/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "modmachine.h" #include "py/gc.h" #include "py/runtime.h" #include "py/mperrno.h" #include "py/mphal.h" #include "extmod/machine_mem.h" #include "extmod/machine_signal.h" #include "extmod/machine_pulse.h" #include "extmod/machine_i2c.h" #include "lib/utils/pyexec.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "gccollect.h" #include "irq.h" #include "powerctrl.h" #include "pybthread.h" #include "rng.h" #include "storage.h" #include "pin.h" #include "timer.h" #include "usb.h" #include "rtc.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "wdt.h" #if defined(STM32L4) // L4 does not have a POR, so use BOR instead #define RCC_CSR_PORRSTF RCC_CSR_BORRSTF #endif #if defined(STM32H7) #define RCC_SR RSR #define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF #define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF #define RCC_SR_PORRSTF RCC_RSR_PORRSTF #define RCC_SR_BORRSTF RCC_RSR_BORRSTF #define RCC_SR_PINRSTF RCC_RSR_PINRSTF #define RCC_SR_RMVF RCC_RSR_RMVF #else #define RCC_SR CSR #define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF #define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF #define RCC_SR_PORRSTF RCC_CSR_PORRSTF #define RCC_SR_BORRSTF RCC_CSR_BORRSTF #define RCC_SR_PINRSTF RCC_CSR_PINRSTF #define RCC_SR_RMVF RCC_CSR_RMVF #endif #define PYB_RESET_SOFT (0) #define PYB_RESET_POWER_ON (1) #define PYB_RESET_HARD (2) #define PYB_RESET_WDT (3) #define PYB_RESET_DEEPSLEEP (4) STATIC uint32_t reset_cause; void machine_init(void) { #if defined(STM32F4) if (PWR->CSR & PWR_CSR_SBF) { // came out of standby reset_cause = PYB_RESET_DEEPSLEEP; PWR->CR |= PWR_CR_CSBF; } else #elif defined(STM32F7) if (PWR->CSR1 & PWR_CSR1_SBF) { // came out of standby reset_cause = PYB_RESET_DEEPSLEEP; PWR->CR1 |= PWR_CR1_CSBF; } else #elif defined(STM32H7) if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) { // came out of standby or stop mode reset_cause = PYB_RESET_DEEPSLEEP; PWR->CPUCR |= PWR_CPUCR_CSSF; } else #elif defined(STM32L4) if (PWR->SR1 & PWR_SR1_SBF) { // came out of standby reset_cause = PYB_RESET_DEEPSLEEP; PWR->SCR |= PWR_SCR_CSBF; } else #endif { // get reset cause from RCC flags uint32_t state = RCC->RCC_SR; if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) { reset_cause = PYB_RESET_WDT; } else if (state & RCC_SR_PORRSTF #if !defined(STM32F0) || state & RCC_SR_BORRSTF #endif ) { reset_cause = PYB_RESET_POWER_ON; } else if (state & RCC_SR_PINRSTF) { reset_cause = PYB_RESET_HARD; } else { // default is soft reset reset_cause = PYB_RESET_SOFT; } } // clear RCC reset flags RCC->RCC_SR |= RCC_SR_RMVF; } void machine_deinit(void) { // we are doing a soft-reset so change the reset_cause reset_cause = PYB_RESET_SOFT; } // machine.info([dump_alloc_table]) // Print out lots of information about the board. STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) { // get and print unique id; 96 bits { byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz { #if defined(STM32F0) printf("S=%u\nH=%u\nP1=%u\n", (unsigned int)HAL_RCC_GetSysClockFreq(), (unsigned int)HAL_RCC_GetHCLKFreq(), (unsigned int)HAL_RCC_GetPCLK1Freq()); #else printf("S=%u\nH=%u\nP1=%u\nP2=%u\n", (unsigned int)HAL_RCC_GetSysClockFreq(), (unsigned int)HAL_RCC_GetHCLKFreq(), (unsigned int)HAL_RCC_GetPCLK1Freq(), (unsigned int)HAL_RCC_GetPCLK2Freq()); #endif } // to print info about memory { printf("_etext=%p\n", &_etext); printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); printf("_heap_end=%p\n", &_heap_end); printf("_ram_end=%p\n", &_ram_end); } // qstr info { size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" %u total\n", info.total); printf(" %u : %u\n", info.used, info.free); printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block); } // free space on flash { #if MICROPY_VFS_FAT for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) { if (strncmp("/flash", vfs->str, vfs->len) == 0) { // assumes that it's a FatFs filesystem fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj); DWORD nclst; f_getfree(&vfs_fat->fatfs, &nclst); printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512)); break; } } #endif } #if MICROPY_PY_THREAD pyb_thread_dump(); #endif if (n_args == 1) { // arg given means dump gc allocation table gc_dump_alloc_table(); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info); // Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU. STATIC mp_obj_t machine_unique_id(void) { byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS; return mp_obj_new_bytes(id, 12); } MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id); // Resets the pyboard in a manner similar to pushing the external RESET button. STATIC mp_obj_t machine_reset(void) { NVIC_SystemReset(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset); STATIC mp_obj_t machine_soft_reset(void) { pyexec_system_exit = PYEXEC_FORCED_EXIT; nlr_raise(mp_obj_new_exception(&mp_type_SystemExit)); } MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset); // Activate the bootloader without BOOT* pins. STATIC NORETURN mp_obj_t machine_bootloader(void) { #if MICROPY_HW_ENABLE_USB pyb_usb_dev_deinit(); #endif #if MICROPY_HW_ENABLE_STORAGE storage_flush(); #endif HAL_RCC_DeInit(); HAL_DeInit(); #if (__MPU_PRESENT == 1) // MPU must be disabled for bootloader to function correctly HAL_MPU_Disable(); #endif #if defined(STM32F7) || defined(STM32H7) // arm-none-eabi-gcc 4.9.0 does not correctly inline this // MSP function, so we write it out explicitly here. //__set_MSP(*((uint32_t*) 0x1FF00000)); __ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); ((void (*)(void)) *((uint32_t*) 0x1FF00004))(); #else __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH(); // arm-none-eabi-gcc 4.9.0 does not correctly inline this // MSP function, so we write it out explicitly here. //__set_MSP(*((uint32_t*) 0x00000000)); __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); ((void (*)(void)) *((uint32_t*) 0x00000004))(); #endif while (1); } MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader); // get or set the MCU frequencies STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) { if (n_args == 0) { // get mp_obj_t tuple[] = { mp_obj_new_int(HAL_RCC_GetSysClockFreq()), mp_obj_new_int(HAL_RCC_GetHCLKFreq()), mp_obj_new_int(HAL_RCC_GetPCLK1Freq()), #if !defined(STM32F0) mp_obj_new_int(HAL_RCC_GetPCLK2Freq()), #endif }; return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple); } else { // set #if defined(STM32F0) || defined(STM32L4) mp_raise_NotImplementedError("machine.freq set not supported yet"); #else mp_int_t sysclk = mp_obj_get_int(args[0]); mp_int_t ahb = sysclk; mp_int_t apb1 = ahb / 4; mp_int_t apb2 = ahb / 2; if (n_args > 1) { ahb = mp_obj_get_int(args[1]); if (n_args > 2) { apb1 = mp_obj_get_int(args[2]); if (n_args > 3) { apb2 = mp_obj_get_int(args[3]); } } } int ret = powerctrl_set_sysclk(sysclk, ahb, apb1, apb2); if (ret == -MP_EINVAL) { mp_raise_ValueError("invalid freq"); } else if (ret < 0) { void NORETURN __fatal_error(const char *msg); __fatal_error("can't change freq"); } return mp_const_none; #endif } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq); STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) { if (n_args != 0) { mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]}; pyb_rtc_wakeup(2, args2); } powerctrl_enter_stop_mode(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep); STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) { if (n_args != 0) { mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]}; pyb_rtc_wakeup(2, args2); } powerctrl_enter_standby_mode(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep); STATIC mp_obj_t machine_reset_cause(void) { return MP_OBJ_NEW_SMALL_INT(reset_cause); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause); STATIC const mp_rom_map_elem_t machine_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) }, { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) }, { MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) }, { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) }, #if MICROPY_HW_ENABLE_RNG { MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&pyb_wfi_obj) }, { MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) }, #if 0 { MP_ROM_QSTR(MP_QSTR_wake_reason), MP_ROM_PTR(&machine_wake_reason_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&pyb_disable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&pyb_enable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) }, { MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) }, { MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) }, { MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) }, { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) }, { MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) }, #if 0 { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) }, { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) }, #endif #if MICROPY_PY_MACHINE_I2C { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) }, #endif { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) }, { MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) }, { MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&pyb_wdt_type) }, #if 0 { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&pyb_timer_type) }, { MP_ROM_QSTR(MP_QSTR_HeartBeat), MP_ROM_PTR(&pyb_heartbeat_type) }, { MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sd_type) }, // class constants { MP_ROM_QSTR(MP_QSTR_IDLE), MP_ROM_INT(PYB_PWR_MODE_ACTIVE) }, { MP_ROM_QSTR(MP_QSTR_SLEEP), MP_ROM_INT(PYB_PWR_MODE_LPDS) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) }, #endif { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) }, { MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) }, { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(PYB_RESET_DEEPSLEEP) }, { MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) }, #if 0 { MP_ROM_QSTR(MP_QSTR_WLAN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) }, { MP_ROM_QSTR(MP_QSTR_PIN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) }, { MP_ROM_QSTR(MP_QSTR_RTC_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) }, #endif }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t machine_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&machine_module_globals, };