/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 "Matt Trentini" * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "modmachine.h" #include "mphalport.h" #include "modesp32.h" #include "esp_task.h" #include "driver/rmt.h" // This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF: // // https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html // // With some examples provided: // // https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT // // RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals. // Originally designed to generate infrared remote control signals, the module is very // flexible and quite easy-to-use. // // This current MicroPython implementation lacks some major features, notably receive pulses // and carrier output. // Forward declaration extern const mp_obj_type_t esp32_rmt_type; typedef struct _esp32_rmt_obj_t { mp_obj_base_t base; uint8_t channel_id; gpio_num_t pin; uint8_t clock_div; mp_uint_t num_items; rmt_item32_t *items; bool loop_en; } esp32_rmt_obj_t; // Current channel used for machine.bitstream, in the machine_bitstream_high_low_rmt // implementation. A value of -1 means do not use RMT. int8_t esp32_rmt_bitstream_channel_id = RMT_CHANNEL_MAX - 1; #if MP_TASK_COREID == 0 typedef struct _rmt_install_state_t { SemaphoreHandle_t handle; uint8_t channel_id; esp_err_t ret; } rmt_install_state_t; STATIC void rmt_install_task(void *pvParameter) { rmt_install_state_t *state = pvParameter; state->ret = rmt_driver_install(state->channel_id, 0, 0); xSemaphoreGive(state->handle); vTaskDelete(NULL); for (;;) { } } // Call rmt_driver_install on core 1. This ensures that the RMT interrupt handler is // serviced on core 1, so that WiFi (if active) does not interrupt it and cause glitches. esp_err_t rmt_driver_install_core1(uint8_t channel_id) { TaskHandle_t th; rmt_install_state_t state; state.handle = xSemaphoreCreateBinary(); state.channel_id = channel_id; xTaskCreatePinnedToCore(rmt_install_task, "rmt_install_task", 2048 / sizeof(StackType_t), &state, ESP_TASK_PRIO_MIN + 1, &th, 1); xSemaphoreTake(state.handle, portMAX_DELAY); vSemaphoreDelete(state.handle); return state.ret; } #else // MicroPython runs on core 1, so we can call the RMT installer directly and its // interrupt handler will also run on core 1. esp_err_t rmt_driver_install_core1(uint8_t channel_id) { return rmt_driver_install(channel_id, 0, 0); } #endif STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution { MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage { MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_uint_t channel_id = args[0].u_int; gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj); mp_uint_t clock_div = args[2].u_int; mp_uint_t idle_level = args[3].u_bool; mp_obj_t tx_carrier_obj = args[4].u_obj; if (esp32_rmt_bitstream_channel_id >= 0 && channel_id == esp32_rmt_bitstream_channel_id) { mp_raise_ValueError(MP_ERROR_TEXT("channel used by bitstream")); } if (clock_div < 1 || clock_div > 255) { mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255")); } esp32_rmt_obj_t *self = m_new_obj_with_finaliser(esp32_rmt_obj_t); self->base.type = &esp32_rmt_type; self->channel_id = channel_id; self->pin = pin_id; self->clock_div = clock_div; self->loop_en = false; rmt_config_t config = {0}; config.rmt_mode = RMT_MODE_TX; config.channel = (rmt_channel_t)self->channel_id; config.gpio_num = self->pin; config.mem_block_num = 1; config.tx_config.loop_en = 0; if (tx_carrier_obj != mp_const_none) { mp_obj_t *tx_carrier_details = NULL; mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details); mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]); mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]); mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]); if (frequency == 0) { mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0")); } if (duty > 100) { mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100")); } config.tx_config.carrier_en = 1; config.tx_config.carrier_freq_hz = frequency; config.tx_config.carrier_duty_percent = duty; config.tx_config.carrier_level = level; } else { config.tx_config.carrier_en = 0; } config.tx_config.idle_output_en = 1; config.tx_config.idle_level = idle_level; config.clk_div = self->clock_div; check_esp_err(rmt_config(&config)); check_esp_err(rmt_driver_install_core1(config.channel)); return MP_OBJ_FROM_PTR(self); } STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->pin != -1) { bool idle_output_en; rmt_idle_level_t idle_level; check_esp_err(rmt_get_idle_level(self->channel_id, &idle_output_en, &idle_level)); mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u, idle_level=%u)", self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div, idle_level); } else { mp_printf(print, "RMT()"); } } STATIC mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) { // fixme: check for valid channel. Return exception if error occurs. esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->pin != -1) { // Check if channel has already been deinitialised. rmt_driver_uninstall(self->channel_id); self->pin = -1; // -1 to indicate RMT is unused m_free(self->items); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit); // Return the source frequency. // Currently only the APB clock (80MHz) can be used but it is possible other // clock sources will added in the future. STATIC mp_obj_t esp32_rmt_source_freq(mp_obj_t self_in) { return mp_obj_new_int(APB_CLK_FREQ); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_source_freq_obj, esp32_rmt_source_freq); // Return the clock divider. STATIC mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_int(self->clock_div); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div); // Query whether the channel has finished sending pulses. Takes an optional // timeout (in milliseconds), returning true if the pulse stream has // completed or false if they are still transmitting (or timeout is reached). STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int / portTICK_PERIOD_MS); return err == ESP_OK ? mp_const_true : mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done); STATIC mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); self->loop_en = mp_obj_get_int(loop); if (!self->loop_en) { bool loop_en; check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); if (loop_en) { check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop); STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]); mp_obj_t duration_obj = args[1]; mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true; mp_uint_t duration = 0; size_t duration_length = 0; mp_obj_t *duration_ptr = NULL; mp_uint_t data = 0; size_t data_length = 0; mp_obj_t *data_ptr = NULL; mp_uint_t num_pulses = 0; if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) { // Mode 1: array of durations, toggle initial data value mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); data = mp_obj_is_true(data_obj); num_pulses = duration_length; } else if (mp_obj_is_int(duration_obj)) { // Mode 2: constant duration, array of data values duration = mp_obj_get_int(duration_obj); mp_obj_get_array(data_obj, &data_length, &data_ptr); num_pulses = data_length; } else { // Mode 3: arrays of durations and data values mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); mp_obj_get_array(data_obj, &data_length, &data_ptr); if (duration_length != data_length) { mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length")); } num_pulses = duration_length; } if (num_pulses == 0) { mp_raise_ValueError(MP_ERROR_TEXT("No pulses")); } if (self->loop_en && num_pulses > 126) { mp_raise_ValueError(MP_ERROR_TEXT("Too many pulses for loop")); } mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2); if (num_items > self->num_items) { self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); self->num_items = num_items; } for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) { self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; pulse_index++; if (pulse_index < num_pulses) { self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; pulse_index++; } else { self->items[item_index].duration1 = 0; self->items[item_index].level1 = 0; } } if (self->loop_en) { bool loop_en; check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); if (loop_en) { check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); } check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY)); } check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false)); if (self->loop_en) { check_esp_err(rmt_set_tx_intr_en(self->channel_id, false)); check_esp_err(rmt_set_tx_loop_mode(self->channel_id, true)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses); STATIC mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) { if (n_args > 0) { if (args[0] == mp_const_none) { esp32_rmt_bitstream_channel_id = -1; } else { mp_int_t channel_id = mp_obj_get_int(args[0]); if (channel_id < 0 || channel_id >= RMT_CHANNEL_MAX) { mp_raise_ValueError(MP_ERROR_TEXT("invalid channel")); } esp32_rmt_bitstream_channel_id = channel_id; } } if (esp32_rmt_bitstream_channel_id < 0) { return mp_const_none; } else { return MP_OBJ_NEW_SMALL_INT(esp32_rmt_bitstream_channel_id); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel); STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj)); STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) }, { MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) }, { MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) }, { MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) }, // Static methods { MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) }, }; STATIC MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table); const mp_obj_type_t esp32_rmt_type = { { &mp_type_type }, .name = MP_QSTR_RMT, .print = esp32_rmt_print, .make_new = esp32_rmt_make_new, .locals_dict = (mp_obj_dict_t *)&esp32_rmt_locals_dict, };