/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "stm32f4xx_hal.h" #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "bufhelper.h" #include "uart.h" #include "pybioctl.h" /// \moduleref pyb /// \class UART - duplex serial communication bus /// /// UART implements the standard UART/USART duplex serial communications protocol. At /// the physical level it consists of 2 lines: RX and TX. /// /// See usage model of I2C. UART is very similar. Main difference is /// parameters to init the UART bus: /// /// from pyb import UART /// /// uart = UART(1, 9600) # init with given baudrate /// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters /// /// Bits can be 8 or 9, stop can be 1 or 2, parity can be None, 0 (even), 1 (odd). /// /// Extra method: /// /// uart.any() # returns True if any characters waiting struct _pyb_uart_obj_t { mp_obj_base_t base; pyb_uart_t uart_id; bool is_enabled; UART_HandleTypeDef uart; }; // assumes Init parameters have been set up correctly bool uart_init2(pyb_uart_obj_t *uart_obj) { USART_TypeDef *UARTx = NULL; uint32_t GPIO_Pin = 0; uint8_t GPIO_AF_UARTx = 0; GPIO_TypeDef* GPIO_Port = NULL; switch (uart_obj->uart_id) { // USART1 is on PA9/PA10 (CK on PA8), PB6/PB7 case PYB_UART_1: UARTx = USART1; GPIO_AF_UARTx = GPIO_AF7_USART1; #if defined (PYBV4) || defined(PYBV10) GPIO_Port = GPIOB; GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; #else GPIO_Port = GPIOA; GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10; #endif __USART1_CLK_ENABLE(); break; // USART2 is on PA2/PA3 (CK on PA4), PD5/PD6 (CK on PD7) case PYB_UART_2: UARTx = USART2; GPIO_AF_UARTx = GPIO_AF7_USART2; GPIO_Port = GPIOA; GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3; __USART2_CLK_ENABLE(); break; // USART3 is on PB10/PB11 (CK on PB12), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10) case PYB_UART_3: UARTx = USART3; GPIO_AF_UARTx = GPIO_AF7_USART3; #if defined(PYBV3) || defined(PYBV4) | defined(PYBV10) GPIO_Port = GPIOB; GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11; #else GPIO_Port = GPIOD; GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9; #endif __USART3_CLK_ENABLE(); break; // UART4 is on PA0/PA1, PC10/PC11 case PYB_UART_4: UARTx = UART4; GPIO_AF_UARTx = GPIO_AF8_UART4; GPIO_Port = GPIOA; GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1; __UART4_CLK_ENABLE(); break; // USART6 is on PC6/PC7 (CK on PC8) case PYB_UART_6: UARTx = USART6; GPIO_AF_UARTx = GPIO_AF8_USART6; GPIO_Port = GPIOC; GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; __USART6_CLK_ENABLE(); break; default: return false; } // init GPIO GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_Pin; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Alternate = GPIO_AF_UARTx; HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure); // init UARTx uart_obj->uart.Instance = UARTx; HAL_UART_Init(&uart_obj->uart); uart_obj->is_enabled = true; return true; } bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { UART_HandleTypeDef *uh = &uart_obj->uart; memset(uh, 0, sizeof(*uh)); uh->Init.BaudRate = baudrate; uh->Init.WordLength = UART_WORDLENGTH_8B; uh->Init.StopBits = UART_STOPBITS_1; uh->Init.Parity = UART_PARITY_NONE; uh->Init.Mode = UART_MODE_TX_RX; uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; uh->Init.OverSampling = UART_OVERSAMPLING_16; return uart_init2(uart_obj); } void uart_deinit(pyb_uart_obj_t *uart_obj) { uart_obj->is_enabled = false; UART_HandleTypeDef *uart = &uart_obj->uart; HAL_UART_DeInit(uart); if (uart->Instance == USART1) { __USART1_FORCE_RESET(); __USART1_RELEASE_RESET(); __USART1_CLK_DISABLE(); } else if (uart->Instance == USART2) { __USART2_FORCE_RESET(); __USART2_RELEASE_RESET(); __USART2_CLK_DISABLE(); } else if (uart->Instance == USART3) { __USART3_FORCE_RESET(); __USART3_RELEASE_RESET(); __USART3_CLK_DISABLE(); } else if (uart->Instance == UART4) { __UART4_FORCE_RESET(); __UART4_RELEASE_RESET(); __UART4_CLK_DISABLE(); } else if (uart->Instance == USART6) { __USART6_FORCE_RESET(); __USART6_RELEASE_RESET(); __USART6_CLK_DISABLE(); } } bool uart_rx_any(pyb_uart_obj_t *uart_obj) { return __HAL_UART_GET_FLAG(&uart_obj->uart, UART_FLAG_RXNE); } int uart_rx_char(pyb_uart_obj_t *uart_obj) { uint8_t ch; if (HAL_UART_Receive(&uart_obj->uart, &ch, 1, 0) != HAL_OK) { ch = 0; } return ch; } void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { uint8_t ch = c; HAL_UART_Transmit(&uart_obj->uart, &ch, 1, 100000); } void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, 100000); } void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(uart_obj, '\r'); } uart_tx_char(uart_obj, *str); } } /******************************************************************************/ /* Micro Python bindings */ STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = self_in; if (!self->is_enabled) { print(env, "UART(%lu)", self->uart_id); } else { print(env, "UART(%lu, baudrate=%u, bits=%u, stop=%u", self->uart_id, self->uart.Init.BaudRate, self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9, self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2); if (self->uart.Init.Parity == UART_PARITY_NONE) { print(env, ", parity=None)"); } else { print(env, ", parity=%u)", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); } } } /// \method init(baudrate, *, bits=8, stop=1, parity=None) /// /// Initialise the SPI bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 8 or 9. /// - `stop` is the number of stop bits, 1 or 2. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). STATIC const mp_arg_t pyb_uart_init_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; #define PYB_UART_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_init_args) STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PYB_UART_INIT_NUM_ARGS]; mp_arg_parse_all(n_args, args, kw_args, PYB_UART_INIT_NUM_ARGS, pyb_uart_init_args, vals); // set the UART configuration values memset(&self->uart, 0, sizeof(self->uart)); UART_InitTypeDef *init = &self->uart.Init; init->BaudRate = vals[0].u_int; init->WordLength = vals[1].u_int == 8 ? UART_WORDLENGTH_8B : UART_WORDLENGTH_9B; switch (vals[2].u_int) { case 1: init->StopBits = UART_STOPBITS_1; break; default: init->StopBits = UART_STOPBITS_2; break; } if (vals[3].u_obj == mp_const_none) { init->Parity = UART_PARITY_NONE; } else { mp_int_t parity = mp_obj_get_int(vals[3].u_obj); init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; } init->Mode = UART_MODE_TX_RX; init->HwFlowCtl = UART_HWCONTROL_NONE; init->OverSampling = UART_OVERSAMPLING_16; // init UART (if it fails, it's because the port doesn't exist) if (!uart_init2(self)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %d does not exist", self->uart_id)); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. /// With no additional parameters, the UART object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the UART busses are: /// /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // create object pyb_uart_obj_t *o = m_new_obj(pyb_uart_obj_t); o->base.type = &pyb_uart_type; // work out port o->uart_id = 0; if (MP_OBJ_IS_STR(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { #if defined(PYBV10) } else if (strcmp(port, "XA") == 0) { o->uart_id = PYB_UART_XA; } else if (strcmp(port, "XB") == 0) { o->uart_id = PYB_UART_XB; } else if (strcmp(port, "YA") == 0) { o->uart_id = PYB_UART_YA; } else if (strcmp(port, "YB") == 0) { o->uart_id = PYB_UART_YB; #endif } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %s does not exist", port)); } } else { o->uart_id = mp_obj_get_int(args[0]); } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(o, n_args - 1, args + 1, &kw_args); } return o; } STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); /// \method deinit() /// Turn off the UART bus. STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; uart_deinit(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_any(self)) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); /// \method send(send, *, timeout=5000) /// Send data on the bus: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: `None`. STATIC const mp_arg_t pyb_uart_send_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; #define PYB_UART_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_send_args) STATIC mp_obj_t pyb_uart_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide pyb_uart_obj_t *self = args[0]; // parse args mp_arg_val_t vals[PYB_UART_SEND_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_SEND_NUM_ARGS, pyb_uart_send_args, vals); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); // send the data HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); if (status != HAL_OK) { // TODO really need a HardwareError object, or something nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Transmit failed with code %d", status)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_send_obj, 1, pyb_uart_send); /// \method recv(recv, *, timeout=5000) /// /// Receive data on the bus: /// /// - `recv` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `recv` is an integer then a new buffer of the bytes received, /// otherwise the same buffer that was passed in to `recv`. STATIC const mp_arg_t pyb_uart_recv_args[] = { { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; #define PYB_UART_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_recv_args) STATIC mp_obj_t pyb_uart_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide pyb_uart_obj_t *self = args[0]; // parse args mp_arg_val_t vals[PYB_UART_RECV_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_RECV_NUM_ARGS, pyb_uart_recv_args, vals); // get the buffer to receive into mp_buffer_info_t bufinfo; mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo); // receive the data HAL_StatusTypeDef status = HAL_UART_Receive(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); if (status != HAL_OK) { // TODO really need a HardwareError object, or something nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Receive failed with code %d", status)); } // return the received data if (o_ret == MP_OBJ_NULL) { return vals[0].u_obj; } else { return mp_obj_str_builder_end(o_ret); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_recv_obj, 1, pyb_uart_recv); STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_uart_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_uart_recv_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); mp_uint_t uart_ioctl(mp_obj_t self_in, mp_uint_t request, int *errcode, ...) { pyb_uart_obj_t *self = self_in; va_list vargs; va_start(vargs, errcode); mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = va_arg(vargs, mp_uint_t); ret = 0; if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) { ret |= MP_IOCTL_POLL_RD; } if (flags & MP_IOCTL_POLL_WR) { // TODO can we always write? ret |= MP_IOCTL_POLL_WR; } } else { *errcode = 1; // EPERM, operation not permitted ret = -1; } va_end(vargs); return ret; } STATIC const mp_stream_p_t uart_stream_p = { //.read = uart_read, // TODO //.write = uart_write, // TODO .ioctl = uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .stream_p = &uart_stream_p, .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, };