/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2018 Paul Sokolovsky * Copyright (c) 2018 Yonatan Goldschmidt * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #if MICROPY_PY_UCRYPTOLIB #include #include #include "py/runtime.h" // This module implements crypto ciphers API, roughly following // https://www.python.org/dev/peps/pep-0272/ . Exact implementation // of PEP 272 can be made with a simple wrapper which adds all the // needed boilerplate. // values follow PEP 272 enum { UCRYPTOLIB_MODE_ECB = 1, UCRYPTOLIB_MODE_CBC = 2, UCRYPTOLIB_MODE_CTR = 6, }; struct ctr_params { // counter is the IV of the AES context. size_t offset; // in encrypted_counter // encrypted counter uint8_t encrypted_counter[16]; }; #if MICROPY_SSL_AXTLS #include "lib/axtls/crypto/crypto.h" #define AES_CTX_IMPL AES_CTX #endif #if MICROPY_SSL_MBEDTLS #include // we can't run mbedtls AES key schedule until we know whether we're used for encrypt or decrypt. // therefore, we store the key & keysize and on the first call to encrypt/decrypt we override them // with the mbedtls_aes_context, as they are not longer required. (this is done to save space) struct mbedtls_aes_ctx_with_key { union { mbedtls_aes_context mbedtls_ctx; struct { uint8_t key[32]; uint8_t keysize; } init_data; } u; unsigned char iv[16]; }; #define AES_CTX_IMPL struct mbedtls_aes_ctx_with_key #endif typedef struct _mp_obj_aes_t { mp_obj_base_t base; AES_CTX_IMPL ctx; uint8_t block_mode : 6; #define AES_KEYTYPE_NONE 0 #define AES_KEYTYPE_ENC 1 #define AES_KEYTYPE_DEC 2 uint8_t key_type : 2; } mp_obj_aes_t; static inline bool is_ctr_mode(int block_mode) { #if MICROPY_PY_UCRYPTOLIB_CTR return block_mode == UCRYPTOLIB_MODE_CTR; #else return false; #endif } static inline struct ctr_params *ctr_params_from_aes(mp_obj_aes_t *o) { // ctr_params follows aes object struct return (struct ctr_params *)&o[1]; } #if MICROPY_SSL_AXTLS STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { assert(16 == keysize || 32 == keysize); AES_set_key(ctx, key, iv, (16 == keysize) ? AES_MODE_128 : AES_MODE_256); } STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { if (!encrypt) { AES_convert_key(ctx); } } STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { memcpy(out, in, 16); // We assume that out (vstr.buf or given output buffer) is uint32_t aligned uint32_t *p = (uint32_t *)out; // axTLS likes it weird and complicated with byteswaps for (int i = 0; i < 4; i++) { p[i] = MP_HTOBE32(p[i]); } if (encrypt) { AES_encrypt(ctx, p); } else { AES_decrypt(ctx, p); } for (int i = 0; i < 4; i++) { p[i] = MP_BE32TOH(p[i]); } } STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { if (encrypt) { AES_cbc_encrypt(ctx, in, out, in_len); } else { AES_cbc_decrypt(ctx, in, out, in_len); } } #if MICROPY_PY_UCRYPTOLIB_CTR // axTLS doesn't have CTR support out of the box. This implements the counter part using the ECB primitive. STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { size_t n = ctr_params->offset; uint8_t *const counter = ctx->iv; while (in_len--) { if (n == 0) { aes_process_ecb_impl(ctx, counter, ctr_params->encrypted_counter, true); // increment the 128-bit counter for (int i = 15; i >= 0; --i) { if (++counter[i] != 0) { break; } } } *out++ = *in++ ^ ctr_params->encrypted_counter[n]; n = (n + 1) & 0xf; } ctr_params->offset = n; } #endif #endif #if MICROPY_SSL_MBEDTLS STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { ctx->u.init_data.keysize = keysize; memcpy(ctx->u.init_data.key, key, keysize); if (NULL != iv) { memcpy(ctx->iv, iv, sizeof(ctx->iv)); } } STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { // first, copy key aside uint8_t key[32]; uint8_t keysize = ctx->u.init_data.keysize; memcpy(key, ctx->u.init_data.key, keysize); // now, override key with the mbedtls context object mbedtls_aes_init(&ctx->u.mbedtls_ctx); // setkey call will succeed, we've already checked the keysize earlier. assert(16 == keysize || 32 == keysize); if (encrypt) { mbedtls_aes_setkey_enc(&ctx->u.mbedtls_ctx, key, keysize * 8); } else { mbedtls_aes_setkey_dec(&ctx->u.mbedtls_ctx, key, keysize * 8); } } STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { mbedtls_aes_crypt_ecb(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in, out); } STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { mbedtls_aes_crypt_cbc(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in_len, ctx->iv, in, out); } #if MICROPY_PY_UCRYPTOLIB_CTR STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { mbedtls_aes_crypt_ctr(&ctx->u.mbedtls_ctx, in_len, &ctr_params->offset, ctx->iv, ctr_params->encrypted_counter, in, out); } #endif #endif STATIC mp_obj_t ucryptolib_aes_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 2, 3, false); const mp_int_t block_mode = mp_obj_get_int(args[1]); switch (block_mode) { case UCRYPTOLIB_MODE_ECB: case UCRYPTOLIB_MODE_CBC: #if MICROPY_PY_UCRYPTOLIB_CTR case UCRYPTOLIB_MODE_CTR: #endif break; default: mp_raise_ValueError(MP_ERROR_TEXT("mode")); } mp_obj_aes_t *o = mp_obj_malloc_var(mp_obj_aes_t, struct ctr_params, !!is_ctr_mode(block_mode), type); o->block_mode = block_mode; o->key_type = AES_KEYTYPE_NONE; mp_buffer_info_t keyinfo; mp_get_buffer_raise(args[0], &keyinfo, MP_BUFFER_READ); if (32 != keyinfo.len && 16 != keyinfo.len) { mp_raise_ValueError(MP_ERROR_TEXT("key")); } mp_buffer_info_t ivinfo; ivinfo.buf = NULL; if (n_args > 2 && args[2] != mp_const_none) { mp_get_buffer_raise(args[2], &ivinfo, MP_BUFFER_READ); if (16 != ivinfo.len) { mp_raise_ValueError(MP_ERROR_TEXT("IV")); } } else if (o->block_mode == UCRYPTOLIB_MODE_CBC || is_ctr_mode(o->block_mode)) { mp_raise_ValueError(MP_ERROR_TEXT("IV")); } if (is_ctr_mode(block_mode)) { ctr_params_from_aes(o)->offset = 0; } aes_initial_set_key_impl(&o->ctx, keyinfo.buf, keyinfo.len, ivinfo.buf); return MP_OBJ_FROM_PTR(o); } STATIC mp_obj_t aes_process(size_t n_args, const mp_obj_t *args, bool encrypt) { mp_obj_aes_t *self = MP_OBJ_TO_PTR(args[0]); mp_obj_t in_buf = args[1]; mp_obj_t out_buf = MP_OBJ_NULL; if (n_args > 2) { out_buf = args[2]; } mp_buffer_info_t in_bufinfo; mp_get_buffer_raise(in_buf, &in_bufinfo, MP_BUFFER_READ); if (!is_ctr_mode(self->block_mode) && in_bufinfo.len % 16 != 0) { mp_raise_ValueError(MP_ERROR_TEXT("blksize % 16")); } vstr_t vstr; mp_buffer_info_t out_bufinfo; uint8_t *out_buf_ptr; if (out_buf != MP_OBJ_NULL) { mp_get_buffer_raise(out_buf, &out_bufinfo, MP_BUFFER_WRITE); if (out_bufinfo.len < in_bufinfo.len) { mp_raise_ValueError(MP_ERROR_TEXT("output too small")); } out_buf_ptr = out_bufinfo.buf; } else { vstr_init_len(&vstr, in_bufinfo.len); out_buf_ptr = (uint8_t *)vstr.buf; } if (AES_KEYTYPE_NONE == self->key_type) { // always set key for encryption if CTR mode. const bool encrypt_mode = encrypt || is_ctr_mode(self->block_mode); aes_final_set_key_impl(&self->ctx, encrypt_mode); self->key_type = encrypt ? AES_KEYTYPE_ENC : AES_KEYTYPE_DEC; } else { if ((encrypt && self->key_type == AES_KEYTYPE_DEC) || (!encrypt && self->key_type == AES_KEYTYPE_ENC)) { mp_raise_ValueError(MP_ERROR_TEXT("can't encrypt & decrypt")); } } switch (self->block_mode) { case UCRYPTOLIB_MODE_ECB: { uint8_t *in = in_bufinfo.buf, *out = out_buf_ptr; uint8_t *top = in + in_bufinfo.len; for (; in < top; in += 16, out += 16) { aes_process_ecb_impl(&self->ctx, in, out, encrypt); } break; } case UCRYPTOLIB_MODE_CBC: aes_process_cbc_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, encrypt); break; #if MICROPY_PY_UCRYPTOLIB_CTR case UCRYPTOLIB_MODE_CTR: aes_process_ctr_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, ctr_params_from_aes(self)); break; #endif } if (out_buf != MP_OBJ_NULL) { return out_buf; } return mp_obj_new_bytes_from_vstr(&vstr); } STATIC mp_obj_t ucryptolib_aes_encrypt(size_t n_args, const mp_obj_t *args) { return aes_process(n_args, args, true); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_encrypt_obj, 2, 3, ucryptolib_aes_encrypt); STATIC mp_obj_t ucryptolib_aes_decrypt(size_t n_args, const mp_obj_t *args) { return aes_process(n_args, args, false); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_decrypt_obj, 2, 3, ucryptolib_aes_decrypt); STATIC const mp_rom_map_elem_t ucryptolib_aes_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_encrypt), MP_ROM_PTR(&ucryptolib_aes_encrypt_obj) }, { MP_ROM_QSTR(MP_QSTR_decrypt), MP_ROM_PTR(&ucryptolib_aes_decrypt_obj) }, }; STATIC MP_DEFINE_CONST_DICT(ucryptolib_aes_locals_dict, ucryptolib_aes_locals_dict_table); STATIC MP_DEFINE_CONST_OBJ_TYPE( ucryptolib_aes_type, MP_QSTR_aes, MP_TYPE_FLAG_NONE, make_new, ucryptolib_aes_make_new, locals_dict, &ucryptolib_aes_locals_dict ); STATIC const mp_rom_map_elem_t mp_module_cryptolib_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cryptolib) }, { MP_ROM_QSTR(MP_QSTR_aes), MP_ROM_PTR(&ucryptolib_aes_type) }, #if MICROPY_PY_UCRYPTOLIB_CONSTS { MP_ROM_QSTR(MP_QSTR_MODE_ECB), MP_ROM_INT(UCRYPTOLIB_MODE_ECB) }, { MP_ROM_QSTR(MP_QSTR_MODE_CBC), MP_ROM_INT(UCRYPTOLIB_MODE_CBC) }, #if MICROPY_PY_UCRYPTOLIB_CTR { MP_ROM_QSTR(MP_QSTR_MODE_CTR), MP_ROM_INT(UCRYPTOLIB_MODE_CTR) }, #endif #endif }; STATIC MP_DEFINE_CONST_DICT(mp_module_cryptolib_globals, mp_module_cryptolib_globals_table); const mp_obj_module_t mp_module_cryptolib = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_cryptolib_globals, }; MP_REGISTER_MODULE(MP_QSTR_cryptolib, mp_module_cryptolib); #endif // MICROPY_PY_UCRYPTOLIB