/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include STM32_HAL_H #include "py/runtime.h" #include "rtc.h" /// \moduleref pyb /// \class RTC - real time clock /// /// The RTC is and independent clock that keeps track of the date /// and time. /// /// Example usage: /// /// rtc = pyb.RTC() /// rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0)) /// print(rtc.datetime()) RTC_HandleTypeDef RTCHandle; // rtc_info indicates various things about RTC startup // it's a bit of a hack at the moment static mp_uint_t rtc_info; // Note: LSI is around (32KHz), these dividers should work either way // ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1) #define RTC_ASYNCH_PREDIV (0x7f) #define RTC_SYNCH_PREDIV (0x00ff) #if 0 #define RTC_INFO_USE_EXISTING (0) #define RTC_INFO_USE_LSE (1) #define RTC_INFO_USE_LSI (3) void rtc_init(void) { // Enable the PWR clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); // Allow access to RTC PWR_BackupAccessCmd(ENABLE); if (RTC_ReadBackupRegister(RTC_BKP_DR0) == 0x32F2) { // RTC still alive, so don't re-init it // wait for RTC APB register synchronisation RTC_WaitForSynchro(); rtc_info = RTC_INFO_USE_EXISTING; return; } uint32_t timeout = 10000000; // Enable the PWR clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); // Allow access to RTC PWR_BackupAccessCmd(ENABLE); // Enable the LSE OSC RCC_LSEConfig(RCC_LSE_ON); // Wait till LSE is ready mp_uint_t sys_tick = sys_tick_counter; while((RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) && (--timeout > 0)) { } // record how long it took for the RTC to start up rtc_info = (sys_tick_counter - sys_tick) << 2; // If LSE timed out, use LSI instead if (timeout == 0) { // Disable the LSE OSC RCC_LSEConfig(RCC_LSE_OFF); // Enable the LSI OSC RCC_LSICmd(ENABLE); // Wait till LSI is ready while(RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) { } // Use LSI as the RTC Clock Source RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // record that we are using the LSI rtc_info |= RTC_INFO_USE_LSI; } else { // Use LSE as the RTC Clock Source RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // record that we are using the LSE rtc_info |= RTC_INFO_USE_LSE; } // Note: LSI is around (32KHz), these dividers should work either way // ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1) uint32_t uwSynchPrediv = 0xFF; uint32_t uwAsynchPrediv = 0x7F; // Enable the RTC Clock RCC_RTCCLKCmd(ENABLE); // Wait for RTC APB registers synchronisation RTC_WaitForSynchro(); // Configure the RTC data register and RTC prescaler RTC_InitTypeDef RTC_InitStructure; RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv; RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv; RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24; RTC_Init(&RTC_InitStructure); // Set the date (BCD) RTC_DateTypeDef RTC_DateStructure; RTC_DateStructure.RTC_Year = 0x13; RTC_DateStructure.RTC_Month = RTC_Month_October; RTC_DateStructure.RTC_Date = 0x26; RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday; RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure); // Set the time (BCD) RTC_TimeTypeDef RTC_TimeStructure; RTC_TimeStructure.RTC_H12 = RTC_H12_AM; RTC_TimeStructure.RTC_Hours = 0x01; RTC_TimeStructure.RTC_Minutes = 0x53; RTC_TimeStructure.RTC_Seconds = 0x00; RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure); // Indicator for the RTC configuration RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2); } #endif STATIC void RTC_CalendarConfig(void); void rtc_init(void) { RTCHandle.Instance = RTC; RTC_DateTypeDef date; /* Configure RTC prescaler and RTC data registers */ /* RTC configured as follow: - Hour Format = Format 24 - Asynch Prediv = Value according to source clock - Synch Prediv = Value according to source clock - OutPut = Output Disable - OutPutPolarity = High Polarity - OutPutType = Open Drain */ RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24; RTCHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV; RTCHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV; RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE; RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; // if LTE enabled & ready --> no need to (re-)init RTC if ((RCC->BDCR & (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) == (RCC_BDCR_LSEON | RCC_BDCR_LSERDY)) { // remove Backup Domain write protection #if defined(MCU_SERIES_F7) PWR->CR1 |= PWR_CR1_DBP; #else PWR->CR |= PWR_CR_DBP; #endif // Clear source Reset Flag __HAL_RCC_CLEAR_RESET_FLAGS(); // provide some status information rtc_info |= 0x40000 | (RCC->BDCR & 7) | (RCC->CSR & 3) << 8; return; } mp_uint_t tick = HAL_GetTick(); if (HAL_RTC_Init(&RTCHandle) != HAL_OK) { // init error rtc_info = 0xffff; // indicate error return; } // record how long it took for the RTC to start up rtc_info = HAL_GetTick() - tick; HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN); if (date.Year == 0 && date.Month ==0 && date.Date == 0) { // fresh reset; configure RTC Calendar RTC_CalendarConfig(); } else { // RTC was previously set, so leave it alone if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) { // power on reset occurred rtc_info |= 0x10000; } if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) { // external reset occurred rtc_info |= 0x20000; } // Clear source Reset Flag __HAL_RCC_CLEAR_RESET_FLAGS(); } } STATIC void RTC_CalendarConfig(void) { // set the date to 1st Jan 2014 RTC_DateTypeDef date; date.Year = 14; date.Month = 1; date.Date = 1; date.WeekDay = RTC_WEEKDAY_WEDNESDAY; if(HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN) != HAL_OK) { // init error return; } // set the time to 00:00:00 RTC_TimeTypeDef time; time.Hours = 0; time.Minutes = 0; time.Seconds = 0; time.TimeFormat = RTC_HOURFORMAT12_AM; time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; time.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN) != HAL_OK) { // init error return; } } /* Note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select the RTC clock source; in this case the Backup domain will be reset in order to modify the RTC Clock source, as consequence RTC registers (including the backup registers) and RCC_BDCR register are set to their reset values. */ void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; /* To change the source clock of the RTC feature (LSE, LSI), You have to: - Enable the power clock using __PWR_CLK_ENABLE() - Enable write access using HAL_PWR_EnableBkUpAccess() function before to configure the RTC clock source (to be done once after reset). - Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and __HAL_RCC_BACKUPRESET_RELEASE(). - Configure the needed RTc clock source */ // RTC clock source uses LSE (external crystal) only if relevant // configuration variable is set. Otherwise it uses LSI (internal osc). RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; #if defined(MICROPY_HW_RTC_USE_LSE) && MICROPY_HW_RTC_USE_LSE RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_OFF; #else RCC_OscInitStruct.LSEState = RCC_LSE_OFF; RCC_OscInitStruct.LSIState = RCC_LSI_ON; #endif if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { //Error_Handler(); return; } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; #if defined(MICROPY_HW_RTC_USE_LSE) && MICROPY_HW_RTC_USE_LSE PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; #else PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; #endif if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { //Error_Handler(); return; } // enable RTC peripheral clock __HAL_RCC_RTC_ENABLE(); } void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc) { __HAL_RCC_RTC_DISABLE(); } /******************************************************************************/ // Micro Python bindings typedef struct _pyb_rtc_obj_t { mp_obj_base_t base; } pyb_rtc_obj_t; STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}}; /// \classmethod \constructor() /// Create an RTC object. STATIC mp_obj_t pyb_rtc_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return constant object return (mp_obj_t)&pyb_rtc_obj; } /// \method info() /// Get information about the startup time and reset source. /// /// - The lower 0xffff are the number of milliseconds the RTC took to /// start up. /// - Bit 0x10000 is set if a power-on reset occurred. /// - Bit 0x20000 is set if an external reset occurred mp_obj_t pyb_rtc_info(mp_obj_t self_in) { return mp_obj_new_int(rtc_info); } MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_info_obj, pyb_rtc_info); /// \method datetime([datetimetuple]) /// Get or set the date and time of the RTC. /// /// With no arguments, this method returns an 8-tuple with the current /// date and time. With 1 argument (being an 8-tuple) it sets the date /// and time. /// /// The 8-tuple has the following format: /// /// (year, month, day, weekday, hours, minutes, seconds, subseconds) /// /// `weekday` is 1-7 for Monday through Sunday. /// /// `subseconds` counts down from 255 to 0 mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 1) { // get date and time // note: need to call get time then get date to correctly access the registers RTC_DateTypeDef date; RTC_TimeTypeDef time; HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN); HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN); mp_obj_t tuple[8] = { mp_obj_new_int(2000 + date.Year), mp_obj_new_int(date.Month), mp_obj_new_int(date.Date), mp_obj_new_int(date.WeekDay), mp_obj_new_int(time.Hours), mp_obj_new_int(time.Minutes), mp_obj_new_int(time.Seconds), mp_obj_new_int(time.SubSeconds), }; return mp_obj_new_tuple(8, tuple); } else { // set date and time mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 8, &items); RTC_DateTypeDef date; date.Year = mp_obj_get_int(items[0]) - 2000; date.Month = mp_obj_get_int(items[1]); date.Date = mp_obj_get_int(items[2]); date.WeekDay = mp_obj_get_int(items[3]); HAL_RTC_SetDate(&RTCHandle, &date, FORMAT_BIN); RTC_TimeTypeDef time; time.Hours = mp_obj_get_int(items[4]); time.Minutes = mp_obj_get_int(items[5]); time.Seconds = mp_obj_get_int(items[6]); time.SubSeconds = mp_obj_get_int(items[7]); time.TimeFormat = RTC_HOURFORMAT12_AM; time.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; time.StoreOperation = RTC_STOREOPERATION_SET; HAL_RTC_SetTime(&RTCHandle, &time, FORMAT_BIN); return mp_const_none; } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime); // wakeup(None) // wakeup(ms, callback=None) // wakeup(wucksel, wut, callback) mp_obj_t pyb_rtc_wakeup(mp_uint_t n_args, const mp_obj_t *args) { // wut is wakeup counter start value, wucksel is clock source // counter is decremented at wucksel rate, and wakes the MCU when it gets to 0 // wucksel=0b000 is RTC/16 (RTC runs at 32768Hz) // wucksel=0b001 is RTC/8 // wucksel=0b010 is RTC/4 // wucksel=0b011 is RTC/2 // wucksel=0b100 is 1Hz clock // wucksel=0b110 is 1Hz clock with 0x10000 added to wut // so a 1 second wakeup could be wut=2047, wucksel=0b000, or wut=4095, wucksel=0b001, etc // disable wakeup IRQ while we configure it HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn); bool enable = false; mp_int_t wucksel; mp_int_t wut; mp_obj_t callback = mp_const_none; if (n_args <= 3) { if (args[1] == mp_const_none) { // disable wakeup } else { // time given in ms mp_int_t ms = mp_obj_get_int(args[1]); mp_int_t div = 2; wucksel = 3; while (div <= 16 && ms > 2000 * div) { div *= 2; wucksel -= 1; } if (div <= 16) { wut = 32768 / div * ms / 1000; } else { // use 1Hz clock wucksel = 4; wut = ms / 1000; if (wut > 0x10000) { // wut too large for 16-bit register, try to offset by 0x10000 wucksel = 6; wut -= 0x10000; if (wut > 0x10000) { // wut still too large nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "wakeup value too large")); } } } // wut register should be 1 less than desired value, but guard against wut=0 if (wut > 0) { wut -= 1; } enable = true; } if (n_args == 3) { callback = args[2]; } } else { // config values given directly wucksel = mp_obj_get_int(args[1]); wut = mp_obj_get_int(args[2]); callback = args[3]; enable = true; } // set the callback MP_STATE_PORT(pyb_extint_callback)[22] = callback; // disable register write protection RTC->WPR = 0xca; RTC->WPR = 0x53; // clear WUTE RTC->CR &= ~(1 << 10); // wait until WUTWF is set while (!(RTC->ISR & (1 << 2))) { } if (enable) { // program WUT RTC->WUTR = wut; // set WUTIE to enable wakeup interrupts // set WUTE to enable wakeup // program WUCKSEL RTC->CR = (RTC->CR & ~7) | (1 << 14) | (1 << 10) | (wucksel & 7); // enable register write protection RTC->WPR = 0xff; // enable external interrupts on line 22 EXTI->IMR |= 1 << 22; EXTI->RTSR |= 1 << 22; // clear interrupt flags RTC->ISR &= ~(1 << 10); EXTI->PR = 1 << 22; HAL_NVIC_SetPriority(RTC_WKUP_IRQn, 0x0f, 0x0f); HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn); //printf("wut=%d wucksel=%d\n", wut, wucksel); } else { // clear WUTIE to disable interrupts RTC->CR &= ~(1 << 14); // enable register write protection RTC->WPR = 0xff; // disable external interrupts on line 22 EXTI->IMR &= ~(1 << 22); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_wakeup_obj, 2, 4, pyb_rtc_wakeup); // calibration(None) // calibration(cal) // When an integer argument is provided, check that it falls in the range [-511 to 512] // and set the calibration value; otherwise return calibration value mp_obj_t pyb_rtc_calibration(mp_uint_t n_args, const mp_obj_t *args) { mp_int_t cal; if (n_args == 2) { cal = mp_obj_get_int(args[1]); mp_uint_t cal_p, cal_m; if (cal < -511 || cal > 512) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "calibration value out of range")); } if (cal > 0) { cal_p = RTC_SMOOTHCALIB_PLUSPULSES_SET; cal_m = 512 - cal; } else { cal_p = RTC_SMOOTHCALIB_PLUSPULSES_RESET; cal_m = -cal; } HAL_RTCEx_SetSmoothCalib(&RTCHandle, RTC_SMOOTHCALIB_PERIOD_32SEC, cal_p, cal_m); return mp_const_none; } else { // printf("CALR = 0x%x\n", (mp_uint_t) RTCHandle.Instance->CALR); // DEBUG // Test if CALP bit is set in CALR: if (RTCHandle.Instance->CALR & 0x8000) { cal = 512 - (RTCHandle.Instance->CALR & 0x1ff); } else { cal = -(RTCHandle.Instance->CALR & 0x1ff); } return mp_obj_new_int(cal); } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_calibration_obj, 1, 2, pyb_rtc_calibration); STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_rtc_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_wakeup), (mp_obj_t)&pyb_rtc_wakeup_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_calibration), (mp_obj_t)&pyb_rtc_calibration_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table); const mp_obj_type_t pyb_rtc_type = { { &mp_type_type }, .name = MP_QSTR_RTC, .make_new = pyb_rtc_make_new, .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict, };