/* xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE // ======================= // ZbData v1 // File structure: // // uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased) // // [Array of devices] // [Offset = 2] // uint8 - length of device record (excluding the length byte) // uint16 - short address // // [Device specific data first] // uint8 - length of structure (excluding the length byte) // uint8[] - device wide data // // [Array of data structures] // uint8 - length of structure // uint8[] - list of data // void dumpZigbeeDevicesData(void) { #ifdef USE_ZIGBEE_EZSP if (zigbee.eeprom_present) { SBuffer buf(192); zigbee.eeprom.readBytes(64, 192, buf.getBuffer()); AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), 192); } #endif // USE_ZIGBEE_EZSP } // returns the lenght of consumed buffer, or -1 if error int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { size_t segment_len = buf.get8(start); if ((segment_len < 6) || (segment_len > len)) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len); return -1; } device.last_seen = buf.get32(start+1); device.lqi = buf.get8(start + 5); device.batterypercent = buf.get8(start + 6); return segment_len + 1; } // return true if success bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { // First hydrate device wide data int32_t ret = hydrateDeviceWideData(device, buf, start, len); if (ret < 0) { return false; } size_t offset = 0 + ret; while (offset + 5 <= len) { // each entry is at least 5 bytes uint8_t data_len = buf.get8(start + offset); Z_Data & data_elt = device.data.createFromBuffer(buf, offset + 1, data_len); (void)data_elt; // avoid compiler warning offset += data_len + 1; } return true; } // negative means error // positive is the segment length int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len) { uint8_t segment_len = buf.get8(start); if ((segment_len < 4) || (start + segment_len > len)) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len); return -1; } // read shortaddr uint16_t shortaddr = buf.get16(start + 1); if (shortaddr >= 0xFFF0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr); return -1; } // check if the device exists, if not skip the record Z_Device & device = zigbee_devices.findShortAddr(shortaddr); if (&device != nullptr) { // parse the rest bool ret = hydrateDeviceData(device, buf, start + 3, segment_len - 3); if (!ret) { return -1; } } return segment_len + 1; } // Parse the entire blob // return true if ok bool hydrateDevicesDataBlob(const class SBuffer & buf, size_t start, size_t len) { // read number of devices uint8_t num_devices = buf.get8(start); if (num_devices > 0x80) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "wrong number of devices=%d"), num_devices); return false; } size_t offset = 0; for (uint32_t cur_dev_num = 0; (cur_dev_num < num_devices) && (offset + 4 <= len); cur_dev_num++) { int32_t segment_len = hydrateSingleDevice(buf, offset, len); // advance buffer if (segment_len <= 0) { return false; } offset += segment_len; } return true; } class SBuffer hibernateDeviceData(const struct Z_Device & device, bool log = false) { SBuffer buf(192); // If we have zero information about the device, just skip ir if (device.validLqi() || device.validBatteryPercent() || device.validLastSeen() || !device.data.isEmpty()) { buf.add8(0x00); // overall length, will be updated later buf.add16(device.shortaddr); // device wide data buf.add8(6); // 6 bytes buf.add32(device.last_seen); buf.add8(device.lqi); buf.add8(device.batterypercent); for (const auto & data_elt : device.data) { size_t item_len = data_elt.DataTypeToLength(data_elt.getType()); buf.add8(item_len); // place-holder for length buf.addBuffer((uint8_t*) &data_elt, item_len); } // update overall length buf.set8(0, buf.len() - 1); if (log) { size_t buf_len = buf.len() - 3; char hex[2*buf_len + 1]; // skip first 3 bytes ToHex_P(buf.buf(3), buf_len, hex, sizeof(hex)); Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA)); } } return buf; } void hibernateAllData(void) { // first prefix is number of devices uint8_t device_num = zigbee_devices.devicesSize(); for (const auto & device : zigbee_devices.getDevices()) { // allocte a buffer for a single device SBuffer buf = hibernateDeviceData(device, true); // log if (buf.len() > 0) { // TODO store in EEPROM } } } #endif // USE_ZIGBEE