/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/gc.h" #include "py/mphal.h" #include "py/mpthread.h" #include "pico/stdlib.h" #include "pico/multicore.h" #if MICROPY_PY_THREAD extern uint8_t __StackTop, __StackBottom; void *core_state[2]; // This will be non-NULL while Python code is executing. STATIC void *(*core1_entry)(void *) = NULL; STATIC void *core1_arg = NULL; STATIC uint32_t *core1_stack = NULL; STATIC size_t core1_stack_num_words = 0; // Thread mutex. STATIC mp_thread_mutex_t atomic_mutex; uint32_t mp_thread_begin_atomic_section(void) { if (core1_entry) { // When both cores are executing, we also need to provide // full mutual exclusion. mp_thread_mutex_lock(&atomic_mutex, 1); // In case this atomic section is for flash access, then // suspend the other core. multicore_lockout_start_blocking(); } return save_and_disable_interrupts(); } void mp_thread_end_atomic_section(uint32_t state) { restore_interrupts(state); if (core1_entry) { multicore_lockout_end_blocking(); mp_thread_mutex_unlock(&atomic_mutex); } } // Initialise threading support. void mp_thread_init(void) { assert(get_core_num() == 0); mp_thread_mutex_init(&atomic_mutex); // Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core1. multicore_lockout_victim_init(); mp_thread_set_state(&mp_state_ctx.thread); core1_entry = NULL; } // Shutdown threading support -- stops the second thread. void mp_thread_deinit(void) { assert(get_core_num() == 0); // Must ensure that core1 is not currently holding the GC lock, otherwise // it will be terminated while holding the lock. mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1); multicore_reset_core1(); core1_entry = NULL; mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex)); } void mp_thread_gc_others(void) { if (core1_entry != NULL) { // Collect core1's stack if it is active. gc_collect_root((void **)&core1_stack, 1); gc_collect_root((void **)&core1_arg, 1); } if (get_core_num() == 1) { // GC running on core1, trace core0's stack. gc_collect_root((void **)&__StackBottom, (&__StackTop - &__StackBottom) / sizeof(uintptr_t)); } } STATIC void core1_entry_wrapper(void) { // Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core0. multicore_lockout_victim_init(); if (core1_entry) { core1_entry(core1_arg); } core1_entry = NULL; // returning from here will loop the core forever (WFI) } mp_uint_t mp_thread_get_id(void) { // On RP2, there are only two threads, one for each core, so the thread id // is the core number. return get_core_num(); } mp_uint_t mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) { // Check if core1 is already in use. if (core1_entry != NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("core1 in use")); } core1_entry = entry; core1_arg = arg; if (*stack_size == 0) { *stack_size = 4096; // default stack size } else if (*stack_size < 2048) { *stack_size = 2048; // minimum stack size } // Round stack size to a multiple of the word size. core1_stack_num_words = *stack_size / sizeof(uint32_t); *stack_size = core1_stack_num_words * sizeof(uint32_t); // Allocate stack. core1_stack = m_new(uint32_t, core1_stack_num_words); // Create thread on core1. multicore_reset_core1(); multicore_launch_core1_with_stack(core1_entry_wrapper, core1_stack, *stack_size); // Adjust stack_size to provide room to recover from hitting the limit. *stack_size -= 512; return 1; } void mp_thread_start(void) { } void mp_thread_finish(void) { } #endif // MICROPY_PY_THREAD