/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mperrno.h" #include "py/mphal.h" #include "irq.h" #include "pin.h" #include "bufhelper.h" #include "dma.h" #include "i2c.h" #if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C /// \moduleref pyb /// \class I2C - a two-wire serial protocol /// /// I2C is a two-wire protocol for communicating between devices. At the physical /// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively. /// /// I2C objects are created attached to a specific bus. They can be initialised /// when created, or initialised later on: /// /// from pyb import I2C /// /// i2c = I2C(1) # create on bus 1 /// i2c = I2C(1, I2C.CONTROLLER) # create and init as a controller /// i2c.init(I2C.CONTROLLER, baudrate=20000) # init as a controller /// i2c.init(I2C.PERIPHERAL, addr=0x42) # init as a peripheral with given address /// i2c.deinit() # turn off the I2C unit /// /// Printing the i2c object gives you information about its configuration. /// /// Basic methods for peripheral are send and recv: /// /// i2c.send('abc') # send 3 bytes /// i2c.send(0x42) # send a single byte, given by the number /// data = i2c.recv(3) # receive 3 bytes /// /// To receive inplace, first create a bytearray: /// /// data = bytearray(3) # create a buffer /// i2c.recv(data) # receive 3 bytes, writing them into data /// /// You can specify a timeout (in ms): /// /// i2c.send(b'123', timeout=2000) # timeout after 2 seconds /// /// A controller must specify the recipient's address: /// /// i2c.init(I2C.CONTROLLER) /// i2c.send('123', 0x42) # send 3 bytes to peripheral with address 0x42 /// i2c.send(b'456', addr=0x42) # keyword for address /// /// Master also has other methods: /// /// i2c.is_ready(0x42) # check if peripheral 0x42 is ready /// i2c.scan() # scan for peripherals on the bus, returning /// # a list of valid addresses /// i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of peripheral 0x42, /// # starting at address 2 in the peripheral /// i2c.mem_write('abc', 0x42, 2, timeout=1000) #define PYB_I2C_MASTER (0) #define PYB_I2C_SLAVE (1) #define PYB_I2C_SPEED_STANDARD (100000L) #define PYB_I2C_SPEED_FULL (400000L) #define PYB_I2C_SPEED_FAST (1000000L) #if defined(MICROPY_HW_I2C1_SCL) I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_I2C2_SCL) I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_I2C3_SCL) I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_I2C4_SCL) I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL}; #endif STATIC bool pyb_i2c_use_dma[4]; const pyb_i2c_obj_t pyb_i2c_obj[] = { #if defined(MICROPY_HW_I2C1_SCL) {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]}, #else {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_I2C2_SCL) {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]}, #else {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_I2C3_SCL) {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]}, #else {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_I2C4_SCL) {{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]}, #else {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, #endif }; #if defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) // The STM32F0, F3, F7, H7 and L4 use a TIMINGR register rather than ClockSpeed and // DutyCycle. #define PYB_I2C_TIMINGR (1) #if defined(STM32F745xx) || defined(STM32F746xx) || defined(STM32F756xx) // The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant // defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x40912732}, \ {PYB_I2C_SPEED_FULL, 0x10911823}, \ {PYB_I2C_SPEED_FAST, 0x00611116}, \ } #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) #elif defined(STM32F722xx) || defined(STM32F723xx) \ || defined(STM32F732xx) || defined(STM32F733xx) \ || defined(STM32F765xx) || defined(STM32F767xx) \ || defined(STM32F769xx) // These timing values are for f_I2CCLK=54MHz and are only approximate #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0xb0420f13}, \ {PYB_I2C_SPEED_FULL, 0x70330309}, \ {PYB_I2C_SPEED_FAST, 0x50100103}, \ } #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) #elif defined(STM32G0) // generated using CubeMX #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x10707DBC}, \ {PYB_I2C_SPEED_FULL, 0x00602173}, \ {PYB_I2C_SPEED_FAST, 0x00300B29}, \ } #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) #elif defined(STM32G4) // timing input depends on PLL // for now: 170MHz sysclock, PCLK 10.625 MHz // using PCLOCK // generated using CubeMX #if defined(STM32G431xx) || defined(STM32G441xx) #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ } #else #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ {PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \ } #endif #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_STANDARD) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_STANDARD) #elif defined(STM32H7) // I2C TIMINGs obtained from the STHAL examples. #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x40604E73}, \ {PYB_I2C_SPEED_FULL, 0x00901954}, \ {PYB_I2C_SPEED_FAST, 0x10810915}, \ } #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) #elif defined(STM32L4) // generated using CubeMX #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ {PYB_I2C_SPEED_STANDARD, 0x10909CEC}, \ {PYB_I2C_SPEED_FULL, 0x00702991}, \ {PYB_I2C_SPEED_FAST, 0x00300F33}, \ } #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) #else #error "no I2C timings for this MCU" #endif STATIC const struct { uint32_t baudrate; uint32_t timing; } pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING; #define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing) STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) { for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) { if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) { init->Timing = pyb_i2c_baudrate_timing[i].timing; return; } } mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("unsupported I2C baudrate: %u"), baudrate); } uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) { for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) { if (pyb_i2c_baudrate_timing[i].timing == i2c->Init.Timing) { return pyb_i2c_baudrate_timing[i].baudrate; } } return 0; } #else #define PYB_I2C_TIMINGR (0) #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FULL) STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) { init->ClockSpeed = baudrate; init->DutyCycle = I2C_DUTYCYCLE_16_9; } uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) { uint32_t pfreq = i2c->Instance->CR2 & 0x3f; uint32_t ccr = i2c->Instance->CCR & 0xfff; if (i2c->Instance->CCR & 0x8000) { // Fast mode, assume duty cycle of 16/9 return pfreq * 40000 / ccr; } else { // Standard mode return pfreq * 500000 / ccr; } } #endif void i2c_init0(void) { // Initialise the I2C handles. // The structs live on the BSS so all other fields will be zero after a reset. #if defined(MICROPY_HW_I2C1_SCL) I2CHandle1.Instance = I2C1; #endif #if defined(MICROPY_HW_I2C2_SCL) I2CHandle2.Instance = I2C2; #endif #if defined(MICROPY_HW_I2C3_SCL) I2CHandle3.Instance = I2C3; #endif #if defined(MICROPY_HW_I2C4_SCL) I2CHandle4.Instance = I2C4; #endif } int pyb_i2c_init(I2C_HandleTypeDef *i2c) { int i2c_unit; const machine_pin_obj_t *scl_pin; const machine_pin_obj_t *sda_pin; if (0) { #if defined(MICROPY_HW_I2C1_SCL) } else if (i2c == &I2CHandle1) { i2c_unit = 1; scl_pin = MICROPY_HW_I2C1_SCL; sda_pin = MICROPY_HW_I2C1_SDA; __HAL_RCC_I2C1_CLK_ENABLE(); #endif #if defined(MICROPY_HW_I2C2_SCL) } else if (i2c == &I2CHandle2) { i2c_unit = 2; scl_pin = MICROPY_HW_I2C2_SCL; sda_pin = MICROPY_HW_I2C2_SDA; __HAL_RCC_I2C2_CLK_ENABLE(); #endif #if defined(MICROPY_HW_I2C3_SCL) } else if (i2c == &I2CHandle3) { i2c_unit = 3; scl_pin = MICROPY_HW_I2C3_SCL; sda_pin = MICROPY_HW_I2C3_SDA; __HAL_RCC_I2C3_CLK_ENABLE(); #endif #if defined(MICROPY_HW_I2C4_SCL) } else if (i2c == &I2CHandle4) { i2c_unit = 4; scl_pin = MICROPY_HW_I2C4_SCL; sda_pin = MICROPY_HW_I2C4_SDA; __HAL_RCC_I2C4_CLK_ENABLE(); #endif } else { // I2C does not exist for this board (shouldn't get here, should be checked by caller) return -MP_EINVAL; } // init the GPIO lines uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN; uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit); mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit); // init the I2C device if (HAL_I2C_Init(i2c) != HAL_OK) { // init error return -MP_EIO; } // invalidate the DMA channels so they are initialised on first use const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1]; dma_invalidate_channel(self->tx_dma_descr); dma_invalidate_channel(self->rx_dma_descr); if (0) { #if defined(MICROPY_HW_I2C1_SCL) } else if (i2c->Instance == I2C1) { HAL_NVIC_EnableIRQ(I2C1_EV_IRQn); HAL_NVIC_EnableIRQ(I2C1_ER_IRQn); #endif #if defined(MICROPY_HW_I2C2_SCL) } else if (i2c->Instance == I2C2) { HAL_NVIC_EnableIRQ(I2C2_EV_IRQn); HAL_NVIC_EnableIRQ(I2C2_ER_IRQn); #endif #if defined(MICROPY_HW_I2C3_SCL) } else if (i2c->Instance == I2C3) { HAL_NVIC_EnableIRQ(I2C3_EV_IRQn); HAL_NVIC_EnableIRQ(I2C3_ER_IRQn); #endif #if defined(MICROPY_HW_I2C4_SCL) } else if (i2c->Instance == I2C4) { HAL_NVIC_EnableIRQ(I2C4_EV_IRQn); HAL_NVIC_EnableIRQ(I2C4_ER_IRQn); #endif } return 0; // success } void i2c_deinit(I2C_HandleTypeDef *i2c) { HAL_I2C_DeInit(i2c); if (0) { #if defined(MICROPY_HW_I2C1_SCL) } else if (i2c->Instance == I2C1) { __HAL_RCC_I2C1_FORCE_RESET(); __HAL_RCC_I2C1_RELEASE_RESET(); __HAL_RCC_I2C1_CLK_DISABLE(); HAL_NVIC_DisableIRQ(I2C1_EV_IRQn); HAL_NVIC_DisableIRQ(I2C1_ER_IRQn); #endif #if defined(MICROPY_HW_I2C2_SCL) } else if (i2c->Instance == I2C2) { __HAL_RCC_I2C2_FORCE_RESET(); __HAL_RCC_I2C2_RELEASE_RESET(); __HAL_RCC_I2C2_CLK_DISABLE(); HAL_NVIC_DisableIRQ(I2C2_EV_IRQn); HAL_NVIC_DisableIRQ(I2C2_ER_IRQn); #endif #if defined(MICROPY_HW_I2C3_SCL) } else if (i2c->Instance == I2C3) { __HAL_RCC_I2C3_FORCE_RESET(); __HAL_RCC_I2C3_RELEASE_RESET(); __HAL_RCC_I2C3_CLK_DISABLE(); HAL_NVIC_DisableIRQ(I2C3_EV_IRQn); HAL_NVIC_DisableIRQ(I2C3_ER_IRQn); #endif #if defined(MICROPY_HW_I2C4_SCL) } else if (i2c->Instance == I2C4) { __HAL_RCC_I2C4_FORCE_RESET(); __HAL_RCC_I2C4_RELEASE_RESET(); __HAL_RCC_I2C4_CLK_DISABLE(); HAL_NVIC_DisableIRQ(I2C4_EV_IRQn); HAL_NVIC_DisableIRQ(I2C4_ER_IRQn); #endif } } int pyb_i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) { I2C_InitTypeDef *init = &self->i2c->Init; init->AddressingMode = I2C_ADDRESSINGMODE_7BIT; init->DualAddressMode = I2C_DUALADDRESS_DISABLED; init->GeneralCallMode = I2C_GENERALCALL_DISABLED; init->NoStretchMode = I2C_NOSTRETCH_DISABLE; init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS; init->OwnAddress2 = 0; // unused if (freq != -1) { i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX)); } *self->use_dma = false; // init the I2C bus i2c_deinit(self->i2c); return pyb_i2c_init(self->i2c); } STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) { // wait for bus-busy flag to be cleared, with a timeout for (int timeout = 50; timeout > 0; --timeout) { if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) { // stop bit was generated and bus is back to normal return; } mp_hal_delay_ms(1); } // bus was/is busy, need to reset the peripheral to get it to work again i2c_deinit(i2c); pyb_i2c_init(i2c); } void i2c_ev_irq_handler(mp_uint_t i2c_id) { I2C_HandleTypeDef *hi2c; switch (i2c_id) { #if defined(MICROPY_HW_I2C1_SCL) case 1: hi2c = &I2CHandle1; break; #endif #if defined(MICROPY_HW_I2C2_SCL) case 2: hi2c = &I2CHandle2; break; #endif #if defined(MICROPY_HW_I2C3_SCL) case 3: hi2c = &I2CHandle3; break; #endif #if defined(MICROPY_HW_I2C4_SCL) case 4: hi2c = &I2CHandle4; break; #endif default: return; } #if defined(STM32F4) if (hi2c->Instance->SR1 & I2C_FLAG_SB) { if (hi2c->State == HAL_I2C_STATE_BUSY_TX) { hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(hi2c->Devaddress); } else { hi2c->Instance->DR = I2C_7BIT_ADD_READ(hi2c->Devaddress); } hi2c->Instance->CR2 |= I2C_CR2_DMAEN; } else if (hi2c->Instance->SR1 & I2C_FLAG_ADDR) { __IO uint32_t tmp_sr2; if (hi2c->State == HAL_I2C_STATE_BUSY_RX) { if (hi2c->XferCount == 1U) { hi2c->Instance->CR1 &= ~I2C_CR1_ACK; } else { if (hi2c->XferCount == 2U) { hi2c->Instance->CR1 &= ~I2C_CR1_ACK; hi2c->Instance->CR1 |= I2C_CR1_POS; } hi2c->Instance->CR2 |= I2C_CR2_LAST; } } tmp_sr2 = hi2c->Instance->SR2; UNUSED(tmp_sr2); } else if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) { if (hi2c->XferCount != 0U) { hi2c->Instance->DR = *hi2c->pBuffPtr++; hi2c->XferCount--; } else { __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); if (hi2c->XferOptions != I2C_FIRST_FRAME) { hi2c->Instance->CR1 |= I2C_CR1_STOP; } hi2c->Mode = HAL_I2C_MODE_NONE; hi2c->State = HAL_I2C_STATE_READY; } } #else // if not an F4 MCU, use the HAL's IRQ handler HAL_I2C_EV_IRQHandler(hi2c); #endif } void i2c_er_irq_handler(mp_uint_t i2c_id) { I2C_HandleTypeDef *hi2c; switch (i2c_id) { #if defined(MICROPY_HW_I2C1_SCL) case 1: hi2c = &I2CHandle1; break; #endif #if defined(MICROPY_HW_I2C2_SCL) case 2: hi2c = &I2CHandle2; break; #endif #if defined(MICROPY_HW_I2C3_SCL) case 3: hi2c = &I2CHandle3; break; #endif #if defined(MICROPY_HW_I2C4_SCL) case 4: hi2c = &I2CHandle4; break; #endif default: return; } #if defined(STM32F4) uint32_t sr1 = hi2c->Instance->SR1; // I2C Bus error if (sr1 & I2C_FLAG_BERR) { hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); } // I2C Arbitration Loss error if (sr1 & I2C_FLAG_ARLO) { hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); } // I2C Acknowledge failure if (sr1 & I2C_FLAG_AF) { hi2c->ErrorCode |= HAL_I2C_ERROR_AF; SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP); __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); } // I2C Over-Run/Under-Run if (sr1 & I2C_FLAG_OVR) { hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); } #else // if not an F4 MCU, use the HAL's IRQ handler HAL_I2C_ER_IRQHandler(hi2c); #endif } STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) { // Note: we can't use WFI to idle in this loop because the DMA completion // interrupt may occur before the WFI. Hence we miss it and have to wait // until the next sys-tick (up to 1ms). uint32_t start = HAL_GetTick(); while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) { if (HAL_GetTick() - start >= timeout) { return HAL_TIMEOUT; } } return HAL_OK; } /******************************************************************************/ /* MicroPython bindings */ static inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; } STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); uint i2c_num = 0; if (0) { } #if defined(MICROPY_HW_I2C1_SCL) else if (self->i2c->Instance == I2C1) { i2c_num = 1; } #endif #if defined(MICROPY_HW_I2C2_SCL) else if (self->i2c->Instance == I2C2) { i2c_num = 2; } #endif #if defined(MICROPY_HW_I2C3_SCL) else if (self->i2c->Instance == I2C3) { i2c_num = 3; } #endif #if defined(MICROPY_HW_I2C4_SCL) else if (self->i2c->Instance == I2C4) { i2c_num = 4; } #endif if (self->i2c->State == HAL_I2C_STATE_RESET) { mp_printf(print, "I2C(%u)", i2c_num); } else { if (in_master_mode(self)) { mp_printf(print, "I2C(%u, I2C.CONTROLLER, baudrate=%u" #if PYB_I2C_TIMINGR ", timingr=0x%08x" #endif ")", i2c_num, pyb_i2c_get_baudrate(self->i2c) #if PYB_I2C_TIMINGR , self->i2c->Init.Timing #endif ); } else { mp_printf(print, "I2C(%u, I2C.PERIPHERAL, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f); } } } /// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False) /// /// Initialise the I2C bus with the given parameters: /// /// - `mode` must be either `I2C.CONTROLLER` or `I2C.PERIPHERAL` /// - `addr` is the 7-bit address (only sensible for a peripheral) /// - `baudrate` is the SCL clock rate (only sensible for a controller) /// - `gencall` is whether to support general call mode STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_INT, {.u_int = PYB_I2C_MASTER} }, { MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} }, { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} }, { MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_dma, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, #if PYB_I2C_TIMINGR { MP_QSTR_timingr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, #endif }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the I2C configuration values I2C_InitTypeDef *init = &self->i2c->Init; if (args[0].u_int == PYB_I2C_MASTER) { // use a special address to indicate we are a controller init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS; } else { init->OwnAddress1 = (args[1].u_int << 1) & 0xfe; } // Set baudrate or timing value (if supported) #if PYB_I2C_TIMINGR if (args[5].u_obj != mp_const_none) { init->Timing = mp_obj_get_int_truncated(args[5].u_obj); } else #endif { i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX)); } init->AddressingMode = I2C_ADDRESSINGMODE_7BIT; init->DualAddressMode = I2C_DUALADDRESS_DISABLED; init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED; init->OwnAddress2 = 0; // unused init->NoStretchMode = I2C_NOSTRETCH_DISABLE; *self->use_dma = args[4].u_bool; // init the I2C bus i2c_deinit(self->i2c); int ret = pyb_i2c_init(self->i2c); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct an I2C object on the given bus. `bus` can be 1 or 2. /// With no additional parameters, the I2C object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the I2C buses are: /// /// - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)` /// - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)` STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get I2C object int i2c_id = i2c_find_peripheral(args[0]); const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1]; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args); } return MP_OBJ_FROM_PTR(i2c_obj); } STATIC mp_obj_t pyb_i2c_init_(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_i2c_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init_); /// \method deinit() /// Turn off the I2C bus. STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) { pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); i2c_deinit(self->i2c); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit); /// \method is_ready(addr) /// Check if an I2C device responds to the given address. Only valid when in controller mode. STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) { pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); if (!in_master_mode(self)) { mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller")); } mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1; for (int i = 0; i < 10; i++) { HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200); if (status == HAL_OK) { return mp_const_true; } } return mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready); /// \method scan() /// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond. /// Only valid when in controller mode. STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) { pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); if (!in_master_mode(self)) { mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller")); } mp_obj_t list = mp_obj_new_list(0, NULL); for (uint addr = 0x08; addr <= 0x77; addr++) { HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 1, 200); if (status == HAL_OK) { mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr)); } } return list; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan); /// \method send(send, addr=0x00, timeout=5000) /// Send data on the bus: /// /// - `send` is the data to send (an integer to send, or a buffer object) /// - `addr` is the address to send to (only required in controller mode) /// - `timeout` is the timeout in milliseconds to wait for the send /// /// Return value: `None`. STATIC mp_obj_t pyb_i2c_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); // if option is set and IRQs are enabled then we can use DMA bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; DMA_HandleTypeDef tx_dma; if (use_dma) { dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c); self->i2c->hdmatx = &tx_dma; self->i2c->hdmarx = NULL; } // send the data HAL_StatusTypeDef status; if (in_master_mode(self)) { if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) { if (use_dma) { dma_deinit(self->tx_dma_descr); } mp_raise_TypeError(MP_ERROR_TEXT("addr argument required")); } mp_uint_t i2c_addr = args[1].u_int << 1; if (!use_dma) { status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int); } else { MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len); } } else { if (!use_dma) { status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int); } else { MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len); } } // if we used DMA, wait for it to finish if (use_dma) { if (status == HAL_OK) { status = i2c_wait_dma_finished(self->i2c, args[2].u_int); } dma_deinit(self->tx_dma_descr); } if (status != HAL_OK) { i2c_reset_after_error(self->i2c); mp_hal_raise(status); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send); /// \method recv(recv, addr=0x00, timeout=5000) /// /// Receive data on the bus: /// /// - `recv` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes /// - `addr` is the address to receive from (only required in controller mode) /// - `timeout` is the timeout in milliseconds to wait for the receive /// /// Return value: if `recv` is an integer then a new buffer of the bytes received, /// otherwise the same buffer that was passed in to `recv`. STATIC mp_obj_t pyb_i2c_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); // if option is set and IRQs are enabled then we can use DMA bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; DMA_HandleTypeDef rx_dma; if (use_dma) { dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c); self->i2c->hdmatx = NULL; self->i2c->hdmarx = &rx_dma; } // receive the data HAL_StatusTypeDef status; if (in_master_mode(self)) { if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) { mp_raise_TypeError(MP_ERROR_TEXT("addr argument required")); } mp_uint_t i2c_addr = args[1].u_int << 1; if (!use_dma) { status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len, args[2].u_int); } else { MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len); } } else { if (!use_dma) { status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t *)vstr.buf, vstr.len, args[2].u_int); } else { MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t *)vstr.buf, vstr.len); } } // if we used DMA, wait for it to finish if (use_dma) { if (status == HAL_OK) { status = i2c_wait_dma_finished(self->i2c, args[2].u_int); } dma_deinit(self->rx_dma_descr); } if (status != HAL_OK) { i2c_reset_after_error(self->i2c); mp_hal_raise(status); } // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_bytes_from_vstr(&vstr); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv); /// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8) /// /// Read from the memory of an I2C device: /// /// - `data` can be an integer or a buffer to read into /// - `addr` is the I2C device address /// - `memaddr` is the memory location within the I2C device /// - `timeout` is the timeout in milliseconds to wait for the read /// - `addr_size` selects width of memaddr: 8 or 16 bits /// /// Returns the read data. /// This is only valid in controller mode. STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; STATIC mp_obj_t pyb_i2c_mem_read(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args); if (!in_master_mode(self)) { mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller")); } // get the buffer to read into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); // get the addresses mp_uint_t i2c_addr = args[1].u_int << 1; mp_uint_t mem_addr = args[2].u_int; // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; if (args[4].u_int != 8) { mem_addr_size = I2C_MEMADD_SIZE_16BIT; } // if option is set and IRQs are enabled then we can use DMA bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; HAL_StatusTypeDef status; if (!use_dma) { status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len, args[3].u_int); } else { DMA_HandleTypeDef rx_dma; dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c); self->i2c->hdmatx = NULL; self->i2c->hdmarx = &rx_dma; MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len); if (status == HAL_OK) { status = i2c_wait_dma_finished(self->i2c, args[3].u_int); } dma_deinit(self->rx_dma_descr); } if (status != HAL_OK) { i2c_reset_after_error(self->i2c); mp_hal_raise(status); } // return the read data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_bytes_from_vstr(&vstr); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read); /// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8) /// /// Write to the memory of an I2C device: /// /// - `data` can be an integer or a buffer to write from /// - `addr` is the I2C device address /// - `memaddr` is the memory location within the I2C device /// - `timeout` is the timeout in milliseconds to wait for the write /// - `addr_size` selects width of memaddr: 8 or 16 bits /// /// Returns `None`. /// This is only valid in controller mode. STATIC mp_obj_t pyb_i2c_mem_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args (same as mem_read) pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args); if (!in_master_mode(self)) { mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller")); } // get the buffer to write from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); // get the addresses mp_uint_t i2c_addr = args[1].u_int << 1; mp_uint_t mem_addr = args[2].u_int; // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; if (args[4].u_int != 8) { mem_addr_size = I2C_MEMADD_SIZE_16BIT; } // if option is set and IRQs are enabled then we can use DMA bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; HAL_StatusTypeDef status; if (!use_dma) { status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int); } else { DMA_HandleTypeDef tx_dma; dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c); self->i2c->hdmatx = &tx_dma; self->i2c->hdmarx = NULL; MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len); if (status == HAL_OK) { status = i2c_wait_dma_finished(self->i2c, args[3].u_int); } dma_deinit(self->tx_dma_descr); } if (status != HAL_OK) { i2c_reset_after_error(self->i2c); mp_hal_raise(status); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write); STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) }, { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) }, { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) }, { MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) }, // class constants /// \constant CONTROLLER - for initialising the bus to controller mode /// \constant PERIPHERAL - for initialising the bus to peripheral mode { MP_ROM_QSTR(MP_QSTR_CONTROLLER), MP_ROM_INT(PYB_I2C_MASTER) }, { MP_ROM_QSTR(MP_QSTR_PERIPHERAL), MP_ROM_INT(PYB_I2C_SLAVE) }, // TODO - remove MASTER/SLAVE when CONTROLLER/PERIPHERAL gain wide adoption { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) }, { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pyb_i2c_type, MP_QSTR_I2C, MP_TYPE_FLAG_NONE, make_new, pyb_i2c_make_new, print, pyb_i2c_print, locals_dict, &pyb_i2c_locals_dict ); #endif // MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C