#include #include #include #include #include #include #include #include #include #include #include "std.h" #include "misc.h" #include "mpyconfig.h" #include "gc.h" #include "systick.h" #include "led.h" #include "lcd.h" #include "storage.h" #include "mma.h" #include "usart.h" #include "usb.h" #include "ff.h" #include "timer.h" #include "audio.h" #include "pybwlan.h" int errno; extern uint32_t _heap_start; static FATFS fatfs0; void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_R2, 0); sys_tick_delay_ms(250); led_state(PYB_LED_R1, 0); led_state(PYB_LED_R2, 1); sys_tick_delay_ms(250); } led_state(PYB_LED_R2, 0); } static void impl02_c_version(void) { int x = 0; while (x < 400) { int y = 0; while (y < 400) { volatile int z = 0; while (z < 400) { z = z + 1; } y = y + 1; } x = x + 1; } } #define PYB_USRSW_PORT (GPIOA) #define PYB_USRSW_PIN (GPIO_Pin_13) void sw_init(void) { // make it an input with pull-up GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = PYB_USRSW_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(PYB_USRSW_PORT, &GPIO_InitStructure); } int sw_get(void) { if (PYB_USRSW_PORT->IDR & PYB_USRSW_PIN) { // pulled high, so switch is not pressed return 0; } else { // pulled low, so switch is pressed return 1; } } void __fatal_error(const char *msg) { lcd_print_strn("\nFATAL ERROR:\n", 14); lcd_print_strn(msg, strlen(msg)); for (;;) { flash_error(1); } } #include "nlr.h" #include "misc.h" #include "lexer.h" #include "lexerstm.h" #include "mpyconfig.h" #include "parse.h" #include "compile.h" #include "runtime.h" #include "repl.h" static qstr pyb_config_source_dir = 0; static qstr pyb_config_main = 0; py_obj_t pyb_source_dir(py_obj_t source_dir) { pyb_config_source_dir = py_obj_get_qstr(source_dir); return py_const_none; } py_obj_t pyb_main(py_obj_t main) { pyb_config_main = py_obj_get_qstr(main); return py_const_none; } // sync all file systems py_obj_t pyb_sync(void) { storage_flush(); return py_const_none; } py_obj_t pyb_delay(py_obj_t count) { sys_tick_delay_ms(py_obj_get_int(count)); return py_const_none; } py_obj_t pyb_led(py_obj_t state) { led_state(PYB_LED_G1, rt_is_true(state)); return state; } py_obj_t pyb_sw(void) { if (sw_get()) { return py_const_true; } else { return py_const_false; } } /* void g(uint i) { printf("g:%d\n", i); if (i & 1) { nlr_jump((void*)(42 + i)); } } void f(void) { nlr_buf_t nlr; int i; for (i = 0; i < 4; i++) { printf("f:loop:%d:%p\n", i, &nlr); if (nlr_push(&nlr) == 0) { // normal //printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val); g(i); printf("f:lp:%d:nrm\n", i); nlr_pop(); } else { // nlr //printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val); printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val); } } } void nlr_test(void) { f(1); } */ void fatality(void) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_G1, 1); led_state(PYB_LED_R2, 1); led_state(PYB_LED_G2, 1); } static const char fresh_boot_py[] = "# boot.py -- run on boot-up\n" "# can run arbitrary Python, but best to keep it minimal\n" "\n" "pyb.source_dir('/src')\n" "pyb.main('main.py')\n" "#pyb.usb_usr('VCP')\n" "#pyb.usb_msd(True, 'dual partition')\n" "#pyb.flush_cache(False)\n" "#pyb.error_log('error.txt')\n" ; // get lots of info about the board static py_obj_t pyb_info(void) { // get and print clock speeds // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz { RCC_ClocksTypeDef rcc_clocks; RCC_GetClocksFreq(&rcc_clocks); printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency); } // to print info about memory { extern void *_sidata; extern void *_sdata; extern void *_edata; extern void *_sbss; extern void *_ebss; extern void *_estack; extern void *_etext; printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_etext=%p\n", &_etext); printf("_heap_start=%p\n", &_heap_start); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" %lu total\n", info.total); printf(" %lu : %lu\n", info.used, info.free); printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block); } // free space on flash { DWORD nclst; FATFS *fatfs; f_getfree("0:", &nclst, &fatfs); printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); } return py_const_none; } py_obj_t pyb_usart_send(py_obj_t data) { usart_tx_char(py_obj_get_int(data)); return py_const_none; } py_obj_t pyb_usart_receive(void) { return py_obj_new_int(usart_rx_char()); } py_obj_t pyb_usart_status(void) { if (usart_rx_any()) { return py_const_true; } else { return py_const_false; } } char *strdup(const char *str) { uint32_t len = strlen(str); char *s2 = m_new(char, len + 1); memcpy(s2, str, len); s2[len] = 0; return s2; } #define READLINE_HIST_SIZE (8) static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}; void stdout_tx_str(const char *str) { usart_tx_str(str); usb_vcp_send_str(str); } int readline(vstr_t *line, const char *prompt) { stdout_tx_str(prompt); int len = vstr_len(line); int escape = 0; int hist_num = 0; for (;;) { char c; for (;;) { if (usb_vcp_rx_any() != 0) { c = usb_vcp_rx_get(); break; } else if (usart_rx_any()) { c = usart_rx_char(); break; } sys_tick_delay_ms(1); } if (escape == 0) { if (c == 4 && vstr_len(line) == len) { return 0; } else if (c == '\r') { stdout_tx_str("\r\n"); for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) { readline_hist[i] = readline_hist[i - 1]; } readline_hist[0] = strdup(vstr_str(line)); return 1; } else if (c == 27) { escape = true; } else if (c == 127) { if (vstr_len(line) > len) { vstr_cut_tail(line, 1); stdout_tx_str("\b \b"); } } else if (32 <= c && c <= 126) { vstr_add_char(line, c); stdout_tx_str(line->buf + line->len - 1); } } else if (escape == 1) { if (c == '[') { escape = 2; } else { escape = 0; } } else if (escape == 2) { escape = 0; if (c == 'A') { // up arrow if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) { // erase line for (int i = line->len - len; i > 0; i--) { stdout_tx_str("\b \b"); } // set line to history line->len = len; vstr_add_str(line, readline_hist[hist_num]); // draw line stdout_tx_str(readline_hist[hist_num]); // increase hist num hist_num += 1; } } } else { escape = 0; } sys_tick_delay_ms(10); } } void do_repl(void) { stdout_tx_str("Micro Python 0.5; STM32F405RG; PYBv2\r\n"); stdout_tx_str("Type \"help\" for more information.\r\n"); vstr_t line; vstr_init(&line); for (;;) { vstr_reset(&line); int ret = readline(&line, ">>> "); if (ret == 0) { // EOF break; } if (vstr_len(&line) == 0) { continue; } if (py_repl_is_compound_stmt(vstr_str(&line))) { for (;;) { vstr_add_char(&line, '\n'); int len = vstr_len(&line); int ret = readline(&line, "... "); if (ret == 0 || vstr_len(&line) == len) { // done entering compound statement break; } } } py_lexer_str_buf_t sb; py_lexer_t *lex = py_lexer_new_from_str_len("", vstr_str(&line), vstr_len(&line), false, &sb); py_parse_node_t pn = py_parse(lex, PY_PARSE_SINGLE_INPUT); py_lexer_free(lex); if (pn != PY_PARSE_NODE_NULL) { bool comp_ok = py_compile(pn, true); if (comp_ok) { py_obj_t module_fun = rt_make_function_from_id(1); if (module_fun != py_const_none) { nlr_buf_t nlr; uint32_t start = sys_tick_counter; if (nlr_push(&nlr) == 0) { rt_call_function_0(module_fun); nlr_pop(); uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly printf("(took %lu ms)\n", ticks); } else { // uncaught exception py_obj_print((py_obj_t)nlr.ret_val); printf("\n"); } } } } } stdout_tx_str("\r\n"); } bool do_file(const char *filename) { py_lexer_file_buf_t fb; py_lexer_t *lex = py_lexer_new_from_file(filename, &fb); if (lex == NULL) { printf("could not open file '%s' for reading\n", filename); return false; } py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT); py_lexer_free(lex); if (pn == PY_PARSE_NODE_NULL) { return false; } bool comp_ok = py_compile(pn, false); if (!comp_ok) { return false; } py_obj_t module_fun = rt_make_function_from_id(1); if (module_fun == py_const_none) { return false; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { rt_call_function_0(module_fun); nlr_pop(); return true; } else { // uncaught exception py_obj_print((py_obj_t)nlr.ret_val); printf("\n"); return false; } } #define RAM_START (0x20000000) // fixed for chip #define HEAP_END (0x2001c000) // tunable #define RAM_END (0x20020000) // fixed for chip void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end); void gc_collect(void) { uint32_t start = sys_tick_counter; gc_collect_start(); gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4); machine_uint_t regs[10]; gc_helper_get_regs_and_clean_stack(regs, HEAP_END); gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack gc_collect_end(); uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly gc_info_t info; gc_info(&info); printf("GC@%lu %lums\n", start, ticks); printf(" %lu total\n", info.total); printf(" %lu : %lu\n", info.used, info.free); printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block); } py_obj_t pyb_gc(void) { gc_collect(); return py_const_none; } // PWM // TIM2 and TIM5 have CH1, CH2, CH3, CH4 on PA0-PA3 respectively // they are both 32-bit counters // 16-bit prescaler // TIM2_CH3 also on PB10 (used below) void servo_init(void) { // TIM2 clock enable RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // for PB10 /* // GPIOB Configuration: TIM2_CH3 (PB10) GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &GPIO_InitStructure); // Connect TIM2 pins to AF1 GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_TIM2); */ // for PA0, PA1, PA2, PA3 { // GPIOA Configuration: TIM2_CH0, TIM2_CH1 (PA0, PA1) GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); // Connect TIM2 pins to AF1 GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_TIM2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_TIM2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_TIM2); } // Compute the prescaler value so TIM2 runs at 100kHz uint16_t PrescalerValue = (uint16_t) ((SystemCoreClock / 2) / 100000) - 1; // Time base configuration TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = 2000; // timer cycles at 50Hz TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); // PWM Mode configuration TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 150; // units of 10us TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM2, &TIM_OCInitStructure); // channel 1 TIM_OC2Init(TIM2, &TIM_OCInitStructure); // channel 2 TIM_OC3Init(TIM2, &TIM_OCInitStructure); // channel 3 TIM_OC4Init(TIM2, &TIM_OCInitStructure); // channel 4 // ? TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 1 TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 2 TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 3 TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable); // channel 4 // ? TIM_ARRPreloadConfig(TIM2, ENABLE); // TIM2 enable counter TIM_Cmd(TIM2, ENABLE); } py_obj_t pyb_servo_set(py_obj_t port, py_obj_t value) { int p = py_obj_get_int(port); int v = py_obj_get_int(value); if (v < 100) { v = 100; } if (v > 200) { v = 200; } switch (p) { case 1: TIM2->CCR1 = v; break; case 2: TIM2->CCR2 = v; break; case 3: TIM2->CCR3 = v; break; case 4: TIM2->CCR4 = v; break; } return py_const_none; } py_obj_t pyb_pwm_set(py_obj_t period, py_obj_t pulse) { int pe = py_obj_get_int(period); int pu = py_obj_get_int(pulse); TIM2->ARR = pe; TIM2->CCR3 = pu; return py_const_none; } #define MMA_ADDR (0x4c) int mma_buf[12]; py_obj_t pyb_mma_read(void) { for (int i = 0; i <= 6; i += 3) { mma_buf[0 + i] = mma_buf[0 + i + 3]; mma_buf[1 + i] = mma_buf[1 + i + 3]; mma_buf[2 + i] = mma_buf[2 + i + 3]; } mma_start(MMA_ADDR, 1); mma_send_byte(0); mma_restart(MMA_ADDR, 0); for (int i = 0; i <= 2; i++) { int v = mma_read_ack() & 0x3f; if (v & 0x20) { v |= ~0x1f; } mma_buf[9 + i] = v; } int jolt_info = mma_read_nack(); py_obj_t data[4]; data[0] = py_obj_new_int(jolt_info); data[1] = py_obj_new_int(mma_buf[2] + mma_buf[5] + mma_buf[8] + mma_buf[11]); data[2] = py_obj_new_int(mma_buf[1] + mma_buf[4] + mma_buf[7] + mma_buf[10]); data[3] = py_obj_new_int(mma_buf[0] + mma_buf[3] + mma_buf[6] + mma_buf[9]); return rt_build_tuple(4, data); // items in reverse order in data } py_obj_t pyb_hid_send_report(py_obj_t arg) { py_obj_t *items = py_obj_get_array_fixed_n(arg, 4); uint8_t data[4]; data[0] = py_obj_get_int(items[0]); data[1] = py_obj_get_int(items[1]); data[2] = py_obj_get_int(items[2]); data[3] = py_obj_get_int(items[3]); usb_hid_send_report(data); return py_const_none; } static void rtc_init(void) { /* Enable the PWR clock */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); /* Allow access to RTC */ PWR_BackupAccessCmd(ENABLE); /* Enable the LSE OSC */ RCC_LSEConfig(RCC_LSE_ON); /* Wait till LSE is ready */ while(RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) { } /* Select the RTC Clock Source */ RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); /* ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)*/ uint32_t uwSynchPrediv = 0xFF; uint32_t uwAsynchPrediv = 0x7F; /* Enable the RTC Clock */ RCC_RTCCLKCmd(ENABLE); /* Wait for RTC APB registers synchronisation */ RTC_WaitForSynchro(); /* Configure the RTC data register and RTC prescaler */ RTC_InitTypeDef RTC_InitStructure; RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv; RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv; RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24; RTC_Init(&RTC_InitStructure); // Set the date (BCD) RTC_DateTypeDef RTC_DateStructure; RTC_DateStructure.RTC_Year = 0x13; RTC_DateStructure.RTC_Month = RTC_Month_October; RTC_DateStructure.RTC_Date = 0x26; RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday; RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure); // Set the time (BCD) RTC_TimeTypeDef RTC_TimeStructure; RTC_TimeStructure.RTC_H12 = RTC_H12_AM; RTC_TimeStructure.RTC_Hours = 0x01; RTC_TimeStructure.RTC_Minutes = 0x53; RTC_TimeStructure.RTC_Seconds = 0x00; RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure); // Indicator for the RTC configuration //RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2); } py_obj_t pyb_rtc_read(void) { RTC_TimeTypeDef RTC_TimeStructure; RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure); printf("%02d:%02d:%02d\n", RTC_TimeStructure.RTC_Hours, RTC_TimeStructure.RTC_Minutes, RTC_TimeStructure.RTC_Seconds); return py_const_none; } void file_obj_print(py_obj_t o) { FIL *fp; py_user_get_data(o, (machine_uint_t*)&fp, NULL); printf("", fp); } py_obj_t file_obj_read(py_obj_t self, py_obj_t arg) { FIL *fp; py_user_get_data(self, (machine_uint_t*)&fp, NULL); int n = py_obj_get_int(arg); char *buf = m_new(char, n + 1); UINT n_out; f_read(fp, buf, n, &n_out); buf[n_out] = 0; return py_obj_new_str(qstr_from_str_take(buf)); } py_obj_t file_obj_write(py_obj_t self, py_obj_t arg) { FIL *fp; py_user_get_data(self, (machine_uint_t*)&fp, NULL); const char *s = qstr_str(py_obj_get_qstr(arg)); UINT n_out; FRESULT res = f_write(fp, s, strlen(s), &n_out); if (res != FR_OK) { printf("File error: could not write to file; error code %d\n", res); } else if (n_out != strlen(s)) { printf("File error: could not write all data to file; wrote %d / %d bytes\n", n_out, strlen(s)); } return py_const_none; } py_obj_t file_obj_close(py_obj_t self) { FIL *fp; py_user_get_data(self, (machine_uint_t*)&fp, NULL); f_close(fp); return py_const_none; } // TODO gc hook to close the file if not already closed const py_user_info_t file_obj_info = { "File", file_obj_print, { {"read", 1, file_obj_read}, {"write", 1, file_obj_write}, {"close", 0, file_obj_close}, {NULL, 0, NULL}, } }; py_obj_t pyb_io_open(py_obj_t o_filename, py_obj_t o_mode) { const char *filename = qstr_str(py_obj_get_qstr(o_filename)); const char *mode = qstr_str(py_obj_get_qstr(o_mode)); FIL *fp = m_new(FIL, 1); if (mode[0] == 'r') { // open for reading FRESULT res = f_open(fp, filename, FA_READ); if (res != FR_OK) { printf("FileNotFoundError: [Errno 2] No such file or directory: '%s'\n", filename); return py_const_none; } } else if (mode[0] == 'w') { // open for writing, truncate the file first FRESULT res = f_open(fp, filename, FA_WRITE | FA_CREATE_ALWAYS); if (res != FR_OK) { printf("?FileError: could not create file: '%s'\n", filename); return py_const_none; } } else { printf("ValueError: invalid mode: '%s'\n", mode); return py_const_none; } return py_obj_new_user(&file_obj_info, (machine_uint_t)fp, 0); } py_obj_t pyb_rng_get(void) { return py_obj_new_int(RNG_GetRandomNumber() >> 16); } int main(void) { // TODO disable JTAG // set interrupt priority config to use all 4 bits for pre-empting NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4); // enable the CCM RAM and the GPIO's RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN; // configure SDIO pins to be high to start with (apparently makes it more robust) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOC, &GPIO_InitStructure); // Configure PD.02 CMD line GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOD, &GPIO_InitStructure); } // basic sub-system init sys_tick_init(); led_init(); rtc_init(); // turn on LED to indicate bootup led_state(PYB_LED_G1, 1); // more sub-system init sw_init(); storage_init(); //usart_init(); disabled while wi-fi is enabled int first_soft_reset = true; soft_reset: // GC init gc_init(&_heap_start, (void*)HEAP_END); // Micro Python init qstr_init(); rt_init(); // LCD init //lcd_init(); disabled while servos on PA0 PA1 // servo servo_init(); // audio audio_init(); // timer timer_init(); // RNG { RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE); RNG_Cmd(ENABLE); } // add some functions to the python namespace { py_obj_t m = py_module_new(); rt_store_attr(m, qstr_from_str_static("info"), rt_make_function_0(pyb_info)); rt_store_attr(m, qstr_from_str_static("source_dir"), rt_make_function_1(pyb_source_dir)); rt_store_attr(m, qstr_from_str_static("main"), rt_make_function_1(pyb_main)); rt_store_attr(m, qstr_from_str_static("sync"), rt_make_function_0(pyb_sync)); rt_store_attr(m, qstr_from_str_static("gc"), rt_make_function_0(pyb_gc)); rt_store_attr(m, qstr_from_str_static("delay"), rt_make_function_1(pyb_delay)); rt_store_attr(m, qstr_from_str_static("led"), rt_make_function_1(pyb_led)); rt_store_attr(m, qstr_from_str_static("sw"), rt_make_function_0(pyb_sw)); rt_store_attr(m, qstr_from_str_static("servo"), rt_make_function_2(pyb_servo_set)); rt_store_attr(m, qstr_from_str_static("pwm"), rt_make_function_2(pyb_pwm_set)); rt_store_attr(m, qstr_from_str_static("mma"), rt_make_function_0(pyb_mma_read)); rt_store_attr(m, qstr_from_str_static("hid"), rt_make_function_1(pyb_hid_send_report)); rt_store_attr(m, qstr_from_str_static("time"), rt_make_function_0(pyb_rtc_read)); rt_store_attr(m, qstr_from_str_static("uout"), rt_make_function_1(pyb_usart_send)); rt_store_attr(m, qstr_from_str_static("uin"), rt_make_function_0(pyb_usart_receive)); rt_store_attr(m, qstr_from_str_static("ustat"), rt_make_function_0(pyb_usart_status)); rt_store_attr(m, qstr_from_str_static("rng"), rt_make_function_0(pyb_rng_get)); rt_store_name(qstr_from_str_static("pyb"), m); rt_store_name(qstr_from_str_static("open"), rt_make_function_2(pyb_io_open)); } // print a message to the LCD lcd_print_str(" micro py board\n"); // local filesystem init { // try to mount the flash FRESULT res = f_mount(&fatfs0, "0:", 1); if (res == FR_OK) { // mount sucessful } else if (res == FR_NO_FILESYSTEM) { // no filesystem, so create a fresh one // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; res = f_mkfs("0:", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } else { __fatal_error("could not access LFS"); } } // make sure we have a /boot.py { FILINFO fno; FRESULT res = f_stat("0:/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; FIL fp; f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } } // run /boot.py if (!do_file("0:/boot.py")) { flash_error(4); } // USB usb_init(); // MMA if (first_soft_reset) { // init and reset address to zero mma_init(); mma_start(MMA_ADDR, 1); mma_send_byte(0); mma_stop(); /* // read and print all 11 registers mma_start(MMA_ADDR, 1); mma_send_byte(0); mma_restart(MMA_ADDR, 0); for (int i = 0; i <= 0xa; i++) { int data; if (i == 0xa) { data = mma_read_nack(); } else { data = mma_read_ack(); } printf(" %02x", data); } printf("\n"); */ // put into active mode mma_start(MMA_ADDR, 1); mma_send_byte(7); // mode mma_send_byte(1); // active mode mma_stop(); /* // infinite loop to read values for (;;) { sys_tick_delay_ms(500); mma_start(MMA_ADDR, 1); mma_send_byte(0); mma_restart(MMA_ADDR, 0); for (int i = 0; i <= 3; i++) { int data; if (i == 3) { data = mma_read_nack(); printf(" %02x\n", data); } else { data = mma_read_ack() & 0x3f; if (data & 0x20) { data |= ~0x1f; } printf(" % 2d", data); } } } */ } // turn boot-up LED off led_state(PYB_LED_G1, 0); // run main script { vstr_t *vstr = vstr_new(); vstr_add_str(vstr, "0:/"); if (pyb_config_source_dir == 0) { vstr_add_str(vstr, "src"); } else { vstr_add_str(vstr, qstr_str(pyb_config_source_dir)); } vstr_add_char(vstr, '/'); if (pyb_config_main == 0) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, qstr_str(pyb_config_main)); } if (!do_file(vstr_str(vstr))) { flash_error(3); } vstr_free(vstr); } //printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init //sys_tick_delay_ms(1000); // Python! if (0) { //const char *pysrc = "def f():\n x=x+1\nprint(42)\n"; const char *pysrc = // impl01.py /* "x = 0\n" "while x < 400:\n" " y = 0\n" " while y < 400:\n" " z = 0\n" " while z < 400:\n" " z = z + 1\n" " y = y + 1\n" " x = x + 1\n"; */ // impl02.py /* "#@micropython.native\n" "def f():\n" " x = 0\n" " while x < 400:\n" " y = 0\n" " while y < 400:\n" " z = 0\n" " while z < 400:\n" " z = z + 1\n" " y = y + 1\n" " x = x + 1\n" "f()\n"; */ /* "print('in python!')\n" "x = 0\n" "while x < 4:\n" " pyb_led(True)\n" " pyb_delay(201)\n" " pyb_led(False)\n" " pyb_delay(201)\n" " x += 1\n" "print('press me!')\n" "while True:\n" " pyb_led(pyb_sw())\n"; */ /* // impl16.py "@micropython.asm_thumb\n" "def delay(r0):\n" " b(loop_entry)\n" " label(loop1)\n" " movw(r1, 55999)\n" " label(loop2)\n" " subs(r1, r1, 1)\n" " cmp(r1, 0)\n" " bgt(loop2)\n" " subs(r0, r0, 1)\n" " label(loop_entry)\n" " cmp(r0, 0)\n" " bgt(loop1)\n" "print('in python!')\n" "@micropython.native\n" "def flash(n):\n" " x = 0\n" " while x < n:\n" " pyb_led(True)\n" " delay(249)\n" " pyb_led(False)\n" " delay(249)\n" " x = x + 1\n" "flash(20)\n"; */ // impl18.py /* "# basic exceptions\n" "x = 1\n" "try:\n" " x.a()\n" "except:\n" " print(x)\n"; */ // impl19.py "# for loop\n" "def f():\n" " for x in range(400):\n" " for y in range(400):\n" " for z in range(400):\n" " pass\n" "f()\n"; py_lexer_str_buf_t py_lexer_str_buf; py_lexer_t *lex = py_lexer_new_from_str_len("", pysrc, strlen(pysrc), false, &py_lexer_str_buf); // nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler printf("lex; al=%u\n", m_get_total_bytes_allocated()); sys_tick_delay_ms(1000); py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT); py_lexer_free(lex); if (pn != PY_PARSE_NODE_NULL) { printf("pars;al=%u\n", m_get_total_bytes_allocated()); sys_tick_delay_ms(1000); //parse_node_show(pn, 0); bool comp_ok = py_compile(pn, false); printf("comp;al=%u\n", m_get_total_bytes_allocated()); sys_tick_delay_ms(1000); if (!comp_ok) { printf("compile error\n"); } else { // execute it! py_obj_t module_fun = rt_make_function_from_id(1); // flash once led_state(PYB_LED_G1, 1); sys_tick_delay_ms(100); led_state(PYB_LED_G1, 0); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { py_obj_t ret = rt_call_function_0(module_fun); printf("done! got: "); py_obj_print(ret); printf("\n"); nlr_pop(); } else { // uncaught exception printf("exception: "); py_obj_print((py_obj_t)nlr.ret_val); printf("\n"); } // flash once led_state(PYB_LED_G1, 1); sys_tick_delay_ms(100); led_state(PYB_LED_G1, 0); sys_tick_delay_ms(1000); printf("nalloc=%u\n", m_get_total_bytes_allocated()); sys_tick_delay_ms(1000); } } } // HID example if (0) { uint8_t data[4]; data[0] = 0; data[1] = 1; data[2] = -2; data[3] = 0; for (;;) { if (sw_get()) { data[0] = 0x01; // 0x04 is middle, 0x02 is right } else { data[0] = 0x00; } mma_start(MMA_ADDR, 1); mma_send_byte(0); mma_restart(MMA_ADDR, 0); for (int i = 0; i <= 1; i++) { int v = mma_read_ack() & 0x3f; if (v & 0x20) { v |= ~0x1f; } data[1 + i] = v; } mma_read_nack(); usb_hid_send_report(data); sys_tick_delay_ms(15); } } // wifi pyb_wlan_init(); pyb_wlan_start(); do_repl(); // benchmark C version of impl02.py if (0) { led_state(PYB_LED_G1, 1); sys_tick_delay_ms(100); led_state(PYB_LED_G1, 0); impl02_c_version(); led_state(PYB_LED_G1, 1); sys_tick_delay_ms(100); led_state(PYB_LED_G1, 0); } // SD card testing if (1) { extern void sdio_init(void); //sdio_init(); } printf("PYB: sync filesystems\n"); pyb_sync(); printf("PYB: soft reboot\n"); first_soft_reset = false; goto soft_reset; } double __aeabi_f2d(float x) { // TODO return 0.0; } float __aeabi_d2f(double x) { // TODO return 0.0; } double sqrt(double x) { // TODO return 0.0; } machine_float_t machine_sqrt(machine_float_t x) { // TODO return x; }