#include #include #include #include #include "mpconfig.h" #include "gc.h" #if MICROPY_ENABLE_GC #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf(args...) printf(args) #else // don't print debugging info #define DEBUG_printf(args...) (void)0 #endif typedef unsigned char byte; #define WORDS_PER_BLOCK (4) #define BYTES_PER_BLOCK (WORDS_PER_BLOCK * BYTES_PER_WORD) #define STACK_SIZE (64) // tunable; minimum is 1 static byte *gc_alloc_table_start; static machine_uint_t gc_alloc_table_byte_len; static machine_uint_t *gc_pool_start; static machine_uint_t *gc_pool_end; static int gc_stack_overflow; static machine_uint_t gc_stack[STACK_SIZE]; static machine_uint_t *gc_sp; // ATB = allocation table byte // 0b00 = FREE -- free block // 0b01 = HEAD -- head of a chain of blocks // 0b10 = TAIL -- in the tail of a chain of blocks // 0b11 = MARK -- marked head block #define AT_FREE (0) #define AT_HEAD (1) #define AT_TAIL (2) #define AT_MARK (3) #define BLOCKS_PER_ATB (4) #define ATB_MASK_0 (0x03) #define ATB_MASK_1 (0x0c) #define ATB_MASK_2 (0x30) #define ATB_MASK_3 (0xc0) #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) #define ATB_GET_KIND(block) ((gc_alloc_table_start[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) #define ATB_ANY_TO_FREE(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) #define ATB_FREE_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) #define ATB_FREE_TO_TAIL(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) #define ATB_HEAD_TO_MARK(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) #define ATB_MARK_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) #define BLOCK_FROM_PTR(ptr) (((ptr) - (machine_uint_t)gc_pool_start) / BYTES_PER_BLOCK) #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (machine_uint_t)gc_pool_start)) #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB) // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool void gc_init(void *start, void *end) { // align end pointer on block boundary end = (void*)((machine_uint_t)end & (~(BYTES_PER_BLOCK - 1))); DEBUG_printf("Initializing GC heap: %p-%p\n", start, end); // calculate parameters for GC machine_uint_t total_word_len = (machine_uint_t*)end - (machine_uint_t*)start; gc_alloc_table_byte_len = total_word_len * BYTES_PER_WORD / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); gc_alloc_table_start = (byte*)start; machine_uint_t gc_pool_block_len = gc_alloc_table_byte_len * BITS_PER_BYTE / 2; machine_uint_t gc_pool_word_len = gc_pool_block_len * WORDS_PER_BLOCK; gc_pool_start = (machine_uint_t*)end - gc_pool_word_len; gc_pool_end = end; // clear ATBs memset(gc_alloc_table_start, 0, gc_alloc_table_byte_len); // allocate first block because gc_pool_start points there and it will never // be freed, so allocating 1 block with null pointers will minimise memory loss ATB_FREE_TO_HEAD(0); for (int i = 0; i < WORDS_PER_BLOCK; i++) { gc_pool_start[i] = 0; } DEBUG_printf("GC layout:\n"); DEBUG_printf(" alloc table at %p, length %u bytes\n", gc_alloc_table_start, gc_alloc_table_byte_len); DEBUG_printf(" pool at %p, length %u blocks = %u words = %u bytes\n", gc_pool_start, gc_pool_block_len, gc_pool_word_len, gc_pool_word_len * BYTES_PER_WORD); } #define VERIFY_PTR(ptr) ( \ (ptr & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ && ptr >= (machine_uint_t)gc_pool_start /* must be above start of pool */ \ && ptr < (machine_uint_t)gc_pool_end /* must be below end of pool */ \ ) #define VERIFY_MARK_AND_PUSH(ptr) \ do { \ if (VERIFY_PTR(ptr)) { \ machine_uint_t _block = BLOCK_FROM_PTR(ptr); \ if (ATB_GET_KIND(_block) == AT_HEAD) { \ /* an unmarked head, mark it, and push it on gc stack */ \ ATB_HEAD_TO_MARK(_block); \ if (gc_sp < &gc_stack[STACK_SIZE]) { \ *gc_sp++ = _block; \ } else { \ gc_stack_overflow = 1; \ } \ } \ } \ } while (0) static void gc_drain_stack(void) { while (gc_sp > gc_stack) { // pop the next block off the stack machine_uint_t block = *--gc_sp; // work out number of consecutive blocks in the chain starting with this one machine_uint_t n_blocks = 0; do { n_blocks += 1; } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); // check this block's children machine_uint_t *scan = (machine_uint_t*)PTR_FROM_BLOCK(block); for (machine_uint_t i = n_blocks * WORDS_PER_BLOCK; i > 0; i--, scan++) { machine_uint_t ptr2 = *scan; VERIFY_MARK_AND_PUSH(ptr2); } } } static void gc_deal_with_stack_overflow(void) { while (gc_stack_overflow) { gc_stack_overflow = 0; gc_sp = gc_stack; // scan entire memory looking for blocks which have been marked but not their children for (machine_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { // trace (again) if mark bit set if (ATB_GET_KIND(block) == AT_MARK) { *gc_sp++ = block; gc_drain_stack(); } } } } static void gc_sweep(void) { // free unmarked heads and their tails int free_tail = 0; for (machine_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { switch (ATB_GET_KIND(block)) { case AT_HEAD: free_tail = 1; // fall through to free the head case AT_TAIL: if (free_tail) { ATB_ANY_TO_FREE(block); } break; case AT_MARK: ATB_MARK_TO_HEAD(block); free_tail = 0; break; } } } void gc_collect_start(void) { gc_stack_overflow = 0; gc_sp = gc_stack; } void gc_collect_root(void **ptrs, machine_uint_t len) { for (machine_uint_t i = 0; i < len; i++) { machine_uint_t ptr = (machine_uint_t)ptrs[i]; VERIFY_MARK_AND_PUSH(ptr); gc_drain_stack(); } } void gc_collect_end(void) { gc_deal_with_stack_overflow(); gc_sweep(); } void gc_info(gc_info_t *info) { info->total = (gc_pool_end - gc_pool_start) * sizeof(machine_uint_t); info->used = 0; info->free = 0; info->num_1block = 0; info->num_2block = 0; info->max_block = 0; for (machine_uint_t block = 0, len = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { machine_uint_t kind = ATB_GET_KIND(block); if (kind == AT_FREE || kind == AT_HEAD) { if (len == 1) { info->num_1block += 1; } else if (len == 2) { info->num_2block += 1; } if (len > info->max_block) { info->max_block = len; } } switch (kind) { case AT_FREE: info->free += 1; len = 0; break; case AT_HEAD: info->used += 1; len = 1; break; case AT_TAIL: info->used += 1; len += 1; break; case AT_MARK: // shouldn't happen break; } } info->used *= BYTES_PER_BLOCK; info->free *= BYTES_PER_BLOCK; } void *gc_alloc(machine_uint_t n_bytes) { machine_uint_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; //printf("gc_alloc(%u bytes -> %u blocks)\n", n_bytes, n_blocks); // check for 0 allocation if (n_blocks == 0) { return NULL; } machine_uint_t i; machine_uint_t end_block; machine_uint_t start_block; machine_uint_t n_free = 0; int collected = 0; for (;;) { // look for a run of n_blocks available blocks for (i = 0; i < gc_alloc_table_byte_len; i++) { byte a = gc_alloc_table_start[i]; if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } } // nothing found! if (collected) { return NULL; } gc_collect(); collected = 1; } // found, ending at block i inclusive found: // get starting and end blocks, both inclusive end_block = i; start_block = i - n_free + 1; // mark first block as used head ATB_FREE_TO_HEAD(start_block); // mark rest of blocks as used tail // TODO for a run of many blocks can make this more efficient for (machine_uint_t bl = start_block + 1; bl <= end_block; bl++) { ATB_FREE_TO_TAIL(bl); } // return pointer to first block return (void*)(gc_pool_start + start_block * WORDS_PER_BLOCK); } // force the freeing of a piece of memory void gc_free(void *ptr_in) { machine_uint_t ptr = (machine_uint_t)ptr_in; if (VERIFY_PTR(ptr)) { machine_uint_t block = BLOCK_FROM_PTR(ptr); if (ATB_GET_KIND(block) == AT_HEAD) { // free head and all of its tail blocks do { ATB_ANY_TO_FREE(block); block += 1; } while (ATB_GET_KIND(block) == AT_TAIL); } } } machine_uint_t gc_nbytes(void *ptr_in) { machine_uint_t ptr = (machine_uint_t)ptr_in; if (VERIFY_PTR(ptr)) { machine_uint_t block = BLOCK_FROM_PTR(ptr); if (ATB_GET_KIND(block) == AT_HEAD) { // work out number of consecutive blocks in the chain starting with this on machine_uint_t n_blocks = 0; do { n_blocks += 1; } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); return n_blocks * BYTES_PER_BLOCK; } } // invalid pointer return 0; } void *gc_realloc(void *ptr, machine_uint_t n_bytes) { machine_uint_t n_existing = gc_nbytes(ptr); if (n_bytes <= n_existing) { return ptr; } else { // TODO check if we can grow inplace void *ptr2 = gc_alloc(n_bytes); if (ptr2 == NULL) { return ptr2; } memcpy(ptr2, ptr, n_existing); gc_free(ptr); return ptr2; } } #if DEBUG_PRINT static void gc_dump_at(void) { for (machine_uint_t bl = 0; bl < gc_alloc_table_byte_len * BLOCKS_PER_ATB; bl++) { printf("block %06u ", bl); switch (ATB_GET_KIND(bl)) { case AT_FREE: printf("FREE"); break; case AT_HEAD: printf("HEAD"); break; case AT_TAIL: printf("TAIL"); break; default: printf("MARK"); break; } printf("\n"); } } void gc_test(void) { machine_uint_t len = 500; machine_uint_t *heap = malloc(len); gc_init(heap, heap + len / sizeof(machine_uint_t)); void *ptrs[100]; { machine_uint_t **p = gc_alloc(16); p[0] = gc_alloc(64); p[1] = gc_alloc(1); p[2] = gc_alloc(1); p[3] = gc_alloc(1); machine_uint_t ***p2 = gc_alloc(16); p2[0] = p; p2[1] = p; ptrs[0] = p2; } for (int i = 0; i < 25; i+=2) { machine_uint_t *p = gc_alloc(i); printf("p=%p\n", p); if (i & 3) { //ptrs[i] = p; } } printf("Before GC:\n"); gc_dump_at(); printf("Starting GC...\n"); gc_collect_start(); gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*)); gc_collect_end(); printf("After GC:\n"); gc_dump_at(); } #endif #endif // MICROPY_ENABLE_GC