/* xsns_29_mcp230xx.ino - Support for I2C MCP23008/MCP23017 GPIO Expander on Tasmota Copyright (C) 2021 Andre Thomas and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_MCP230xx /*********************************************************************************************\ MCP23008/17 - I2C GPIO EXPANDER Docs at https://www.microchip.com/wwwproducts/en/MCP23008 https://www.microchip.com/wwwproducts/en/MCP23017 I2C Address: 0x20 - 0x26 (0x27 is not supported) \*********************************************************************************************/ #define XSNS_29 29 #define XI2C_22 22 // See I2CDEVICES.md /* Default register locations for MCP23008 - They change for MCP23017 in default bank mode */ uint8_t MCP230xx_IODIR = 0x00; uint8_t MCP230xx_GPINTEN = 0x02; uint8_t MCP230xx_IOCON = 0x05; uint8_t MCP230xx_GPPU = 0x06; uint8_t MCP230xx_INTF = 0x07; uint8_t MCP230xx_INTCAP = 0x08; uint8_t MCP230xx_GPIO = 0x09; uint8_t mcp230xx_type = 0; uint8_t mcp230xx_pincount = 0; uint8_t mcp230xx_oldoutpincount = 0; #ifdef USE_MCP230xx_OUTPUT uint8_t mcp230xx_outpinmapping[16]; #endif uint8_t mcp230xx_int_en = 0; uint8_t mcp230xx_int_prio_counter = 0; uint8_t mcp230xx_int_counter_en = 0; uint8_t mcp230xx_int_retainer_en = 0; uint8_t mcp230xx_int_sec_counter = 0; uint8_t mcp230xx_int_report_defer_counter[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint16_t mcp230xx_int_counter[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t mcp230xx_int_retainer[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // Used to store if an interrupt occured that needs to be retained until teleperiod unsigned long int_millis[16]; // To keep track of millis() since last interrupt const char MCP230XX_SENSOR_RESPONSE[] PROGMEM = "{\"Sensor29_D%i\":{\"MODE\":%i,\"PULL_UP\":\"%s\",\"INT_MODE\":\"%s\",\"STATE\":\"%s\"}}"; const char MCP230XX_INTCFG_RESPONSE[] PROGMEM = "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; #ifdef USE_MCP230xx_OUTPUT const char MCP230XX_CMND_RESPONSE[] PROGMEM = "{\"S29cmnd_D%i\":{\"COMMAND\":\"%s\",\"STATE\":\"%s\"}}"; #endif // USE_MCP230xx_OUTPUT void MCP230xx_CheckForIntCounter(void) { uint8_t en = 0; for (uint32_t ca=0;ca<16;ca++) { if (Settings.mcp230xx_config[ca].int_count_en) { en=1; } } if (!Settings.mcp230xx_int_timer) en=0; mcp230xx_int_counter_en=en; if (!mcp230xx_int_counter_en) { // Interrupt counters are disabled, so we clear all the counters for (uint32_t ca=0;ca<16;ca++) { mcp230xx_int_counter[ca] = 0; } } } void MCP230xx_CheckForIntRetainer(void) { uint8_t en = 0; for (uint32_t ca=0;ca<16;ca++) { if (Settings.mcp230xx_config[ca].int_retain_flag) { en=1; } } mcp230xx_int_retainer_en=en; if (!mcp230xx_int_retainer_en) { // Interrupt counters are disabled, so we clear all the counters for (uint32_t ca=0;ca<16;ca++) { mcp230xx_int_retainer[ca] = 0; } } } const char* ConvertNumTxt(uint8_t statu, uint8_t pinmod=0) { #ifdef USE_MCP230xx_OUTPUT if ((6 == pinmod) && (statu < 2)) { statu = abs(statu-1); } #endif // USE_MCP230xx_OUTPUT switch (statu) { case 0: return "OFF"; break; case 1: return "ON"; break; #ifdef USE_MCP230xx_OUTPUT case 2: return "TOGGLE"; break; #endif // USE_MCP230xx_OUTPUT } return ""; } const char* IntModeTxt(uint8_t intmo) { switch (intmo) { case 0: return "ALL"; break; case 1: return "EVENT"; break; case 2: return "TELE"; break; case 3: return "DISABLED"; break; } return ""; } uint8_t MCP230xx_readGPIO(uint8_t port) { return I2cRead8(USE_MCP230xx_ADDR, MCP230xx_GPIO + port); } void MCP230xx_ApplySettings(void) { uint8_t int_en = 0; for (uint32_t mcp230xx_port = 0; mcp230xx_port < mcp230xx_type; mcp230xx_port++) { uint8_t reg_gppu = 0; uint8_t reg_gpinten = 0; uint8_t reg_iodir = 0xFF; #ifdef USE_MCP230xx_OUTPUT uint8_t reg_portpins = 0x00; #endif // USE_MCP230xx_OUTPUT for (uint32_t idx = 0; idx < 8; idx++) { switch (Settings.mcp230xx_config[idx+(mcp230xx_port*8)].pinmode) { case 0 ... 1: reg_iodir |= (1 << idx); break; case 2 ... 4: reg_iodir |= (1 << idx); reg_gpinten |= (1 << idx); int_en = 1; break; #ifdef USE_MCP230xx_OUTPUT case 5 ... 6: reg_iodir &= ~(1 << idx); if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart - Firmware configuration wants us to use the last pin state reg_portpins |= (Settings.mcp230xx_config[idx+(mcp230xx_port*8)].saved_state << idx); } else { if (Settings.mcp230xx_config[idx+(mcp230xx_port*8)].pullup) { reg_portpins |= (1 << idx); } } break; #endif // USE_MCP230xx_OUTPUT default: break; } #ifdef USE_MCP230xx_OUTPUT if ((Settings.mcp230xx_config[idx+(mcp230xx_port*8)].pullup) && (Settings.mcp230xx_config[idx+(mcp230xx_port*8)].pinmode < 5)) { reg_gppu |= (1 << idx); } #else // not USE_MCP230xx_OUTPUT if (Settings.mcp230xx_config[idx+(mcp230xx_port*8)].pullup) { reg_gppu |= (1 << idx); } #endif // USE_MCP230xx_OUTPUT } I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPPU+mcp230xx_port, reg_gppu); I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPINTEN+mcp230xx_port, reg_gpinten); I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IODIR+mcp230xx_port, reg_iodir); #ifdef USE_MCP230xx_OUTPUT I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPIO+mcp230xx_port, reg_portpins); #endif // USE_MCP230xx_OUTPUT } #ifdef USE_MCP230xx_OUTPUT TasmotaGlobal.devices_present -= mcp230xx_oldoutpincount; mcp230xx_oldoutpincount = 0; for (uint32_t idx=0;idx= 5) { mcp230xx_outpinmapping[mcp230xx_oldoutpincount] = idx; mcp230xx_oldoutpincount++; } int_millis[idx]=millis(); } TasmotaGlobal.devices_present += mcp230xx_oldoutpincount; #endif // USE_MCP230xx_OUTPUT mcp230xx_int_en = int_en; MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts MCP230xx_CheckForIntRetainer(); // update register on whether or not we should be retaining interrupt events for teleperiod } void MCP230xx_Detect(void) { if (I2cActive(USE_MCP230xx_ADDR)) { return; } uint8_t buffer; I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IOCON, 0x80); // attempt to set bank mode - this will only work on MCP23017, so its the best way to detect the different chips 23008 vs 23017 if (I2cValidRead8(&buffer, USE_MCP230xx_ADDR, MCP230xx_IOCON)) { if (0x00 == buffer) { mcp230xx_type = 1; // We have a MCP23008 I2cSetActiveFound(USE_MCP230xx_ADDR, "MCP23008"); mcp230xx_pincount = 8; MCP230xx_ApplySettings(); } else { if (0x80 == buffer) { mcp230xx_type = 2; // We have a MCP23017 I2cSetActiveFound(USE_MCP230xx_ADDR, "MCP23017"); mcp230xx_pincount = 16; // Reset bank mode to 0 I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IOCON, 0x00); // Update register locations for MCP23017 MCP230xx_GPINTEN = 0x04; MCP230xx_GPPU = 0x0C; MCP230xx_INTF = 0x0E; MCP230xx_INTCAP = 0x10; MCP230xx_GPIO = 0x12; MCP230xx_ApplySettings(); } } } } void MCP230xx_CheckForInterrupt(void) { uint8_t intf; uint8_t mcp230xx_intcap = 0; uint8_t report_int; for (uint32_t mcp230xx_port = 0; mcp230xx_port < mcp230xx_type; mcp230xx_port++) { if (I2cValidRead8(&intf,USE_MCP230xx_ADDR,MCP230xx_INTF+mcp230xx_port)) { if (intf > 0) { if (I2cValidRead8(&mcp230xx_intcap, USE_MCP230xx_ADDR, MCP230xx_INTCAP+mcp230xx_port)) { for (uint32_t intp = 0; intp < 8; intp++) { if ((intf >> intp) & 0x01) { // we know which pin caused interrupt report_int = 0; if (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].pinmode > 1) { switch (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].pinmode) { case 2: report_int = 1; break; case 3: if (((mcp230xx_intcap >> intp) & 0x01) == 0) report_int = 1; // Int on LOW break; case 4: if (((mcp230xx_intcap >> intp) & 0x01) == 1) report_int = 1; // Int on HIGH break; default: break; } // Check for interrupt counter if ((mcp230xx_int_counter_en) && (report_int)) { // We may have some counting to do if (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_count_en) { // Indeed, for this pin mcp230xx_int_counter[intp+(mcp230xx_port*8)]++; } } // check for interrupt defer on this pin if (report_int) { if (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_report_defer) { mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)]++; if (mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)] >= Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_report_defer) { mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)]=0; } else { report_int = 0; // defer int report for now } } } // check if interrupt retain is used, if it is for this pin then we do not report immediately as it will be reported in teleperiod if (report_int) { if (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_retain_flag) { mcp230xx_int_retainer[intp+(mcp230xx_port*8)] = 1; report_int = 0; // do not report for now } } if (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_count_en) { // We do not want to report via tele or event if counting is enabled report_int = 0; } if (report_int) { bool int_tele = false; bool int_event = false; unsigned long millis_now = millis(); unsigned long millis_since_last_int = millis_now - int_millis[intp+(mcp230xx_port*8)]; int_millis[intp+(mcp230xx_port*8)]=millis_now; switch (Settings.mcp230xx_config[intp+(mcp230xx_port*8)].int_report_mode) { case 0: int_tele=true; int_event=true; break; case 1: int_event=true; break; case 2: int_tele=true; break; } if (int_tele) { ResponseTime_P(PSTR(",\"MCP230XX_INT\":{\"D%i\":%i,\"MS\":%lu}}"), intp+(mcp230xx_port*8), ((mcp230xx_intcap >> intp) & 0x01),millis_since_last_int); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR("MCP230XX_INT")); if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/SENSOR in addition to stat/%topic%/RESULT MqttPublishSensor(); } } if (int_event) { char command[19]; // Theoretical max = 'event MCPINT_D16=1' so 18 + 1 (for the \n) sprintf(command,"event MCPINT_D%i=%i",intp+(mcp230xx_port*8),((mcp230xx_intcap >> intp) & 0x01)); ExecuteCommand(command, SRC_RULE); } } } } } } } } } } void MCP230xx_Show(bool json) { if (json) { uint8_t gpio = MCP230xx_readGPIO(0); ResponseAppend_P(PSTR(",\"MCP230XX\":{\"D0\":%i,\"D1\":%i,\"D2\":%i,\"D3\":%i,\"D4\":%i,\"D5\":%i,\"D6\":%i,\"D7\":%i"), (gpio>>0)&1,(gpio>>1)&1,(gpio>>2)&1,(gpio>>3)&1,(gpio>>4)&1,(gpio>>5)&1,(gpio>>6)&1,(gpio>>7)&1); uint8_t gpiob = 0; if (2 == mcp230xx_type) { gpiob = MCP230xx_readGPIO(1); ResponseAppend_P(PSTR(",\"D8\":%i,\"D9\":%i,\"D10\":%i,\"D11\":%i,\"D12\":%i,\"D13\":%i,\"D14\":%i,\"D15\":%i"), (gpiob>>0)&1, (gpiob>>1)&1, (gpiob>>2)&1, (gpiob>>3)&1, (gpiob>>4)&1, (gpiob>>5)&1, (gpiob>>6)&1, (gpiob>>7)&1); } #ifdef USE_MCP230xx_OUTPUT uint8_t outputcount = 0; for (uint32_t pinx = 0; pinx < mcp230xx_pincount; pinx++) { if (Settings.mcp230xx_config[pinx].pinmode >= 5) { outputcount++; } } if (outputcount) { uint16_t gpiototal = ((uint16_t)gpiob << 8) | gpio; ResponseAppend_P(PSTR(",\"MCP230_OUT\":{")); char stt[7]; for (uint32_t pinx = 0; pinx < mcp230xx_pincount; pinx++) { if (Settings.mcp230xx_config[pinx].pinmode >= 5) { sprintf(stt, ConvertNumTxt(((gpiototal>>pinx)&1), Settings.mcp230xx_config[pinx].pinmode)); ResponseAppend_P(PSTR("\"OUT_D%i\":\"%s\","), pinx, stt); } } ResponseAppend_P(PSTR("\"END\":1}")); } #endif // USE_MCP230xx_OUTPUT ResponseJsonEnd(); } } #ifdef USE_MCP230xx_OUTPUT void MCP230xx_SetOutPin(uint8_t pin,uint8_t pinstate) { uint8_t portpins; uint8_t port = 0; uint8_t pinmo = Settings.mcp230xx_config[pin].pinmode; uint8_t interlock = Settings.flag.interlock; // CMND_INTERLOCK - Enable/disable interlock int pinadd = (pin % 2)+1-(3*(pin % 2)); //check if pin is odd or even and convert to 1 (if even) or -1 (if odd) char cmnd[7], stt[4]; if (pin > 7) { port = 1; } portpins = MCP230xx_readGPIO(port); if (pinstate < 2) { if (pinstate) portpins |= (1 << (pin-(port*8))); else portpins &= ~(1 << (pin-(port*8))); } else { portpins ^= (1 << (pin-(port*8))); } I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPIO + port, portpins); if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart - Firmware configured to save last known state in settings Settings.mcp230xx_config[pin].saved_state=portpins>>(pin-(port*8))&1; Settings.mcp230xx_config[pin+pinadd].saved_state=portpins>>(pin+pinadd-(port*8))&1; } sprintf(cmnd,ConvertNumTxt(pinstate, pinmo)); sprintf(stt,ConvertNumTxt((portpins >> (pin-(port*8))&1), pinmo)); if (interlock && (pinmo == Settings.mcp230xx_config[pin+pinadd].pinmode)) { char stt1[4]; sprintf(stt1,ConvertNumTxt((portpins >> (pin+pinadd-(port*8))&1), pinmo)); Response_P(PSTR("{\"S29cmnd_D%i\":{\"COMMAND\":\"%s\",\"STATE\":\"%s\"},\"S29cmnd_D%i\":{\"STATE\":\"%s\"}}"),pin, cmnd, stt, pin+pinadd, stt1); } else { Response_P(MCP230XX_CMND_RESPONSE, pin, cmnd, stt); } } #endif // USE_MCP230xx_OUTPUT void MCP230xx_Reset(uint8_t pinmode) { uint8_t pullup = 0; if ((pinmode > 1) && (pinmode < 5)) { pullup=1; } for (uint32_t pinx=0;pinx<16;pinx++) { Settings.mcp230xx_config[pinx].pinmode=pinmode; Settings.mcp230xx_config[pinx].pullup=pullup; Settings.mcp230xx_config[pinx].saved_state=0; if ((pinmode > 1) && (pinmode < 5)) { Settings.mcp230xx_config[pinx].int_report_mode=0; // Enabled for ALL by default } else { Settings.mcp230xx_config[pinx].int_report_mode=3; // Disabled for pinmode 1, 5 and 6 (No interrupts there) } Settings.mcp230xx_config[pinx].int_report_defer=0; // Disabled Settings.mcp230xx_config[pinx].int_count_en=0; // Disabled by default Settings.mcp230xx_config[pinx].int_retain_flag=0; // Disabled by default Settings.mcp230xx_config[pinx].spare13=0; Settings.mcp230xx_config[pinx].spare14=0; Settings.mcp230xx_config[pinx].spare15=0; } Settings.mcp230xx_int_prio = 0; // Once per FUNC_EVERY_50_MSECOND callback Settings.mcp230xx_int_timer = 0; MCP230xx_ApplySettings(); char pulluptxt[7]; char intmodetxt[9]; sprintf(pulluptxt,ConvertNumTxt(pullup)); uint8_t intmode = 3; if ((pinmode > 1) && (pinmode < 5)) { intmode = 0; } sprintf(intmodetxt,IntModeTxt(intmode)); Response_P(MCP230XX_SENSOR_RESPONSE,99,pinmode,pulluptxt,intmodetxt,""); } bool MCP230xx_Command(void) { bool serviced = true; bool validpin = false; uint8_t paramcount = 0; if (XdrvMailbox.data_len > 0) { paramcount=1; } else { serviced = false; return serviced; } char sub_string[XdrvMailbox.data_len]; for (uint32_t ca=0;ca 1) { uint8_t intpri = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); if ((intpri >= 0) && (intpri <= 20)) { Settings.mcp230xx_int_prio = intpri; Response_P(MCP230XX_INTCFG_RESPONSE,"PRI",99,Settings.mcp230xx_int_prio); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } else { // No parameter was given for INTPRI so we return the current configured value Response_P(MCP230XX_INTCFG_RESPONSE,"PRI",99,Settings.mcp230xx_int_prio); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 1),"INTTIMER")) { if (paramcount > 1) { uint8_t inttim = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); if ((inttim >= 0) && (inttim <= 3600)) { Settings.mcp230xx_int_timer = inttim; MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts Response_P(MCP230XX_INTCFG_RESPONSE,"TIMER",99,Settings.mcp230xx_int_timer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } else { // No parameter was given for INTTIM so we return the current configured value Response_P(MCP230XX_INTCFG_RESPONSE,"TIMER",99,Settings.mcp230xx_int_timer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 1),"INTDEF")) { if (paramcount > 1) { uint8_t pin = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); if (pin < mcp230xx_pincount) { if (pin == 0) { if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "0")) validpin=true; } else { validpin = true; } } if (validpin) { if (paramcount > 2) { uint8_t intdef = atoi(subStr(sub_string, XdrvMailbox.data, ",", 3)); if ((intdef >= 0) && (intdef <= 15)) { Settings.mcp230xx_config[pin].int_report_defer=intdef; if (Settings.mcp230xx_config[pin].int_count_en) { Settings.mcp230xx_config[pin].int_count_en=0; MCP230xx_CheckForIntCounter(); AddLog_P(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled INTCNT for pin D%i"),pin); } Response_P(MCP230XX_INTCFG_RESPONSE,"DEF",pin,Settings.mcp230xx_config[pin].int_report_defer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } else { serviced=false; return serviced; } } else { Response_P(MCP230XX_INTCFG_RESPONSE,"DEF",pin,Settings.mcp230xx_config[pin].int_report_defer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } serviced = false; return serviced; } else { serviced = false; return serviced; } } if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 1),"INTCNT")) { if (paramcount > 1) { uint8_t pin = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); if (pin < mcp230xx_pincount) { if (pin == 0) { if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "0")) validpin=true; } else { validpin = true; } } if (validpin) { if (paramcount > 2) { uint8_t intcnt = atoi(subStr(sub_string, XdrvMailbox.data, ",", 3)); if ((intcnt >= 0) && (intcnt <= 1)) { Settings.mcp230xx_config[pin].int_count_en=intcnt; if (Settings.mcp230xx_config[pin].int_report_defer) { Settings.mcp230xx_config[pin].int_report_defer=0; AddLog_P(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled INTDEF for pin D%i"),pin); } if (Settings.mcp230xx_config[pin].int_report_mode < 3) { Settings.mcp230xx_config[pin].int_report_mode=3; AddLog_P(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled immediate interrupt/telemetry reporting for pin D%i"),pin); } if ((Settings.mcp230xx_config[pin].int_count_en) && (!Settings.mcp230xx_int_timer)) { AddLog_P(LOG_LEVEL_INFO, PSTR("*** WARNING *** - INTCNT enabled for pin D%i but global INTTIMER is disabled!"),pin); } MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts Response_P(MCP230XX_INTCFG_RESPONSE,"CNT",pin,Settings.mcp230xx_config[pin].int_count_en); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } else { serviced=false; return serviced; } } else { Response_P(MCP230XX_INTCFG_RESPONSE,"CNT",pin,Settings.mcp230xx_config[pin].int_count_en); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}"; return serviced; } } serviced = false; return serviced; } else { serviced = false; return serviced; } } if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 1),"INTRETAIN")) { if (paramcount > 1) { uint8_t pin = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); if (pin < mcp230xx_pincount) { if (pin == 0) { if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "0")) validpin=true; } else { validpin = true; } } if (validpin) { if (paramcount > 2) { uint8_t int_retain = atoi(subStr(sub_string, XdrvMailbox.data, ",", 3)); if ((int_retain >= 0) && (int_retain <= 1)) { Settings.mcp230xx_config[pin].int_retain_flag=int_retain; Response_P(MCP230XX_INTCFG_RESPONSE,"INT_RETAIN",pin,Settings.mcp230xx_config[pin].int_retain_flag); MCP230xx_CheckForIntRetainer(); return serviced; } else { serviced=false; return serviced; } } else { Response_P(MCP230XX_INTCFG_RESPONSE,"INT_RETAIN",pin,Settings.mcp230xx_config[pin].int_retain_flag); return serviced; } } serviced = false; return serviced; } else { serviced = false; return serviced; } } uint8_t pin = atoi(subStr(sub_string, XdrvMailbox.data, ",", 1)); if (pin < mcp230xx_pincount) { if (0 == pin) { if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 1), "0")) validpin=true; } else { validpin=true; } } if (validpin && (paramcount > 1)) { if (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "?")) { uint8_t port = 0; if (pin > 7) { port = 1; } uint8_t portdata = MCP230xx_readGPIO(port); char pulluptxtr[7],pinstatustxtr[7]; char intmodetxt[9]; sprintf(intmodetxt,IntModeTxt(Settings.mcp230xx_config[pin].int_report_mode)); sprintf(pulluptxtr,ConvertNumTxt(Settings.mcp230xx_config[pin].pullup)); #ifdef USE_MCP230xx_OUTPUT uint8_t pinmod = Settings.mcp230xx_config[pin].pinmode; sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1,pinmod)); Response_P(MCP230XX_SENSOR_RESPONSE,pin,pinmod,pulluptxtr,intmodetxt,pinstatustxtr); #else // not USE_MCP230xx_OUTPUT sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1)); Response_P(MCP230XX_SENSOR_RESPONSE,pin,Settings.mcp230xx_config[pin].pinmode,pulluptxtr,intmodetxt,pinstatustxtr); #endif //USE_MCP230xx_OUTPUT return serviced; } #ifdef USE_MCP230xx_OUTPUT if (Settings.mcp230xx_config[pin].pinmode >= 5) { uint8_t pincmd = Settings.mcp230xx_config[pin].pinmode - 5; uint8_t relay_no = 0; for (relay_no = 0; relay_no < mcp230xx_pincount ; relay_no ++) { if ( mcp230xx_outpinmapping[relay_no] == pin) break; } relay_no = TasmotaGlobal.devices_present - mcp230xx_oldoutpincount + relay_no +1; if ((!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "ON")) || (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "1"))) { ExecuteCommandPower(relay_no, 1, SRC_IGNORE); return serviced; } if ((!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "OFF")) || (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "0"))) { ExecuteCommandPower(relay_no, 0, SRC_IGNORE); return serviced; } if ((!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "T")) || (!strcmp(subStr(sub_string, XdrvMailbox.data, ",", 2), "2"))) { ExecuteCommandPower(relay_no, 2, SRC_IGNORE); return serviced; } } #endif // USE_MCP230xx_OUTPUT uint8_t pinmode = 0; uint8_t pullup = 0; uint8_t intmode = 0; if (paramcount > 1) { pinmode = atoi(subStr(sub_string, XdrvMailbox.data, ",", 2)); } if (paramcount > 2) { pullup = atoi(subStr(sub_string, XdrvMailbox.data, ",", 3)); } if (paramcount > 3) { intmode = atoi(subStr(sub_string, XdrvMailbox.data, ",", 4)); } #ifdef USE_MCP230xx_OUTPUT if ((pin < mcp230xx_pincount) && (pinmode > 0) && (pinmode < 7) && (pullup < 2) && (paramcount > 2)) { #else // not use OUTPUT if ((pin < mcp230xx_pincount) && (pinmode > 0) && (pinmode < 5) && (pullup < 2) && (paramcount > 2)) { #endif // USE_MCP230xx_OUTPUT Settings.mcp230xx_config[pin].pinmode=pinmode; Settings.mcp230xx_config[pin].pullup=pullup; if ((pinmode > 1) && (pinmode < 5)) { if ((intmode >= 0) && (intmode <= 3)) { Settings.mcp230xx_config[pin].int_report_mode=intmode; } } else { Settings.mcp230xx_config[pin].int_report_mode=3; // Int mode not valid for pinmodes other than 2 through 4 } MCP230xx_ApplySettings(); uint8_t port = 0; if (pin > 7) { port = 1; } uint8_t portdata = MCP230xx_readGPIO(port); char pulluptxtc[7], pinstatustxtc[7]; char intmodetxt[9]; sprintf(pulluptxtc,ConvertNumTxt(pullup)); sprintf(intmodetxt,IntModeTxt(Settings.mcp230xx_config[pin].int_report_mode)); #ifdef USE_MCP230xx_OUTPUT sprintf(pinstatustxtc,ConvertNumTxt(portdata>>(pin-(port*8))&1,Settings.mcp230xx_config[pin].pinmode)); #else // not USE_MCP230xx_OUTPUT sprintf(pinstatustxtc,ConvertNumTxt(portdata>>(pin-(port*8))&1)); #endif // USE_MCP230xx_OUTPUT Response_P(MCP230XX_SENSOR_RESPONSE,pin,pinmode,pulluptxtc,intmodetxt,pinstatustxtc); return serviced; } } else { serviced=false; // no valid pin was used return serviced; } return serviced; } #ifdef USE_MCP230xx_DISPLAYOUTPUT const char HTTP_SNS_MCP230xx_OUTPUT[] PROGMEM = "{s}MCP230XX D%d{m}%s{e}"; // {s} = , {m} = , {e} = void MCP230xx_UpdateWebData(void) { uint8_t gpio1 = MCP230xx_readGPIO(0); uint8_t gpio2 = 0; if (2 == mcp230xx_type) { gpio2 = MCP230xx_readGPIO(1); } uint16_t gpio = (gpio2 << 8) + gpio1; for (uint32_t pin = 0; pin < mcp230xx_pincount; pin++) { if (Settings.mcp230xx_config[pin].pinmode >= 5) { char stt[7]; sprintf(stt,ConvertNumTxt((gpio>>pin)&1,Settings.mcp230xx_config[pin].pinmode)); WSContentSend_PD(HTTP_SNS_MCP230xx_OUTPUT, pin, stt); } } } #endif // USE_MCP230xx_DISPLAYOUTPUT /* #ifdef USE_MCP230xx_OUTPUT void MCP230xx_OutputTelemetry(void) { uint8_t outputcount = 0; uint16_t gpiototal = 0; uint8_t gpioa = 0; uint8_t gpiob = 0; gpioa=MCP230xx_readGPIO(0); if (2 == mcp230xx_type) { gpiob=MCP230xx_readGPIO(1); } gpiototal=((uint16_t)gpiob << 8) | gpioa; for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) { if (Settings.mcp230xx_config[pinx].pinmode >= 5) outputcount++; } if (outputcount) { char stt[7]; ResponseTime_P(PSTR(",\"MCP230_OUT\":{")); for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) { if (Settings.mcp230xx_config[pinx].pinmode >= 5) { sprintf(stt,ConvertNumTxt(((gpiototal>>pinx)&1),Settings.mcp230xx_config[pinx].pinmode)); ResponseAppend_P(PSTR("\"OUT_D%i\":\"%s\","),pinx,stt); } } ResponseAppend_P(PSTR("\"END\":1}}")); MqttPublishTeleSensor(); } } #endif // USE_MCP230xx_OUTPUT */ void MCP230xx_Interrupt_Counter_Report(void) { ResponseTime_P(PSTR(",\"MCP230_INTTIMER\":{")); for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) { if (Settings.mcp230xx_config[pinx].int_count_en) { // Counting is enabled for this pin so we add to report ResponseAppend_P(PSTR("\"INTCNT_D%i\":%i,"),pinx,mcp230xx_int_counter[pinx]); mcp230xx_int_counter[pinx]=0; } } ResponseAppend_P(PSTR("\"END\":1}}")); MqttPublishTeleSensor(); mcp230xx_int_sec_counter = 0; } void MCP230xx_Interrupt_Retain_Report(void) { uint16_t retainresult = 0; ResponseTime_P(PSTR(",\"MCP_INTRETAIN\":{")); for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) { if (Settings.mcp230xx_config[pinx].int_retain_flag) { ResponseAppend_P(PSTR("\"D%i\":%i,"),pinx,mcp230xx_int_retainer[pinx]); retainresult |= (((mcp230xx_int_retainer[pinx])&1) << pinx); mcp230xx_int_retainer[pinx]=0; } } ResponseAppend_P(PSTR("\"Value\":%u}}"),retainresult); MqttPublishTeleSensor(); } #ifdef USE_MCP230xx_OUTPUT void MCP230xx_SwitchRelay() { for (uint32_t i = TasmotaGlobal.devices_present - mcp230xx_oldoutpincount; i < TasmotaGlobal.devices_present; i++) { uint8_t pin = mcp230xx_outpinmapping[i - (TasmotaGlobal.devices_present - mcp230xx_oldoutpincount)]; uint8_t pincmd = Settings.mcp230xx_config[pin].pinmode - 5; uint8_t relay_state = bitRead(XdrvMailbox.index, i); AddLog_P(LOG_LEVEL_DEBUG, PSTR("MCP: relay %d pin_no %d state %d"), i,pin, relay_state); switch (relay_state) { case 1: MCP230xx_SetOutPin(pin,abs(pincmd-1)); break; case 0: MCP230xx_SetOutPin(pin,pincmd); break; } } } #endif // USE_MCP230xx_OUTPUT /*********************************************************************************************\ Interface \*********************************************************************************************/ bool Xsns29(uint8_t function) { if (!I2cEnabled(XI2C_22)) { return false; } bool result = false; if (FUNC_PRE_INIT == function) { MCP230xx_Detect(); } else if (mcp230xx_type) { switch (function) { case FUNC_EVERY_50_MSECOND: if (mcp230xx_int_en) { // Only check for interrupts if its enabled on one of the pins mcp230xx_int_prio_counter++; if ((mcp230xx_int_prio_counter) >= (Settings.mcp230xx_int_prio)) { MCP230xx_CheckForInterrupt(); mcp230xx_int_prio_counter=0; } } break; case FUNC_EVERY_SECOND: if (mcp230xx_int_counter_en) { mcp230xx_int_sec_counter++; if (mcp230xx_int_sec_counter >= Settings.mcp230xx_int_timer) { // Interrupt counter interval reached, lets report MCP230xx_Interrupt_Counter_Report(); } } if (TasmotaGlobal.tele_period == 0) { if (mcp230xx_int_retainer_en) { // We have pins configured for interrupt retain reporting MCP230xx_Interrupt_Retain_Report(); } /* #ifdef USE_MCP230xx_OUTPUT MCP230xx_OutputTelemetry(); #endif // USE_MCP230xx_OUTPUT */ } break; #ifdef USE_MCP230xx_OUTPUT case FUNC_SET_POWER: MCP230xx_SwitchRelay(); break; #endif // USE_MCP230xx_OUTPUT case FUNC_JSON_APPEND: MCP230xx_Show(1); break; case FUNC_COMMAND_SENSOR: if (XSNS_29 == XdrvMailbox.index) { result = MCP230xx_Command(); } break; #ifdef USE_WEBSERVER #ifdef USE_MCP230xx_OUTPUT #ifdef USE_MCP230xx_DISPLAYOUTPUT case FUNC_WEB_SENSOR: MCP230xx_UpdateWebData(); break; #endif // USE_MCP230xx_DISPLAYOUTPUT #endif // USE_MCP230xx_OUTPUT #endif // USE_WEBSERVER } } return result; } #endif // USE_MCP230xx #endif // USE_I2C