

  // Max Energy
  if (Settings->energy_max_energy) {
    uint16_t energy_daily_u = (uint16_t)(Energy->daily_sum * 1000);
    if (!Energy->max_energy_state  && (RtcTime.hour == Settings->energy_max_energy_start)) {
      Energy->max_energy_state  = 1;
      ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
      MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
      RestorePower(true, SRC_MAXENERGY);
    }
    else if ((1 == Energy->max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) {
      Energy->max_energy_state  = 2;
      ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy->daily_sum);
      MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
      EnergyMqttShow();
      SetAllPower(POWER_OFF_FORCE, SRC_MAXENERGY);
    }
  }
#endif  // USE_ENERGY_POWER_LIMIT
  EnergyFmtFree();
}

void EnergyMqttShow(void) {
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
  int tele_period_save = TasmotaGlobal.tele_period;
  TasmotaGlobal.tele_period = 2;
  ResponseClear();
  ResponseAppendTime();
  EnergyShow(true);
  TasmotaGlobal.tele_period = tele_period_save;
  ResponseJsonEnd();
  MqttPublishTeleSensor();
}
#endif  // USE_ENERGY_MARGIN_DETECTION

void EnergyEverySecond(void) {
  // Overtemp check
  if (Energy->use_overtemp && TasmotaGlobal.global_update) {
    if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) {  // SetOption42 Device overtemp, turn off relays

      AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius);

      SetAllPower(POWER_OFF_FORCE, SRC_OVERTEMP);
    }
  }

  // Invalid data reset
  if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) {
    uint32_t data_valid = Energy->phase_count;
    for (uint32_t i = 0; i < Energy->phase_count; i++) {
      if (Energy->data_valid[i] <= ENERGY_WATCHDOG) {
        Energy->data_valid[i]++;
        if (Energy->data_valid[i] > ENERGY_WATCHDOG) {
          // Reset energy registers
          Energy->voltage[i] = 0;
          Energy->current[i] = 0;
          Energy->active_power[i] = 0;
          if (!isnan(Energy->apparent_power[i])) { Energy->apparent_power[i] = 0; }
          if (!isnan(Energy->reactive_power[i])) { Energy->reactive_power[i] = 0; }
          if (!isnan(Energy->frequency[i]))      { Energy->frequency[i] = 0; }
          if (!isnan(Energy->power_factor[i]))   { Energy->power_factor[i] = 0; }
          if (!isnan(Energy->export_active[i]))  { Energy->export_active[i] = 0; }
          data_valid--;
        }
      }
    }
    if (!data_valid) {
      //Energy->start_energy = 0;
      AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data"));

      XnrgCall(FUNC_ENERGY_RESET);
    }
  }

#ifdef USE_ENERGY_MARGIN_DETECTION
  EnergyMarginCheck();
  if (Energy->margin_stable) {
    Energy->margin_stable--;
    if (!Energy->margin_stable) {
      EnergyMqttShow();
    }
  }
#endif  // USE_ENERGY_MARGIN_DETECTION
}

/*********************************************************************************************\
 * Commands
\*********************************************************************************************/

void ResponseCmndEnergyTotalYesterdayToday(void) {
  float energy_yesterday_ph[3];
  for (uint32_t i = 0; i < Energy->phase_count; i++) {
    energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
    Energy->total[i] = ((float)(RtcSettings.energy_kWhtotal_ph[i]) / 1000) + ((float)(Energy->kWhtoday_offset[i] + Energy->kWhtoday[i]) / 100000);
    if (Energy->local_energy_active_export) {
      Energy->export_active[i] = (float)(RtcSettings.energy_kWhexport_ph[i]) / 1000;
    }
  }

  Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s"),
    XdrvMailbox.command,
    EnergyFmt(Energy->total, Settings->flag2.energy_resolution));
  ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"),
    EnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution));
  ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"),
    EnergyFmt(Energy->daily, Settings->flag2.energy_resolution));
  if (Energy->local_energy_active_export) {
    ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
      EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution));
  }
  ResponseJsonEndEnd();
  EnergyFmtFree();
}

void CmndEnergyTotal(void) {
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);

  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
    uint32_t phase = XdrvMailbox.index -1;
    // Reset Energy Total
    RtcSettings.energy_kWhtotal_ph[phase] = (int32_t)values[0];
    Settings->energy_kWhtotal_ph[phase] = RtcSettings.energy_kWhtotal_ph[phase];
    if (params > 1) {
      Settings->energy_kWhtotal_time = values[1];
    } else {
      Settings->energy_kWhtotal_time = (!Energy->kWhtoday_offset[phase]) ? LocalTime() : Midnight();
    }
    RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy->total[phase] * 1000);
  }
  ResponseCmndEnergyTotalYesterdayToday();
}

void CmndEnergyYesterday(void) {
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);

  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
    uint32_t phase = XdrvMailbox.index -1;
    // Reset Energy Yesterday
    Settings->energy_kWhyesterday_ph[phase] = (int32_t)values[0] * 100;
    if (params > 1) {
      Settings->energy_kWhtotal_time = values[1];
    }
  }
  ResponseCmndEnergyTotalYesterdayToday();
}

void CmndEnergyToday(void) {
  // EnergyToday 22 = 0.022 kWh
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);

  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
    uint32_t phase = XdrvMailbox.index -1;
    // Reset Energy Today
    Energy->kWhtoday_offset[phase] = (int32_t)values[0] * 100;
    Energy->kWhtoday[phase] = 0;
    Energy->kWhtoday_delta[phase] = 0;
    Energy->start_energy[phase] = 0;
    Energy->period[phase] = Energy->kWhtoday_offset[phase];
    Settings->energy_kWhtoday_ph[phase] = Energy->kWhtoday_offset[phase];
    RtcSettings.energy_kWhtoday_ph[phase] = Energy->kWhtoday_offset[phase];
    Energy->daily[phase] = (float)Energy->kWhtoday_offset[phase] / 100000;
    if (params > 1) {
      Settings->energy_kWhtotal_time = values[1];
    }
    else if (!RtcSettings.energy_kWhtotal_ph[phase] && !Energy->kWhtoday_offset[phase]) {
      Settings->energy_kWhtotal_time = LocalTime();
    }
  }
  ResponseCmndEnergyTotalYesterdayToday();
}

void CmndEnergyExportActive(void) {
  // EnergyExportActive 0           - Disable local energy_active_export support
  // EnergyExportActive 1           - Enable local energy_active_export support
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);

  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
    if (!XdrvMailbox.usridx) {
      Energy->local_energy_active_export = values[0] &1;
    }
    else if (Energy->local_energy_active_export) {
      // EnergyExportActive1 24
      // EnergyExportActive1 24,1650111291
      uint32_t phase = XdrvMailbox.index -1;
      // Reset Energy Export Active
      RtcSettings.energy_kWhexport_ph[phase] = (int32_t)values[0];
      Settings->energy_kWhexport_ph[phase] = RtcSettings.energy_kWhexport_ph[phase];
      if (params > 1) {
        Settings->energy_kWhtotal_time = values[1];
      }
    }
  }
  if (Energy->local_energy_active_export) {
    ResponseCmndEnergyTotalYesterdayToday();
  } else {
    Energy->export_active[0] = NAN;  // Disable display of unused export_active
    ResponseCmndStateText(Energy->local_energy_active_export);
  }
}

void ResponseCmndEnergyUsageExport(void) {
  float usage1_kWhtotal = (float)Settings->energy_usage.usage1_kWhtotal / 1000;
  float usage2_kWhtotal = (float)Settings->energy_usage.usage2_kWhtotal / 1000;
  float return1_kWhtotal = (float)Settings->energy_usage.return1_kWhtotal / 1000;
  float return2_kWhtotal = (float)Settings->energy_usage.return2_kWhtotal / 1000;

  Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"),
    XdrvMailbox.command,
    Settings->flag2.energy_resolution, &usage1_kWhtotal,
    Settings->flag2.energy_resolution, &usage2_kWhtotal,
    Settings->flag2.energy_resolution, &return1_kWhtotal,
    Settings->flag2.energy_resolution, &return2_kWhtotal);
}

void CmndEnergyUsage(void) {
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);
  if (params > 0) {
    // Reset energy_usage.usage totals
    RtcSettings.energy_usage.usage1_kWhtotal = (int32_t)values[0];
    if (params > 1) {
      RtcSettings.energy_usage.usage2_kWhtotal = (int32_t)values[1];
    }
    Settings->energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
    Settings->energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal;
  }
  ResponseCmndEnergyUsageExport();
}

void CmndEnergyExport(void) {
  uint32_t values[2] = { 0 };
  uint32_t params = ParseParameters(2, values);
  if (params > 0) {
    // Reset energy_usage.return totals
    RtcSettings.energy_usage.return1_kWhtotal = (int32_t)values[0] * 100;
    if (params > 1) {
      RtcSettings.energy_usage.return2_kWhtotal = (int32_t)values[1] * 100;
    }
    Settings->energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal;
    Settings->energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal;
  }
  ResponseCmndEnergyUsageExport();
}

void CmndTariff(void) {
  // Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
  // Tariff2 6:00,7:00   - Tariff2 start hour for Standard Time and Daylight Savings Time
  // Tariffx 1320, 1380  = minutes and also 22:00, 23:00
  // Tariffx 22, 23      = hours and also 22:00, 23:00
  // Tariff9 0/1

  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
    uint32_t tariff = XdrvMailbox.index -1;
    uint32_t time_type = 0;
    char *p;
    if (POWER_OFF == XdrvMailbox.payload)
      Settings->mbflag2.tariff_forced = 0;
    else if (POWER_ON == XdrvMailbox.payload)
      Settings->mbflag2.tariff_forced = tariff + 1;
    else {
      char *str = strtok_r(XdrvMailbox.data, ", ", &p);  // 23:15, 22:30
      while ((str != nullptr) && (time_type < 2)) {
        char *q;
        uint32_t value = strtol(str, &q, 10);            // 23 or 22
        Settings->tariff[tariff][time_type] = value;
        if (value < 24) {                                // Below 24 is hours
          Settings->tariff[tariff][time_type] *= 60;      // Multiply hours by 60 minutes
          char *minute = strtok_r(nullptr, ":", &q);
          if (minute) {
            value = strtol(minute, nullptr, 10);         // 15 or 30
            if (value > 59) {
              value = 59;
            }
            Settings->tariff[tariff][time_type] += value;
          }
        }
        if (Settings->tariff[tariff][time_type] > 1439) {
          Settings->tariff[tariff][time_type] = 1439;     // Max is 23:59
        }
        str = strtok_r(nullptr, ", ", &p);
        time_type++;
      }
    }
  }
  else if (XdrvMailbox.index == 9) {
    Settings->flag3.energy_weekend = XdrvMailbox.payload & 1;  // CMND_TARIFF
  }
  Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\",\"Forced\":\"%d\"}}"),
    XdrvMailbox.command,
    GetMinuteTime(Settings->tariff[0][0]).c_str(),GetMinuteTime(Settings->tariff[0][1]).c_str(),
    GetMinuteTime(Settings->tariff[1][0]).c_str(),GetMinuteTime(Settings->tariff[1][1]).c_str(),
    GetStateText(Settings->flag3.energy_weekend), // Tariff9
    Settings->mbflag2.tariff_forced);             // Tariff<x> ON|OFF
}

uint32_t EnergyGetCalibration(uint32_t cal_type, uint32_t chan = 0) {
  uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
  if (channel) {
    switch (cal_type) {
      case ENERGY_POWER_CALIBRATION: return Settings->energy_power_calibration2;
      case ENERGY_VOLTAGE_CALIBRATION: return Settings->energy_voltage_calibration2;
      case ENERGY_CURRENT_CALIBRATION: return Settings->energy_current_calibration2;
    }
  } else {
    switch (cal_type) {
      case ENERGY_POWER_CALIBRATION: return Settings->energy_power_calibration;
      case ENERGY_VOLTAGE_CALIBRATION: return Settings->energy_voltage_calibration;
      case ENERGY_CURRENT_CALIBRATION: return Settings->energy_current_calibration;
    }
  }
  return Settings->energy_frequency_calibration;
}

void EnergySetCalibration(uint32_t cal_type, uint32_t value, uint32_t chan = 0) {
  uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
  if (channel) {
    switch (cal_type) {
      case ENERGY_POWER_CALIBRATION: Settings->energy_power_calibration2 = value; return;
      case ENERGY_VOLTAGE_CALIBRATION: Settings->energy_voltage_calibration2 = value; return;
      case ENERGY_CURRENT_CALIBRATION: Settings->energy_current_calibration2 = value; return;
      case ENERGY_FREQUENCY_CALIBRATION: Settings->energy_frequency_calibration = value; return;
    }
  } else {
    switch (cal_type) {
      case ENERGY_POWER_CALIBRATION: Settings->energy_power_calibration = value; return;
      case ENERGY_VOLTAGE_CALIBRATION: Settings->energy_voltage_calibration = value; return;
      case ENERGY_CURRENT_CALIBRATION: Settings->energy_current_calibration = value; return;
      case ENERGY_FREQUENCY_CALIBRATION: Settings->energy_frequency_calibration = value; return;
    }
  }
}

void EnergyCommandCalSetResponse(uint32_t cal_type) {
  if (XdrvMailbox.payload > 99) {
    EnergySetCalibration(cal_type, XdrvMailbox.payload, XdrvMailbox.index -1);
  }
  if (ENERGY_FREQUENCY_CALIBRATION == cal_type) {
    ResponseAppend_P(PSTR("%d}"), Settings->energy_frequency_calibration);
  } else {
    if (2 == Energy->phase_count) {
      ResponseAppend_P(PSTR("[%d,%d]}"), EnergyGetCalibration(cal_type), EnergyGetCalibration(cal_type, 1));
    } else {
      ResponseAppend_P(PSTR("%d}"), EnergyGetCalibration(cal_type));
    }
  }
}

void EnergyCommandCalResponse(uint32_t cal_type) {
  Energy->command_code = cal_type;                     // Is XxxCal command too
  if (XnrgCall(FUNC_COMMAND)) {                        // XxxCal
    ResponseCmnd();
    EnergyCommandCalSetResponse(cal_type);
  }
}

void CmndPowerCal(void) {
  EnergyCommandCalResponse(ENERGY_POWER_CALIBRATION);
}
void CmndVoltageCal(void) {
  EnergyCommandCalResponse(ENERGY_VOLTAGE_CALIBRATION);
}
void CmndCurrentCal(void) {
  EnergyCommandCalResponse(ENERGY_CURRENT_CALIBRATION);
}
void CmndFrequencyCal(void) {
  EnergyCommandCalResponse(ENERGY_FREQUENCY_CALIBRATION);
}

void EnergyCommandSetCalResponse(uint32_t cal_type) {
  Energy->command_code = CMND_POWERSET + cal_type;     // Adjust for XxxSet command
  if (XnrgCall(FUNC_COMMAND)) {                        // XxxSet
    Response_P(PSTR("{\"%sCal\":"), XdrvMailbox.command);
    EnergyCommandCalSetResponse(cal_type);
  }
}

void EnergyCommandSetCal(uint32_t cal_type) {
  if (XdrvMailbox.data_len) {
    // PowerSet 61.2
    // CurrentSet 263
    if (ArgC() > 1) {
      // Calibrate current and power using calibrated voltage and known resistive load voltage and power
      // PowerSet 60.0,230
      // CurrentSet 60.0,230
      char argument[32];
      float Pgoal = CharToFloat(ArgV(argument, 1));    // 60.0    W
      float Ugoal = CharToFloat(ArgV(argument, 2));    // 230     V
      float Igoal = Pgoal / Ugoal;                     // 0.26087 A
      float R = Ugoal / Igoal;                         // 881,666 Ohm

      uint32_t channel = ((1 == XdrvMailbox.index -1) && (2 == Energy->phase_count)) ? 1 : 0;
      float Umeas = Energy->voltage[channel];          // 232.0
      // Calculate current and power based on measured voltage
      float Ical = Umeas / R;                          // 0.26306 A
      float Pcal = Umeas * Ical;                       // 61.03   W
      Ical *= 1000;                                    // A to mA

      uint32_t cal_type1 = ENERGY_CURRENT_CALIBRATION;
      float cal1 = Ical;
      float cal2 = Pcal;
      if (ENERGY_CURRENT_CALIBRATION == cal_type) {
        cal_type1 = ENERGY_POWER_CALIBRATION;
        cal1 = Pcal;
        cal2 = Ical;
      }
      XdrvMailbox.data = argument;
      ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal1);
      XdrvMailbox.data_len = strlen(argument);
      EnergyCommandSetCalResponse(cal_type1);
      ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal2);
      XdrvMailbox.data_len = strlen(argument);
    }
  }
  EnergyCommandSetCalResponse(cal_type);
}

void CmndPowerSet(void) {
  EnergyCommandSetCal(ENERGY_POWER_CALIBRATION);
}
void CmndVoltageSet(void) {
  EnergyCommandSetCalResponse(ENERGY_VOLTAGE_CALIBRATION);
}
void CmndCurrentSet(void) {
  EnergyCommandSetCal(ENERGY_CURRENT_CALIBRATION);
}
void CmndFrequencySet(void) {
  EnergyCommandSetCalResponse(ENERGY_FREQUENCY_CALIBRATION);
}

void CmndModuleAddress(void) {
  if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy->phase_count)) {
    Energy->command_code = CMND_MODULEADDRESS;
    if (XnrgCall(FUNC_COMMAND)) {  // Module address
      ResponseCmndDone();
    }
  }
}

void CmndEnergyConfig(void) {
  Energy->command_code = CMND_ENERGYCONFIG;
  ResponseClear();
  if (XnrgCall(FUNC_COMMAND)) {
    if (!ResponseLength()) {
      ResponseCmndDone();
    }
  }
}

#ifdef USE_ENERGY_MARGIN_DETECTION
/*********************************************************************************************\
 * USE_ENERGY_MARGIN_DETECTION and USE_ENERGY_POWER_LIMIT
\*********************************************************************************************/

void EnergyMarginStatus(void) {
  Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":"));
  if (Energy->phase_count > 1) {
    for (uint32_t i = 0; i < Energy->phase_count; i++) {
      ResponseAppend_P(PSTR("%c%d"), (i)?',':'[', Settings->energy_power_delta[i]);
    }
    ResponseAppend_P(PSTR("]"));
  } else {
    ResponseAppend_P(PSTR("%d"), Settings->energy_power_delta[0]);
  }
  ResponseAppend_P(PSTR(",\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\""
                              D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\"" 
                              D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d"),
                              Settings->energy_min_power, Settings->energy_max_power,
                              Settings->energy_min_voltage, Settings->energy_max_voltage,
                              Settings->energy_min_current, Settings->energy_max_current);
#ifdef USE_ENERGY_POWER_LIMIT
  ResponseAppend_P(PSTR(",\"" D_CMND_MAXPOWER "\":%d,\""
                              D_CMND_MAXPOWERHOLD "\":%d,\"" D_CMND_MAXPOWERWINDOW "\":%d,\"" 
                              D_CMND_MAXENERGY "\":%d,\"" D_CMND_MAXENERGYSTART "\":%d"),
                              Settings->energy_max_power_limit,
                              Settings->energy_max_power_limit_hold, Settings->energy_max_power_limit_window,
                              Settings->energy_max_energy, Settings->energy_max_energy_start);
#endif  // USE_ENERGY_POWER_LIMIT
  ResponseJsonEndEnd();
}

void CmndPowerDelta(void) {
  if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
    if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 32000)) {
      Settings->energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
    }
    ResponseCmndIdxNumber(Settings->energy_power_delta[XdrvMailbox.index -1]);
  }
}

bool ResponseCmndEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value = 1);
bool ResponseCmndEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value) {
  bool value_changed = false;
  if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_value)) {
    *value = (1 == XdrvMailbox.payload) ? default_value : XdrvMailbox.payload;
    value_changed = true;
  }
  ResponseCmndNumber(*value);
  return value_changed;
}

void CmndPowerLow(void) {
  ResponseCmndEnergyMargin(&Settings->energy_min_power, 6000);
}

void CmndPowerHigh(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_power, 6000);
}

void CmndVoltageLow(void) {
  ResponseCmndEnergyMargin(&Settings->energy_min_voltage, 500);
}

void CmndVoltageHigh(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_voltage, 500);
}

void CmndCurrentLow(void) {
  ResponseCmndEnergyMargin(&Settings->energy_min_current, 25000);
}

void CmndCurrentHigh(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_current, 25000);
}

#ifdef USE_ENERGY_POWER_LIMIT
void CmndMaxPower(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_power_limit, 6000);
}

void CmndMaxPowerHold(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_power_limit_hold, 6000, MAX_POWER_HOLD);
}

void CmndMaxPowerWindow(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_power_limit_window, 6000, MAX_POWER_WINDOW);
}

void CmndMaxEnergy(void) {
  if (ResponseCmndEnergyMargin(&Settings->energy_max_energy, 6000)) {
    Energy->max_energy_state  = 3;
  }
}

void CmndMaxEnergyStart(void) {
  ResponseCmndEnergyMargin(&Settings->energy_max_energy_start, 23);
}
#endif  // USE_ENERGY_POWER_LIMIT
#endif  // USE_ENERGY_MARGIN_DETECTION

/********************************************************************************************/

void EnergyDrvInit(void) {
  Energy = (tEnergy*)calloc(1, sizeof(tEnergy));    // Need calloc to reset registers to 0/false
  if (!Energy) { return; }

  Energy->value = nullptr;
//  Energy->voltage_common = false;
//  Energy->frequency_common = false;
//  Energy->use_overtemp = false;
  for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
    Energy->apparent_power[phase] = NAN;
    Energy->reactive_power[phase] = NAN;
    Energy->power_factor[phase] = NAN;
    Energy->frequency[phase] = NAN;
    Energy->export_active[phase] = NAN;
  }
  Energy->phase_count = 1;              // Number of phases active
  Energy->voltage_available = true;     // Enable if voltage is measured
  Energy->current_available = true;     // Enable if current is measured
  Energy->power_on = true;

  TasmotaGlobal.energy_driver = ENERGY_NONE;
  XnrgCall(FUNC_PRE_INIT);             // Find first energy driver
  if (TasmotaGlobal.energy_driver) {
    AddLog(LOG_LEVEL_INFO, PSTR("NRG: Init driver %d"), TasmotaGlobal.energy_driver);
  }
}

void EnergySnsInit(void)
{
  XnrgCall(FUNC_INIT);

  if (TasmotaGlobal.energy_driver) {
/*
    AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Rtc valid %d, kWhtoday_ph Rtc %d/%d/%d, Set %d/%d/%d"),
      RtcSettingsValid(),
      RtcSettings.energy_kWhtoday_ph[0],RtcSettings.energy_kWhtoday_ph[1],RtcSettings.energy_kWhtoday_ph[2],
      Settings->energy_kWhtoday_ph[0],Settings->energy_kWhtoday_ph[1],Settings->energy_kWhtoday_ph[2]
    );
*/
    for (uint32_t i = 0; i < 3; i++) {
//    Energy->kWhtoday_offset[i] = 0;   // Reset by EnergyDrvInit()
      // 20220805 - Change from https://github.com/arendst/Tasmota/issues/16118
      if (RtcSettingsValid()) {
        Energy->kWhtoday_offset[i] = RtcSettings.energy_kWhtoday_ph[i];
        RtcSettings.energy_kWhtoday_ph[i] = 0;
        Energy->kWhtoday_offset_init = true;
      }
//    Energy->kWhtoday_ph[i] = 0;       // Reset by EnergyDrvInit()
//    Energy->kWhtoday_delta[i] = 0;    // Reset by EnergyDrvInit()
      Energy->period[i] = Energy->kWhtoday_offset[i];
      if (Energy->local_energy_active_export) {
        Energy->export_active[i] = 0;   // Was set to NAN by EnergyDrvInit()
      }
    }
    EnergyUpdateToday();
    ticker_energy.attach_ms(200, Energy200ms);
  }
}

void EnergyShow(bool json) {
  bool voltage_common = (Settings->flag6.no_voltage_common) ? false : Energy->voltage_common;
  bool frequency_common = (Settings->flag6.no_voltage_common) ? false : Energy->frequency_common;

  if (voltage_common) {
    for (uint32_t i = 0; i < Energy->phase_count; i++) {
      Energy->voltage[i] = Energy->voltage[0];
    }
  }

  float apparent_power[Energy->phase_count];
  float reactive_power[Energy->phase_count];
  float power_factor[Energy->phase_count];
  if (!Energy->type_dc) {
    if (Energy->current_available && Energy->voltage_available) {
      for (uint32_t i = 0; i < Energy->phase_count; i++) {
        if (0 == Energy->current[i]) {
          Energy->active_power[i] = 0;
        }

        apparent_power[i] = Energy->apparent_power[i];
        if (isnan(apparent_power[i])) {
          apparent_power[i] = Energy->voltage[i] * Energy->current[i];
        }
        else if (0 == Energy->current[i]) {
          apparent_power[i] = 0;
        }
/*        
        if (apparent_power[i] < Energy->active_power[i]) {  // Should be impossible
          Energy->active_power[i] = apparent_power[i];
        }
        power_factor[i] = Energy->power_factor[i];
        if (isnan(power_factor[i])) {
          power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0;
          if (power_factor[i] > 1) {  // Should not happen (Active > Apparent)
            power_factor[i] = 1;
          }
        }
*/
        power_factor[i] = Energy->power_factor[i];
        if (isnan(power_factor[i])) {
          power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0;
        }
        if (apparent_power[i] < Energy->active_power[i]) {  // Should be impossible
          if (apparent_power[i]) {
            if ((power_factor[i] >= 1.02f) && (power_factor[i] < 2.0f)) {  // Skip below 2% and don't expect 50% differences
              AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Calibrate as Active %3_fW > Apparent %3_fVA (PF = %4_f)"),
                &Energy->active_power[i], &apparent_power[i], &power_factor[i]);
            }
          }
          apparent_power[i] = Energy->active_power[i];  // Force apparent equal to active as mis-calibrated
          if (power_factor[i] > 1) {                    // Should not happen (Active > Apparent)
            power_factor[i] = 1;
          }
        }

        reactive_power[i] = Energy->reactive_power[i];
        if (isnan(reactive_power[i])) {
          reactive_power[i] = 0;
          uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy->active_power[i] * 100)) / 10;
          if ((Energy->current[i] > 0.005f) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) {
            // calculating reactive power only if current is greater than 0.005A and
            // difference between active and apparent power is greater than 1.5W or 1%
            //reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy->active_power[i] * Energy->active_power[i] * 100))) / 10;
            float power_diff = apparent_power[i] * apparent_power[i] - Energy->active_power[i] * Energy->active_power[i];
            if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1)
              reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0f))) / 10.0f;
            else
              reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff)));
          }
        }
        else if (0 == Energy->current[i]) {
          reactive_power[i] = 0;
        }

      }
    }
  }

  float energy_yesterday_ph[Energy->phase_count];
  float active_power_sum = 0.0f;
  int negative_phases = 0;
  for (uint32_t i = 0; i < Energy->phase_count; i++) {
    energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
    active_power_sum += Energy->active_power[i];
    negative_phases += (Energy->active_power[i] < 0) ? -1 : 1;
  }

  bool energy_tariff = false;
  float energy_usage[2];
  float energy_return[2];
  if (Settings->mbflag2.tariff_forced || (Settings->tariff[0][0] != Settings->tariff[1][0])) {
    energy_usage[0] = (float)RtcSettings.energy_usage.usage1_kWhtotal / 1000;  // Tariff1
    energy_usage[1] = (float)RtcSettings.energy_usage.usage2_kWhtotal / 1000;  // Tariff2
    energy_return[0] = (float)RtcSettings.energy_usage.return1_kWhtotal / 1000;  // Tariff1
    energy_return[1] = (float)RtcSettings.energy_usage.return2_kWhtotal / 1000;  // Tariff2
    energy_tariff = true;
  }

  if (json) {
    bool show_energy_period = (0 == TasmotaGlobal.tele_period);

    ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"),
      GetDT(Settings->energy_kWhtotal_time).c_str(),
      EnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2));

    if (energy_tariff) {
      ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"),
        EnergyFmt(energy_usage, Settings->flag2.energy_resolution, 6));
    }

    ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"),
      EnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution, 2));
    ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"),
      EnergyFmt(Energy->daily, Settings->flag2.energy_resolution, 2));

/*
 #if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
    if (!isnan(Energy->import_active[0])) {
      ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"),
        EnergyFmt(Energy->import_active, Settings->flag2.energy_resolution));
      if (energy_tariff) {
        ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"),
          EnergyFmt(energy_return, Settings->flag2.energy_resolution, 6));
      }
    }
#endif  // SDM630_IMPORT || SDM72_IMPEXP
*/

    if (!isnan(Energy->export_active[0])) {
      uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 0 : 1;
      ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_IMPORT "\":%s"),
        EnergyFmt(&Energy->daily_sum_import_balanced, Settings->flag2.energy_resolution, 1));
      ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_EXPORT "\":%s"),
        EnergyFmt(&Energy->daily_sum_export_balanced, Settings->flag2.energy_resolution, 1));
      ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
        EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single));

      if (energy_tariff) {
        ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"),
          EnergyFmt(energy_return, Settings->flag2.energy_resolution, 6));
      }
    }

    if (show_energy_period) {
      float energy_period[Energy->phase_count];
      for (uint32_t i = 0; i < Energy->phase_count; i++) {
        energy_period[i] = (float)(RtcSettings.energy_kWhtoday_ph[i] - Energy->period[i]) / 100;  // Wh
        Energy->period[i] = RtcSettings.energy_kWhtoday_ph[i];
      }
      ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"),
        EnergyFmt(energy_period, Settings->flag2.wattage_resolution));
    }

    ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"),
        EnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution));
    if (!Energy->type_dc) {
      if (Energy->current_available && Energy->voltage_available) {
        ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s"),
          EnergyFmt(apparent_power, Settings->flag2.wattage_resolution));
        ResponseAppend_P(PSTR(",\"" D_JSON_REACTIVE_POWERUSAGE "\":%s"),
          EnergyFmt(reactive_power, Settings->flag2.wattage_resolution));
        ResponseAppend_P(PSTR(",\"" D_JSON_POWERFACTOR "\":%s"),
          EnergyFmt(power_factor, 2));
      }
    }
    if (!isnan(Energy->frequency[0])) {
      ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"),
        EnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
    }
    if (Energy->voltage_available) {
      ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"),
        EnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
    }
    if (Energy->current_available) {
      ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"),
        EnergyFmt(Energy->current, Settings->flag2.current_resolution));
    }
    XnrgCall(FUNC_JSON_APPEND);
    ResponseJsonEnd();

#ifdef USE_DOMOTICZ
    if (show_energy_period) {  // Only send if telemetry
      char temp_chr[FLOATSZ];
      if (Energy->voltage_available) {
        dtostrfd(Energy->voltage[0], Settings->flag2.voltage_resolution, temp_chr);
        DomoticzSensor(DZ_VOLTAGE, temp_chr);  // Voltage
      }
      if (Energy->current_available) {
        dtostrfd(Energy->current[0], Settings->flag2.current_resolution, temp_chr);
        DomoticzSensor(DZ_CURRENT, temp_chr);  // Current
      }
      dtostrfd(Energy->total_sum * 1000, 1, temp_chr);
      DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr);  // PowerUsage, EnergyToday

      char energy_usage_chr[2][FLOATSZ];
      char energy_return_chr[2][FLOATSZ];
      dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal, 1, energy_usage_chr[0]);  // Tariff1
      dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal, 1, energy_usage_chr[1]);  // Tariff2
      dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal, 1, energy_return_chr[0]);
      dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal, 1, energy_return_chr[1]);
      DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum);

    }
#endif  // USE_DOMOTICZ
#ifdef USE_KNX
    if (show_energy_period) {
      if (Energy->voltage_available) {
        KnxSensor(KNX_ENERGY_VOLTAGE, Energy->voltage[0]);
      }
      if (Energy->current_available) {
        KnxSensor(KNX_ENERGY_CURRENT, Energy->current[0]);
      }
      KnxSensor(KNX_ENERGY_POWER, active_power_sum);
      if (!Energy->type_dc) {
        KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]);
      }
      KnxSensor(KNX_ENERGY_DAILY, Energy->daily_sum);
      KnxSensor(KNX_ENERGY_TOTAL, Energy->total_sum);
      KnxSensor(KNX_ENERGY_YESTERDAY, Energy->yesterday_sum);
    }
#endif  // USE_KNX
#ifdef USE_WEBSERVER
  } else {
    // Need a new table supporting more columns using empty columns (with &nbsp; in data rows) as easy column spacing
    // {s}</th><th></th><th>Head1</th><th></th><td>{e}
    // {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><td>{e}
    // {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><th>Head3</th><th></th><td>{e}
    // {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><th>Head3</th><th></th><th>Head4</th><th></th><td>{e}
    WSContentSend_P(PSTR("</table>{t}{s}</th><th></th>")); // First column is empty ({t} = <table style='width:100%'>, {s} = <tr><th>)
    bool label_o = voltage_common;
    bool no_label = (1 == Energy->phase_count);
    char number[4];
    for (uint32_t i = 0; i < Energy->phase_count; i++) {
      WSContentSend_P(PSTR("<th style='text-align:center'>%s%s<th></th>"), (no_label)?"":(label_o)?"O":"L", (no_label)?"":itoa(i +1, number, 10));
    }
    WSContentSend_P(PSTR("<td>{e}"));   // Last column is units ({e} = </td></tr>)
    if (Energy->voltage_available) {
      WSContentSend_PD(HTTP_SNS_VOLTAGE, WebEnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
    }
    if (!isnan(Energy->frequency[0])) {
      WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"),
        WebEnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
    }
    if (Energy->current_available) {
      WSContentSend_PD(HTTP_SNS_CURRENT, WebEnergyFmt(Energy->current, Settings->flag2.current_resolution));
    }
    WSContentSend_PD(HTTP_SNS_POWER, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution));
//    if (abs(negative_phases) != Energy->phase_count) {  // Provide total power if producing power (PV) and multi phase
    if (Energy->phase_count > 1) {  // Provide total power if multi phase
       WSContentSend_PD(HTTP_SNS_POWER_TOTAL, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution, 3));
    }
    if (!Energy->type_dc) {
      if (Energy->current_available && Energy->voltage_available) {
        WSContentSend_PD(HTTP_SNS_POWERUSAGE_APPARENT, WebEnergyFmt(apparent_power, Settings->flag2.wattage_resolution));
        WSContentSend_PD(HTTP_SNS_POWERUSAGE_REACTIVE, WebEnergyFmt(reactive_power, Settings->flag2.wattage_resolution));
        WSContentSend_PD(HTTP_SNS_POWER_FACTOR, WebEnergyFmt(power_factor, 2));
      }
    }
    WSContentSend_PD(HTTP_SNS_ENERGY_TODAY, WebEnergyFmt(Energy->daily, Settings->flag2.energy_resolution, 2));
    WSContentSend_PD(HTTP_SNS_ENERGY_YESTERDAY, WebEnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution, 2));
    WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, WebEnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2));
    if (!isnan(Energy->export_active[0])) {
      uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 2 : 1;
      WSContentSend_PD(HTTP_SNS_EXPORT_ACTIVE, WebEnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single));
    }
    XnrgCall(FUNC_WEB_COL_SENSOR);
    WSContentSend_P(PSTR("</table>{t}"));    // {t} = <table style='width:100%'> - Define for next FUNC_WEB_SENSOR
    XnrgCall(FUNC_WEB_SENSOR);
#endif  // USE_WEBSERVER
  }
  EnergyFmtFree();
}

/*********************************************************************************************\
 * Interface
\*********************************************************************************************/

bool Xdrv03(uint32_t function)
{
  bool result = false;

  if (FUNC_PRE_INIT == function) {
    EnergyDrvInit();
  }
  else if (TasmotaGlobal.energy_driver) {
    switch (function) {
      case FUNC_LOOP:
      case FUNC_SLEEP_LOOP:
        XnrgCall(FUNC_LOOP);
        break;
      case FUNC_EVERY_100_MSECOND:
      case FUNC_EVERY_250_MSECOND:
        if (TasmotaGlobal.uptime > 4) {
          XnrgCall(function);
        }
        break;
      case FUNC_EVERY_SECOND:
        XnrgCall(FUNC_EVERY_SECOND);
        break;
      case FUNC_SERIAL:
        result = XnrgCall(FUNC_SERIAL);
        break;
#ifdef USE_ENERGY_MARGIN_DETECTION
      case FUNC_SET_POWER:
        Energy->power_steady_counter = 2;
        break;
#endif  // USE_ENERGY_MARGIN_DETECTION
      case FUNC_COMMAND:
        result = DecodeCommand(kEnergyCommands, EnergyCommand);
        break;
      case FUNC_NETWORK_UP:
        XnrgCall(FUNC_NETWORK_UP);
        break;
      case FUNC_NETWORK_DOWN:
        XnrgCall(FUNC_NETWORK_DOWN);
        break;
      case FUNC_ACTIVE:
        result = true;
        break;
    }
  }
  return result;
}

bool Xsns03(uint32_t function)
{
  bool result = false;

  if (TasmotaGlobal.energy_driver) {
    switch (function) {
      case FUNC_EVERY_SECOND:
        EnergyEverySecond();
        break;
      case FUNC_JSON_APPEND:
        EnergyShow(true);
        break;
#ifdef USE_WEBSERVER
      case FUNC_WEB_SENSOR:
        EnergyShow(false);
        break;
#endif  // USE_WEBSERVER
      case FUNC_SAVE_BEFORE_RESTART:
        EnergySaveState();
        break;
      case FUNC_INIT:
        EnergySnsInit();
        break;
    }
  }
  return result;
}

#endif  // USE_ENERGY_SENSOR
#endif  // ESP8266