/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2020 Nick Moore * Copyright (c) 2018 shawwwn * Copyright (c) 2020-2021 Glenn Moloney @glenn20 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #if MICROPY_PY_ESPNOW #include "c_types.h" #include "espnow.h" #include "py/mphal.h" #include "py/mperrno.h" #include "py/qstr.h" #include "py/objstr.h" #include "py/objarray.h" #include "py/stream.h" #include "py/binary.h" #include "py/ringbuf.h" #include "mpconfigport.h" #include "modespnow.h" // For the esp8266 #define ESP_NOW_MAX_DATA_LEN (250) #define ESP_NOW_KEY_LEN (16) #define ESP_NOW_ETH_ALEN (6) #define ESP_NOW_SEND_SUCCESS (0) #define ESP_ERR_ESPNOW_NO_MEM (-77777) #define ESP_OK (0) #define ESP_NOW_MAX_TOTAL_PEER_NUM (20) #define ESP_NOW_MAX_ENCRYPT_PEER_NUM (6) #define ESP_ERR_ESPNOW_NOT_INIT (0x300 + 100 + 1) typedef int esp_err_t; static const uint8_t ESPNOW_MAGIC = 0x99; // Use this for peeking at the header of the next packet in the buffer. typedef struct { uint8_t magic; // = ESPNOW_MAGIC uint8_t msg_len; // Length of the message } __attribute__((packed)) espnow_hdr_t; // ESPNow packet format for the receive buffer. typedef struct { espnow_hdr_t hdr; // The header uint8_t peer[6]; // Peer address uint8_t msg[0]; // Message is up to 250 bytes } __attribute__((packed)) espnow_pkt_t; // The maximum length of an espnow packet (bytes) static const size_t MAX_PACKET_LEN = ( sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN); // Enough for 2 full-size packets: 2 * (6 + 2 + 250) = 516 bytes // Will allocate an additional 7 bytes for buffer overhead #define DEFAULT_RECV_BUFFER_SIZE \ (2 * (sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN)) // Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes). #define DEFAULT_RECV_TIMEOUT_MS (5 * 60 * 1000) // Number of milliseconds to wait for pending responses to sent packets. // This is a fallback which should never be reached. #define PENDING_RESPONSES_TIMEOUT_MS 100 // The data structure for the espnow_singleton. typedef struct _esp_espnow_obj_t { mp_obj_base_t base; ringbuf_t *recv_buffer; // A buffer for received packets size_t recv_buffer_size; // Size of recv buffer size_t recv_timeout_ms; // Timeout for irecv() size_t tx_packets; // Count of sent packets volatile size_t tx_responses; // # of sent packet responses received volatile size_t tx_failures; // # of sent packet responses failed } esp_espnow_obj_t; // Initialised below. const mp_obj_type_t esp_espnow_type; static esp_espnow_obj_t espnow_singleton = { .base.type = &esp_espnow_type, .recv_buffer = NULL, .recv_buffer_size = DEFAULT_RECV_BUFFER_SIZE, .recv_timeout_ms = DEFAULT_RECV_TIMEOUT_MS, }; // ### Initialisation and Config functions // static void check_esp_err(int e) { if (e != 0) { mp_raise_OSError(e); } } // Return a pointer to the ESPNow module singleton // If state == INITIALISED check the device has been initialised. // Raises OSError if not initialised and state == INITIALISED. static esp_espnow_obj_t *_get_singleton() { return &espnow_singleton; } static esp_espnow_obj_t *_get_singleton_initialised() { esp_espnow_obj_t *self = _get_singleton(); if (self->recv_buffer == NULL) { // Throw an espnow not initialised error check_esp_err(ESP_ERR_ESPNOW_NOT_INIT); } return self; } // Allocate and initialise the ESPNow module as a singleton. // Returns the initialised espnow_singleton. STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { return _get_singleton(); } // Forward declare the send and recv ESPNow callbacks STATIC void send_cb(uint8_t *mac_addr, uint8_t status); STATIC void recv_cb(uint8_t *mac_addr, uint8_t *data, uint8_t len); // ESPNow.deinit(): De-initialise the ESPNOW software stack, disable callbacks // and deallocate the recv data buffers. // Note: this function is called from main.c:mp_task() to cleanup before soft // reset, so cannot be declared STATIC and must guard against self == NULL;. mp_obj_t espnow_deinit(mp_obj_t _) { esp_espnow_obj_t *self = _get_singleton(); if (self->recv_buffer != NULL) { // esp_now_unregister_recv_cb(); esp_now_deinit(); self->recv_buffer->buf = NULL; self->recv_buffer = NULL; self->tx_packets = self->tx_responses; } MP_STATE_PORT(espnow_buffer) = NULL; return mp_const_none; } // ESPNow.active(): Initialise the data buffers and ESP-NOW functions. // Initialise the Espressif ESPNOW software stack, register callbacks and // allocate the recv data buffers. // Returns True if interface is active, else False. STATIC mp_obj_t espnow_active(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = args[0]; if (n_args > 1) { if (mp_obj_is_true(args[1])) { if (self->recv_buffer == NULL) { // Already initialised self->recv_buffer = m_new_obj(ringbuf_t); ringbuf_alloc(self->recv_buffer, self->recv_buffer_size); MP_STATE_PORT(espnow_buffer) = self->recv_buffer; esp_now_init(); esp_now_set_self_role(ESP_NOW_ROLE_COMBO); esp_now_register_recv_cb(recv_cb); esp_now_register_send_cb(send_cb); } } else { espnow_deinit(self); } } return mp_obj_new_bool(self->recv_buffer != NULL); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_active_obj, 1, 2, espnow_active); // ESPNow.config(): Initialise the data buffers and ESP-NOW functions. // Initialise the Espressif ESPNOW software stack, register callbacks and // allocate the recv data buffers. // Returns True if interface is active, else False. STATIC mp_obj_t espnow_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { esp_espnow_obj_t *self = _get_singleton(); enum { ARG_rxbuf, ARG_timeout_ms }; static const mp_arg_t allowed_args[] = { { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_ms, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_rxbuf].u_int >= 0) { self->recv_buffer_size = args[ARG_rxbuf].u_int; } if (args[ARG_timeout_ms].u_int >= 0) { self->recv_timeout_ms = args[ARG_timeout_ms].u_int; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_config_obj, 1, espnow_config); // ### The ESP_Now send and recv callback routines // // Callback triggered when a sent packet is acknowledged by the peer (or not). // Just count the number of responses and number of failures. // These are used in the send()/write() logic. STATIC void send_cb(uint8_t *mac_addr, uint8_t status) { esp_espnow_obj_t *self = _get_singleton(); self->tx_responses++; if (status != ESP_NOW_SEND_SUCCESS) { self->tx_failures++; } } // Callback triggered when an ESP-Now packet is received. // Write the peer MAC address and the message into the recv_buffer as an // ESPNow packet. // If the buffer is full, drop the message and increment the dropped count. // Schedules the user callback if one has been registered (ESPNow.config()). STATIC void recv_cb(uint8_t *mac_addr, uint8_t *msg, uint8_t msg_len) { esp_espnow_obj_t *self = _get_singleton(); ringbuf_t *buf = self->recv_buffer; // TODO: Test this works with ">". if (buf == NULL || sizeof(espnow_pkt_t) + msg_len >= ringbuf_free(buf)) { return; } espnow_hdr_t header; header.magic = ESPNOW_MAGIC; header.msg_len = msg_len; ringbuf_put_bytes(buf, (uint8_t *)&header, sizeof(header)); ringbuf_put_bytes(buf, mac_addr, ESP_NOW_ETH_ALEN); ringbuf_put_bytes(buf, msg, msg_len); } // Return C pointer to byte memory string/bytes/bytearray in obj. // Raise ValueError if the length does not match expected len. static uint8_t *_get_bytes_len_rw(mp_obj_t obj, size_t len, mp_uint_t rw) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(obj, &bufinfo, rw); if (bufinfo.len != len) { mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length")); } return (uint8_t *)bufinfo.buf; } static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len) { return _get_bytes_len_rw(obj, len, MP_BUFFER_READ); } static uint8_t *_get_bytes_len_w(mp_obj_t obj, size_t len) { return _get_bytes_len_rw(obj, len, MP_BUFFER_WRITE); } // ### Handling espnow packets in the recv buffer // // Copy data from the ring buffer - wait if buffer is empty up to timeout_ms // 0: Success // -1: Not enough data available to complete read (try again later) // -2: Requested read is larger than buffer - will never succeed static int ringbuf_get_bytes_wait(ringbuf_t *r, uint8_t *data, size_t len, mp_int_t timeout_ms) { mp_uint_t start = mp_hal_ticks_ms(); int status = 0; while (((status = ringbuf_get_bytes(r, data, len)) == -1) && (timeout_ms < 0 || (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)timeout_ms)) { mp_event_wait_ms(1); } return status; } // ESPNow.recvinto([timeout_ms, []]): // Returns a list of byte strings: (peer_addr, message) where peer_addr is // the MAC address of the sending peer. // Arguments: // timeout_ms: timeout in milliseconds (or None). // buffers: list of bytearrays to store values: [peer, message]. // Default timeout is set with ESPNow.config(timeout=milliseconds). // Return (None, None) on timeout. STATIC mp_obj_t espnow_recvinto(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = _get_singleton_initialised(); size_t timeout_ms = ((n_args > 2 && args[2] != mp_const_none) ? mp_obj_get_int(args[2]) : self->recv_timeout_ms); mp_obj_list_t *list = MP_OBJ_TO_PTR(args[1]); if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) { mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recvinto(): Invalid argument")); } mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]); size_t msg_size = msg->len + msg->free; if (mp_obj_is_type(msg, &mp_type_bytearray)) { msg->len = msg_size; // Make all the space in msg array available msg->free = 0; } uint8_t *peer_buf = _get_bytes_len_w(list->items[0], ESP_NOW_ETH_ALEN); uint8_t *msg_buf = _get_bytes_len_w(msg, ESP_NOW_MAX_DATA_LEN); // Read the packet header from the incoming buffer espnow_hdr_t hdr; if (ringbuf_get_bytes_wait(self->recv_buffer, (uint8_t *)&hdr, sizeof(hdr), timeout_ms) < 0) { return MP_OBJ_NEW_SMALL_INT(0); // Timeout waiting for packet } int msg_len = hdr.msg_len; // Check the message packet header format and read the message data if (hdr.magic != ESPNOW_MAGIC || msg_len > ESP_NOW_MAX_DATA_LEN || ringbuf_get_bytes(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) < 0 || ringbuf_get_bytes(self->recv_buffer, msg_buf, msg_len) < 0) { mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recv(): buffer error")); } if (mp_obj_is_type(msg, &mp_type_bytearray)) { // Set the length of the message bytearray. msg->len = msg_len; msg->free = msg_size - msg_len; } return MP_OBJ_NEW_SMALL_INT(msg_len); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_recvinto_obj, 2, 3, espnow_recvinto); // Used by espnow_send() for sends() with sync==True. // Wait till all pending sent packet responses have been received. // ie. self->tx_responses == self->tx_packets. // Return the number of responses where status != ESP_NOW_SEND_SUCCESS. static void _wait_for_pending_responses(esp_espnow_obj_t *self) { for (int i = 0; i < PENDING_RESPONSES_TIMEOUT_MS; i++) { if (self->tx_responses >= self->tx_packets) { return; } mp_hal_delay_ms(1); // Allow other tasks to run } // Note: the loop timeout is just a fallback - in normal operation // we should never reach that timeout. } // ESPNow.send(peer_addr, message, [sync (=true)]) // ESPNow.send(message) // Send a message to the peer's mac address. Optionally wait for a response. // If sync == True, wait for response after sending. // Returns: // True if sync==False and message sent successfully. // True if sync==True and message is received successfully by all recipients // False if sync==True and message is not received by at least one recipient // Raises: EAGAIN if the internal espnow buffers are full. STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = _get_singleton_initialised(); bool sync = n_args <= 3 || args[3] == mp_const_none || mp_obj_is_true(args[3]); // Get a pointer to the buffer of obj mp_buffer_info_t message; mp_get_buffer_raise(args[2], &message, MP_BUFFER_READ); // Bugfix: esp_now_send() generates a panic if message buffer points // to an address in ROM (eg. a statically interned QSTR). // Fix: if message is not in gc pool, copy to a temp buffer. static char temp[ESP_NOW_MAX_DATA_LEN]; // Static to save code space byte *p = (byte *)message.buf; // if (p < MP_STATE_MEM(area.gc_pool_start) || MP_STATE_MEM(area.gc_pool_end) < p) { if (MP_STATE_MEM(area.gc_pool_end) < p) { // If buffer is not in GC pool copy from ROM to stack memcpy(temp, message.buf, message.len); message.buf = temp; } if (sync) { // If the last call was sync==False there may be outstanding responses. // We need to wait for all pending responses if this call has sync=True. _wait_for_pending_responses(self); } int saved_failures = self->tx_failures; check_esp_err( esp_now_send(_get_bytes_len(args[1], ESP_NOW_ETH_ALEN), message.buf, message.len)); self->tx_packets++; if (sync) { // Wait for message to be received by peer _wait_for_pending_responses(self); } // Return False if sync and any peers did not respond. return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures)); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_send_obj, 3, 4, espnow_send); // ### Peer Management Functions // // Set the ESP-NOW Primary Master Key (pmk) (for encrypted communications). // Raise OSError if not initialised. // Raise ValueError if key is not a bytes-like object exactly 16 bytes long. STATIC mp_obj_t espnow_set_pmk(mp_obj_t _, mp_obj_t key) { check_esp_err(esp_now_set_kok(_get_bytes_len(key, ESP_NOW_KEY_LEN), ESP_NOW_KEY_LEN)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk); // ESPNow.add_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) // Positional args set to None will be left at defaults. // Raise OSError if not initialised. // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. // Raise TypeError if invalid keyword args or too many positional args. // Return None. STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *args) { check_esp_err( esp_now_add_peer( _get_bytes_len(args[1], ESP_NOW_ETH_ALEN), ESP_NOW_ROLE_COMBO, (n_args > 3) ? mp_obj_get_int(args[3]) : 0, (n_args > 2) ? _get_bytes_len(args[2], ESP_NOW_KEY_LEN) : NULL, ESP_NOW_KEY_LEN)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_add_peer_obj, 2, 4, espnow_add_peer); // ESPNow.del_peer(peer_mac): Unregister peer_mac. // Raise OSError if not initialised. // Raise ValueError if peer is not a bytes-like objects or wrong length. // Return None. STATIC mp_obj_t espnow_del_peer(mp_obj_t _, mp_obj_t peer) { esp_now_del_peer(_get_bytes_len(peer, ESP_NOW_ETH_ALEN)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer); STATIC const mp_rom_map_elem_t esp_espnow_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) }, { MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&espnow_config_obj) }, { MP_ROM_QSTR(MP_QSTR_recvinto), MP_ROM_PTR(&espnow_recvinto_obj) }, { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) }, // Peer management functions { MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) }, { MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) }, }; STATIC MP_DEFINE_CONST_DICT(esp_espnow_locals_dict, esp_espnow_locals_dict_table); STATIC const mp_rom_map_elem_t espnow_globals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__espnow) }, { MP_ROM_QSTR(MP_QSTR_ESPNowBase), MP_ROM_PTR(&esp_espnow_type) }, { MP_ROM_QSTR(MP_QSTR_MAX_DATA_LEN), MP_ROM_INT(ESP_NOW_MAX_DATA_LEN)}, { MP_ROM_QSTR(MP_QSTR_ADDR_LEN), MP_ROM_INT(ESP_NOW_ETH_ALEN)}, { MP_ROM_QSTR(MP_QSTR_KEY_LEN), MP_ROM_INT(ESP_NOW_KEY_LEN)}, { MP_ROM_QSTR(MP_QSTR_MAX_TOTAL_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_TOTAL_PEER_NUM)}, { MP_ROM_QSTR(MP_QSTR_MAX_ENCRYPT_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_ENCRYPT_PEER_NUM)}, }; STATIC MP_DEFINE_CONST_DICT(espnow_globals_dict, espnow_globals_dict_table); // ### Dummy Buffer Protocol support // ...so asyncio can poll.ipoll() on this device // Support ioctl(MP_STREAM_POLL, ) for asyncio STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { if (request != MP_STREAM_POLL) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } esp_espnow_obj_t *self = _get_singleton(); return (self->recv_buffer == NULL) ? 0 : // If not initialised arg ^ ((ringbuf_avail(self->recv_buffer) == 0) ? MP_STREAM_POLL_RD : 0); } STATIC const mp_stream_p_t espnow_stream_p = { .ioctl = espnow_stream_ioctl, }; MP_DEFINE_CONST_OBJ_TYPE( esp_espnow_type, MP_QSTR_ESPNowBase, MP_TYPE_FLAG_NONE, make_new, espnow_make_new, protocol, &espnow_stream_p, locals_dict, &esp_espnow_locals_dict ); const mp_obj_module_t mp_module_espnow = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&espnow_globals_dict, }; MP_REGISTER_MODULE(MP_QSTR__espnow, mp_module_espnow); MP_REGISTER_ROOT_POINTER(void *espnow_buffer); #endif