#include <stdint.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include "py/nlr.h" #include "py/parse.h" #include "py/lexer.h" #include "py/runtime.h" #include "py/stackctrl.h" #include "py/gc.h" #include "py/mphal.h" #include "gccollect.h" #include "lib/utils/pyexec.h" #include "readline.h" #include "lexermemzip.h" #include "Arduino.h" #include "servo.h" #include "led.h" #include "uart.h" #include "pin.h" extern uint32_t _heap_start; void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_BUILTIN, 1); delay(250); led_state(PYB_LED_BUILTIN, 0); delay(250); } } void NORETURN __fatal_error(const char *msg) { for (volatile uint delay = 0; delay < 10000000; delay++) { } led_state(1, 1); led_state(2, 1); led_state(3, 1); led_state(4, 1); mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14); mp_hal_stdout_tx_strn(msg, strlen(msg)); for (uint i = 0;;) { led_toggle(((i++) & 3) + 1); for (volatile uint delay = 0; delay < 10000000; delay++) { } if (i >= 16) { // to conserve power __WFI(); } } } void nlr_jump_fail(void *val) { printf("FATAL: uncaught exception %p\n", val); __fatal_error(""); } void __assert_func(const char *file, int line, const char *func, const char *expr) { printf("Assertion failed: %s, file %s, line %d\n", expr, file, line); __fatal_error(""); } mp_obj_t pyb_analog_read(mp_obj_t pin_obj) { uint pin = mp_obj_get_int(pin_obj); int val = analogRead(pin); return MP_OBJ_NEW_SMALL_INT(val); } mp_obj_t pyb_analog_write(mp_obj_t pin_obj, mp_obj_t val_obj) { uint pin = mp_obj_get_int(pin_obj); int val = mp_obj_get_int(val_obj); analogWrite(pin, val); return mp_const_none; } mp_obj_t pyb_analog_write_resolution(mp_obj_t res_obj) { int res = mp_obj_get_int(res_obj); analogWriteResolution(res); return mp_const_none; } mp_obj_t pyb_analog_write_frequency(mp_obj_t pin_obj, mp_obj_t freq_obj) { uint pin = mp_obj_get_int(pin_obj); int freq = mp_obj_get_int(freq_obj); analogWriteFrequency(pin, freq); return mp_const_none; } #if 0 // get lots of info about the board static mp_obj_t pyb_info(void) { // get and print unique id; 96 bits { byte *id = (byte*)0x40048058; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM); // to print info about memory { printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_etext=%p\n", &_etext); printf("_heap_start=%p\n", &_heap_start); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" %u total\n", info.total); printf(" %u used %u free\n", info.used, info.free); printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block); } #if 0 // free space on flash { DWORD nclst; FATFS *fatfs; f_getfree("0:", &nclst, &fatfs); printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); } #endif return mp_const_none; } #endif #define RAM_START (0x1FFF8000) // fixed for chip #define HEAP_END (0x20006000) // tunable #define RAM_END (0x20008000) // fixed for chip #if 0 void gc_helper_get_regs_and_clean_stack(mp_uint_t *regs, mp_uint_t heap_end); mp_obj_t pyb_gc(void) { gc_collect(); return mp_const_none; } mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) { //assert(1 <= n_args && n_args <= 2); uint pin = mp_obj_get_int(args[0]); if (pin > CORE_NUM_DIGITAL) { goto pin_error; } if (n_args == 1) { // get pin pinMode(pin, INPUT); return MP_OBJ_NEW_SMALL_INT(digitalRead(pin)); } // set pin pinMode(pin, OUTPUT); digitalWrite(pin, mp_obj_is_true(args[1])); return mp_const_none; pin_error: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %d does not exist", pin)); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio); #if 0 mp_obj_t pyb_hid_send_report(mp_obj_t arg) { mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4); uint8_t data[4]; data[0] = mp_obj_get_int(items[0]); data[1] = mp_obj_get_int(items[1]); data[2] = mp_obj_get_int(items[2]); data[3] = mp_obj_get_int(items[3]); usb_hid_send_report(data); return mp_const_none; } #endif #endif // 0 STATIC mp_obj_t pyb_config_source_dir = MP_OBJ_NULL; STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL; STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL; mp_obj_t pyb_source_dir(mp_obj_t source_dir) { if (MP_OBJ_IS_STR(source_dir)) { pyb_config_source_dir = source_dir; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_source_dir_obj, pyb_source_dir); mp_obj_t pyb_main(mp_obj_t main) { if (MP_OBJ_IS_STR(main)) { pyb_config_main = main; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main); STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) { if (MP_OBJ_IS_STR(usb_mode)) { pyb_config_usb_mode = usb_mode; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode); #if 0 mp_obj_t pyb_delay(mp_obj_t count) { delay(mp_obj_get_int(count)); return mp_const_none; } mp_obj_t pyb_led(mp_obj_t state) { led_state(PYB_LED_BUILTIN, mp_obj_is_true(state)); return state; } #endif // 0 #if 0 char *strdup(const char *str) { uint32_t len = strlen(str); char *s2 = m_new(char, len + 1); memcpy(s2, str, len); s2[len] = 0; return s2; } #endif int main(void) { // TODO: Put this in a more common initialization function. // Turn on STKALIGN which keeps the stack 8-byte aligned for interrupts // (per EABI) #define SCB_CCR_STKALIGN (1 << 9) SCB_CCR |= SCB_CCR_STKALIGN; mp_stack_ctrl_init(); mp_stack_set_limit(10240); pinMode(LED_BUILTIN, OUTPUT); led_init(); // int first_soft_reset = true; soft_reset: led_state(PYB_LED_BUILTIN, 1); // GC init gc_init(&_heap_start, (void*)HEAP_END); // Micro Python init mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_init(mp_sys_argv, 0); readline_init0(); pin_init0(); #if 0 // add some functions to the python namespace { mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help)); mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb); mp_store_attr(m, MP_QSTR_info, mp_make_function_n(0, pyb_info)); mp_store_attr(m, MP_QSTR_source_dir, mp_make_function_n(1, pyb_source_dir)); mp_store_attr(m, MP_QSTR_main, mp_make_function_n(1, pyb_main)); mp_store_attr(m, MP_QSTR_gc, mp_make_function_n(0, pyb_gc)); mp_store_attr(m, MP_QSTR_delay, mp_make_function_n(1, pyb_delay)); mp_store_attr(m, MP_QSTR_led, mp_make_function_n(1, pyb_led)); mp_store_attr(m, MP_QSTR_LED, (mp_obj_t)&pyb_led_type); mp_store_attr(m, MP_QSTR_analogRead, mp_make_function_n(1, pyb_analog_read)); mp_store_attr(m, MP_QSTR_analogWrite, mp_make_function_n(2, pyb_analog_write)); mp_store_attr(m, MP_QSTR_analogWriteResolution, mp_make_function_n(1, pyb_analog_write_resolution)); mp_store_attr(m, MP_QSTR_analogWriteFrequency, mp_make_function_n(2, pyb_analog_write_frequency)); mp_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj); mp_store_attr(m, MP_QSTR_Servo, mp_make_function_n(0, pyb_Servo)); mp_store_name(MP_QSTR_pyb, m); } #endif #if MICROPY_MODULE_FROZEN pyexec_frozen_module("boot.py"); #else if (!pyexec_file("/boot.py")) { flash_error(4); } #endif // Turn bootup LED off led_state(PYB_LED_BUILTIN, 0); // run main script #if MICROPY_MODULE_FROZEN pyexec_frozen_module("main.py"); #else { vstr_t *vstr = vstr_new(16); vstr_add_str(vstr, "/"); if (pyb_config_main == MP_OBJ_NULL) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); } if (!pyexec_file(vstr_null_terminated_str(vstr))) { flash_error(3); } vstr_free(vstr); } #endif // enter REPL // REPL mode can change, or it can request a soft reset for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } printf("PYB: soft reboot\n"); // first_soft_reset = false; goto soft_reset; } // stub out __libc_init_array. It's called by mk20dx128.c and is used to call // global C++ constructors. Since this is a C-only projects, we don't need to // call constructors. void __libc_init_array(void) { } // ultoa is used by usb_init_serialnumber. Normally ultoa would be provided // by nonstd.c from the teensy core, but it conflicts with some of the // MicroPython functions in string0.c, so we provide ultoa here. char * ultoa(unsigned long val, char *buf, int radix) { unsigned digit; int i=0, j; char t; while (1) { digit = val % radix; buf[i] = ((digit < 10) ? '0' + digit : 'A' + digit - 10); val /= radix; if (val == 0) break; i++; } buf[i + 1] = 0; for (j=0; j < i; j++, i--) { t = buf[j]; buf[j] = buf[i]; buf[i] = t; } return buf; }