/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <string.h> #include <assert.h> #include "py/objtuple.h" #include "py/objfun.h" #include "py/runtime.h" #include "py/bc.h" #include "py/stackctrl.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif // Note: the "name" entry in mp_obj_type_t for a function type must be // MP_QSTR_function because it is used to determine if an object is of generic // function type. /******************************************************************************/ /* builtin functions */ STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)args; assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_0)); mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_check_num(n_args, n_kw, 0, 0, false); return self->fun._0(); } const mp_obj_type_t mp_type_fun_builtin_0 = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_BUILTIN_FUN, .name = MP_QSTR_function, .call = fun_builtin_0_call, .unary_op = mp_generic_unary_op, }; STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_1)); mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_check_num(n_args, n_kw, 1, 1, false); return self->fun._1(args[0]); } const mp_obj_type_t mp_type_fun_builtin_1 = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_BUILTIN_FUN, .name = MP_QSTR_function, .call = fun_builtin_1_call, .unary_op = mp_generic_unary_op, }; STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_2)); mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_check_num(n_args, n_kw, 2, 2, false); return self->fun._2(args[0], args[1]); } const mp_obj_type_t mp_type_fun_builtin_2 = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_BUILTIN_FUN, .name = MP_QSTR_function, .call = fun_builtin_2_call, .unary_op = mp_generic_unary_op, }; STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_3)); mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_check_num(n_args, n_kw, 3, 3, false); return self->fun._3(args[0], args[1], args[2]); } const mp_obj_type_t mp_type_fun_builtin_3 = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_BUILTIN_FUN, .name = MP_QSTR_function, .call = fun_builtin_3_call, .unary_op = mp_generic_unary_op, }; STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_var)); mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in); // check number of arguments mp_arg_check_num_sig(n_args, n_kw, self->sig); if (self->sig & 1) { // function allows keywords // we create a map directly from the given args array mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); return self->fun.kw(n_args, args, &kw_args); } else { // function takes a variable number of arguments, but no keywords return self->fun.var(n_args, args); } } const mp_obj_type_t mp_type_fun_builtin_var = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_BUILTIN_FUN, .name = MP_QSTR_function, .call = fun_builtin_var_call, .unary_op = mp_generic_unary_op, }; /******************************************************************************/ /* byte code functions */ qstr mp_obj_code_get_name(const byte *code_info) { MP_BC_PRELUDE_SIZE_DECODE(code_info); #if MICROPY_PERSISTENT_CODE return code_info[0] | (code_info[1] << 8); #else return mp_decode_uint_value(code_info); #endif } #if MICROPY_EMIT_NATIVE STATIC const mp_obj_type_t mp_type_fun_native; #endif qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) { const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in); #if MICROPY_EMIT_NATIVE if (fun->base.type == &mp_type_fun_native || fun->base.type == &mp_type_native_gen_wrap) { // TODO native functions don't have name stored return MP_QSTR_; } #endif const byte *bc = fun->bytecode; MP_BC_PRELUDE_SIG_DECODE(bc); return mp_obj_code_get_name(bc); } #if MICROPY_CPYTHON_COMPAT STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { (void)kind; mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in); mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o); } #endif #if DEBUG_PRINT STATIC void dump_args(const mp_obj_t *a, size_t sz) { DEBUG_printf("%p: ", a); for (size_t i = 0; i < sz; i++) { DEBUG_printf("%p ", a[i]); } DEBUG_printf("\n"); } #else #define dump_args(...) (void)0 #endif // With this macro you can tune the maximum number of function state bytes // that will be allocated on the stack. Any function that needs more // than this will try to use the heap, with fallback to stack allocation. #define VM_MAX_STATE_ON_STACK (sizeof(mp_uint_t) * 11) #define DECODE_CODESTATE_SIZE(bytecode, n_state_out_var, state_size_out_var) \ { \ const uint8_t *ip = bytecode; \ size_t n_exc_stack, scope_flags, n_pos_args, n_kwonly_args, n_def_args; \ MP_BC_PRELUDE_SIG_DECODE_INTO(ip, n_state_out_var, n_exc_stack, scope_flags, n_pos_args, n_kwonly_args, n_def_args); \ (void)scope_flags; (void)n_pos_args; (void)n_kwonly_args; (void)n_def_args; \ \ /* state size in bytes */ \ state_size_out_var = n_state_out_var * sizeof(mp_obj_t) \ + n_exc_stack * sizeof(mp_exc_stack_t); \ } #define INIT_CODESTATE(code_state, _fun_bc, _n_state, n_args, n_kw, args) \ code_state->fun_bc = _fun_bc; \ code_state->ip = 0; \ code_state->n_state = _n_state; \ mp_setup_code_state(code_state, n_args, n_kw, args); \ code_state->old_globals = mp_globals_get(); #if MICROPY_STACKLESS mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in); size_t n_state, state_size; DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size); mp_code_state_t *code_state; #if MICROPY_ENABLE_PYSTACK code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size); #else // If we use m_new_obj_var(), then on no memory, MemoryError will be // raised. But this is not correct exception for a function call, // RuntimeError should be raised instead. So, we use m_new_obj_var_maybe(), // return NULL, then vm.c takes the needed action (either raise // RuntimeError or fallback to stack allocation). code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size); if (!code_state) { return NULL; } #endif INIT_CODESTATE(code_state, self, n_state, n_args, n_kw, args); // execute the byte code with the correct globals context mp_globals_set(self->globals); return code_state; } #endif STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw); DEBUG_printf("Input pos args: "); dump_args(args, n_args); DEBUG_printf("Input kw args: "); dump_args(args + n_args, n_kw * 2); mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in); size_t n_state, state_size; DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size); // allocate state for locals and stack mp_code_state_t *code_state = NULL; #if MICROPY_ENABLE_PYSTACK code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size); #else if (state_size > VM_MAX_STATE_ON_STACK) { code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size); #if MICROPY_DEBUG_VM_STACK_OVERFLOW if (code_state != NULL) { memset(code_state->state, 0, state_size); } #endif } if (code_state == NULL) { code_state = alloca(sizeof(mp_code_state_t) + state_size); #if MICROPY_DEBUG_VM_STACK_OVERFLOW memset(code_state->state, 0, state_size); #endif state_size = 0; // indicate that we allocated using alloca } #endif INIT_CODESTATE(code_state, self, n_state, n_args, n_kw, args); // execute the byte code with the correct globals context mp_globals_set(self->globals); mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL); mp_globals_set(code_state->old_globals); #if MICROPY_DEBUG_VM_STACK_OVERFLOW if (vm_return_kind == MP_VM_RETURN_NORMAL) { if (code_state->sp < code_state->state) { mp_printf(MICROPY_DEBUG_PRINTER, "VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state); assert(0); } } const byte *bytecode_ptr = self->bytecode; size_t n_state_unused, n_exc_stack_unused, scope_flags_unused; size_t n_pos_args, n_kwonly_args, n_def_args_unused; MP_BC_PRELUDE_SIG_DECODE_INTO(bytecode_ptr, n_state_unused, n_exc_stack_unused, scope_flags_unused, n_pos_args, n_kwonly_args, n_def_args_unused); // We can't check the case when an exception is returned in state[0] // and there are no arguments, because in this case our detection slot may have // been overwritten by the returned exception (which is allowed). if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && n_pos_args + n_kwonly_args == 0)) { // Just check to see that we have at least 1 null object left in the state. bool overflow = true; for (size_t i = 0; i < n_state - n_pos_args - n_kwonly_args; ++i) { if (code_state->state[i] == MP_OBJ_NULL) { overflow = false; break; } } if (overflow) { mp_printf(MICROPY_DEBUG_PRINTER, "VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state); assert(0); } } #endif mp_obj_t result; if (vm_return_kind == MP_VM_RETURN_NORMAL) { // return value is in *sp result = *code_state->sp; } else { // must be an exception because normal functions can't yield assert(vm_return_kind == MP_VM_RETURN_EXCEPTION); // returned exception is in state[0] result = code_state->state[0]; } #if MICROPY_ENABLE_PYSTACK mp_pystack_free(code_state); #else // free the state if it was allocated on the heap if (state_size != 0) { m_del_var(mp_code_state_t, byte, state_size, code_state); } #endif if (vm_return_kind == MP_VM_RETURN_NORMAL) { return result; } else { // MP_VM_RETURN_EXCEPTION nlr_raise(result); } } #if MICROPY_PY_FUNCTION_ATTRS void mp_obj_fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] != MP_OBJ_NULL) { // not load attribute return; } if (attr == MP_QSTR___name__) { dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in)); } if (attr == MP_QSTR___globals__) { mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in); dest[0] = MP_OBJ_FROM_PTR(self->globals); } } #endif const mp_obj_type_t mp_type_fun_bc = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF, .name = MP_QSTR_function, #if MICROPY_CPYTHON_COMPAT .print = fun_bc_print, #endif .call = fun_bc_call, .unary_op = mp_generic_unary_op, #if MICROPY_PY_FUNCTION_ATTRS .attr = mp_obj_fun_bc_attr, #endif }; mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) { size_t n_def_args = 0; size_t n_extra_args = 0; mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in); if (def_args_in != MP_OBJ_NULL) { assert(mp_obj_is_type(def_args_in, &mp_type_tuple)); n_def_args = def_args->len; n_extra_args = def_args->len; } if (def_kw_args != MP_OBJ_NULL) { n_extra_args += 1; } mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); o->base.type = &mp_type_fun_bc; o->globals = mp_globals_get(); o->bytecode = code; o->const_table = const_table; if (def_args != NULL) { memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); } if (def_kw_args != MP_OBJ_NULL) { o->extra_args[n_def_args] = def_kw_args; } return MP_OBJ_FROM_PTR(o); } /******************************************************************************/ /* native functions */ #if MICROPY_EMIT_NATIVE STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { MP_STACK_CHECK(); mp_obj_fun_bc_t *self = self_in; mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void *)self->bytecode); return fun(self_in, n_args, n_kw, args); } STATIC const mp_obj_type_t mp_type_fun_native = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF, .name = MP_QSTR_function, .call = fun_native_call, .unary_op = mp_generic_unary_op, }; mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) { mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte *)fun_data, const_table); o->base.type = &mp_type_fun_native; return o; } #endif // MICROPY_EMIT_NATIVE /******************************************************************************/ /* inline assembler functions */ #if MICROPY_EMIT_INLINE_ASM typedef struct _mp_obj_fun_asm_t { mp_obj_base_t base; size_t n_args; const void *fun_data; // GC must be able to trace this pointer mp_uint_t type_sig; } mp_obj_fun_asm_t; typedef mp_uint_t (*inline_asm_fun_0_t)(void); typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t); typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t); typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t); // convert a MicroPython object to a sensible value for inline asm STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { // TODO for byte_array, pass pointer to the array if (mp_obj_is_small_int(obj)) { return MP_OBJ_SMALL_INT_VALUE(obj); } else if (obj == mp_const_none) { return 0; } else if (obj == mp_const_false) { return 0; } else if (obj == mp_const_true) { return 1; } else if (mp_obj_is_type(obj, &mp_type_int)) { return mp_obj_int_get_truncated(obj); } else if (mp_obj_is_str(obj)) { // pointer to the string (it's probably constant though!) size_t l; return (mp_uint_t)mp_obj_str_get_data(obj, &l); } else { const mp_obj_type_t *type = mp_obj_get_type(obj); #if MICROPY_PY_BUILTINS_FLOAT if (type == &mp_type_float) { // convert float to int (could also pass in float registers) return (mp_int_t)mp_obj_float_get(obj); } #endif if (type == &mp_type_tuple || type == &mp_type_list) { // pointer to start of tuple (could pass length, but then could use len(x) for that) size_t len; mp_obj_t *items; mp_obj_get_array(obj, &len, &items); return (mp_uint_t)items; } else { mp_buffer_info_t bufinfo; if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_READ)) { // supports the buffer protocol, return a pointer to the data return (mp_uint_t)bufinfo.buf; } else { // just pass along a pointer to the object return (mp_uint_t)obj; } } } } STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_obj_fun_asm_t *self = self_in; mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); const void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data); mp_uint_t ret; if (n_args == 0) { ret = ((inline_asm_fun_0_t)fun)(); } else if (n_args == 1) { ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0])); } else if (n_args == 2) { ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); } else if (n_args == 3) { ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); } else { // compiler allows at most 4 arguments assert(n_args == 4); ret = ((inline_asm_fun_4_t)fun)( convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]), convert_obj_for_inline_asm(args[3]) ); } return mp_native_to_obj(ret, self->type_sig); } STATIC const mp_obj_type_t mp_type_fun_asm = { { &mp_type_type }, .flags = MP_TYPE_FLAG_BINDS_SELF, .name = MP_QSTR_function, .call = fun_asm_call, .unary_op = mp_generic_unary_op, }; mp_obj_t mp_obj_new_fun_asm(size_t n_args, const void *fun_data, mp_uint_t type_sig) { mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); o->base.type = &mp_type_fun_asm; o->n_args = n_args; o->fun_data = fun_data; o->type_sig = type_sig; return o; } #endif // MICROPY_EMIT_INLINE_ASM