// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args // mp_xxx functions are safer and can be called by anyone // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this #include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "parsenum.h" #include "runtime0.h" #include "runtime.h" #include "map.h" #include "builtin.h" #include "objarray.h" #include "bc.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define WRITE_CODE (1) #define DEBUG_printf DEBUG_printf #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) #else // don't print debugging info #define DEBUG_printf(...) (void)0 #define DEBUG_OP_printf(...) (void)0 #endif // locals and globals need to be pointers because they can be the same in outer module scope STATIC mp_map_t *map_locals; STATIC mp_map_t *map_globals; STATIC mp_map_t map_builtins; STATIC mp_map_t map_loaded_modules; // TODO: expose as sys.modules typedef enum { MP_CODE_NONE, MP_CODE_BYTE, MP_CODE_NATIVE, MP_CODE_INLINE_ASM, } mp_code_kind_t; typedef struct _mp_code_t { mp_code_kind_t kind : 8; uint scope_flags : 8; uint n_args : 16; uint n_state : 16; union { struct { byte *code; uint len; } u_byte; struct { mp_fun_t fun; } u_native; struct { void *fun; } u_inline_asm; }; qstr *arg_names; } mp_code_t; STATIC uint next_unique_code_id; STATIC machine_uint_t unique_codes_alloc = 0; STATIC mp_code_t *unique_codes = NULL; #ifdef WRITE_CODE FILE *fp_write_code = NULL; #endif // builtins // we put this table in ROM because it's always needed and takes up quite a bit of room in RAM // in fact, it uses less ROM here in table form than the equivalent in code form initialising a dynamic mp_map_t object in RAM // at the moment it's a linear table, but we could convert it to a const mp_map_t table with a simple preprocessing script // if we wanted to allow dynamic modification of the builtins, we could provide an mp_map_t object which is searched before this one typedef struct _mp_builtin_elem_t { qstr qstr; mp_obj_t fun; } mp_builtin_elem_t; STATIC const mp_builtin_elem_t builtin_table[] = { // built-in core functions { MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj }, { MP_QSTR___import__, (mp_obj_t)&mp_builtin___import___obj }, { MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj }, // built-in types { MP_QSTR_bool, (mp_obj_t)&bool_type }, { MP_QSTR_bytes, (mp_obj_t)&bytes_type }, #if MICROPY_ENABLE_FLOAT { MP_QSTR_complex, (mp_obj_t)&mp_type_complex }, #endif { MP_QSTR_dict, (mp_obj_t)&dict_type }, { MP_QSTR_enumerate, (mp_obj_t)&enumerate_type }, { MP_QSTR_filter, (mp_obj_t)&filter_type }, #if MICROPY_ENABLE_FLOAT { MP_QSTR_float, (mp_obj_t)&mp_type_float }, #endif { MP_QSTR_int, (mp_obj_t)&int_type }, { MP_QSTR_list, (mp_obj_t)&list_type }, { MP_QSTR_map, (mp_obj_t)&map_type }, { MP_QSTR_set, (mp_obj_t)&set_type }, { MP_QSTR_str, (mp_obj_t)&str_type }, { MP_QSTR_super, (mp_obj_t)&super_type }, { MP_QSTR_tuple, (mp_obj_t)&tuple_type }, { MP_QSTR_type, (mp_obj_t)&mp_type_type }, { MP_QSTR_zip, (mp_obj_t)&zip_type }, { MP_QSTR_classmethod, (mp_obj_t)&mp_type_classmethod }, { MP_QSTR_staticmethod, (mp_obj_t)&mp_type_staticmethod }, // built-in user functions { MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj }, { MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj }, { MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj }, { MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj }, { MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj }, { MP_QSTR_dir, (mp_obj_t)&mp_builtin_dir_obj }, { MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj }, { MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj }, { MP_QSTR_exec, (mp_obj_t)&mp_builtin_exec_obj }, { MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj }, { MP_QSTR_id, (mp_obj_t)&mp_builtin_id_obj }, { MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj }, { MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj }, { MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj }, { MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj }, { MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj }, { MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj }, { MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj }, { MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj }, { MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj }, { MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj }, { MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj }, { MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj }, { MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj }, { MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj }, { MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj }, // built-in exceptions { MP_QSTR_BaseException, (mp_obj_t)&mp_type_BaseException }, { MP_QSTR_AssertionError, (mp_obj_t)&mp_type_AssertionError }, { MP_QSTR_AttributeError, (mp_obj_t)&mp_type_AttributeError }, { MP_QSTR_ImportError, (mp_obj_t)&mp_type_ImportError }, { MP_QSTR_IndentationError, (mp_obj_t)&mp_type_IndentationError }, { MP_QSTR_IndexError, (mp_obj_t)&mp_type_IndexError }, { MP_QSTR_KeyError, (mp_obj_t)&mp_type_KeyError }, { MP_QSTR_NameError, (mp_obj_t)&mp_type_NameError }, { MP_QSTR_SyntaxError, (mp_obj_t)&mp_type_SyntaxError }, { MP_QSTR_TypeError, (mp_obj_t)&mp_type_TypeError }, { MP_QSTR_ValueError, (mp_obj_t)&mp_type_ValueError }, // Somehow CPython managed to have OverflowError not inherit from ValueError ;-/ // TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation { MP_QSTR_OverflowError, (mp_obj_t)&mp_type_OverflowError }, { MP_QSTR_OSError, (mp_obj_t)&mp_type_OSError }, { MP_QSTR_NotImplementedError, (mp_obj_t)&mp_type_NotImplementedError }, { MP_QSTR_StopIteration, (mp_obj_t)&mp_type_StopIteration }, { MP_QSTR_ZeroDivisionError, (mp_obj_t)&mp_type_ZeroDivisionError }, // Extra builtins as defined by a port MICROPY_EXTRA_BUILTINS { MP_QSTR_, MP_OBJ_NULL }, // end of list sentinel }; // a good optimising compiler will inline this if necessary STATIC void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) { mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; } void rt_init(void) { // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) map_locals = map_globals = mp_map_new(1); mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__)); // init built-in hash table mp_map_init(&map_builtins, 3); // init loaded modules table mp_map_init(&map_loaded_modules, 3); // built-in objects mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis); mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array); rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type); mp_obj_t m_collections = mp_obj_new_module(MP_QSTR_collections); rt_store_attr(m_collections, MP_QSTR_namedtuple, (mp_obj_t)&mp_namedtuple_obj); #if MICROPY_CPYTHON_COMPAT // Precreate sys module, so "import sys" didn't throw exceptions. mp_obj_t m_sys = mp_obj_new_module(MP_QSTR_sys); // Avoid warning of unused var (void)m_sys; #endif // init sys.path // for efficiency, left to platform-specific startup code //sys_path = mp_obj_new_list(0, NULL); //rt_store_attr(m_sys, MP_QSTR_path, sys_path); // we pre-import the micropython module // probably shouldn't do this, so we are compatible with CPython rt_store_name(MP_QSTR_micropython, (mp_obj_t)&mp_module_micropython); // TODO: wastes one mp_code_t structure in mem next_unique_code_id = 1; // 0 indicates "no code" unique_codes_alloc = 0; unique_codes = NULL; #ifdef WRITE_CODE fp_write_code = fopen("out-code", "wb"); #endif } void rt_deinit(void) { m_del(mp_code_t, unique_codes, unique_codes_alloc); mp_map_free(map_globals); mp_map_deinit(&map_loaded_modules); mp_map_deinit(&map_builtins); #ifdef WRITE_CODE if (fp_write_code != NULL) { fclose(fp_write_code); } #endif } uint rt_get_unique_code_id(void) { return next_unique_code_id++; } STATIC void alloc_unique_codes(void) { if (next_unique_code_id > unique_codes_alloc) { DEBUG_printf("allocate more unique codes: " UINT_FMT " -> %u\n", unique_codes_alloc, next_unique_code_id); // increase size of unique_codes table unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id); for (uint i = unique_codes_alloc; i < next_unique_code_id; i++) { unique_codes[i].kind = MP_CODE_NONE; } unique_codes_alloc = next_unique_code_id; } } void rt_assign_byte_code(uint unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, uint scope_flags, qstr *arg_names) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); unique_codes[unique_code_id].kind = MP_CODE_BYTE; unique_codes[unique_code_id].scope_flags = scope_flags; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_state = n_locals + n_stack; unique_codes[unique_code_id].u_byte.code = code; unique_codes[unique_code_id].u_byte.len = len; unique_codes[unique_code_id].arg_names = arg_names; //printf("byte code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d n_locals=%d n_stack=%d\n", unique_code_id, code, len, n_args, n_locals, n_stack); for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", code[i]); } DEBUG_printf("\n"); #if MICROPY_DEBUG_PRINTERS mp_byte_code_print(code, len); #endif #endif } void rt_assign_native_code(uint unique_code_id, void *fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); unique_codes[unique_code_id].kind = MP_CODE_NATIVE; unique_codes[unique_code_id].scope_flags = 0; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_state = 0; unique_codes[unique_code_id].u_native.fun = fun; //printf("native code: %d bytes\n", len); #ifdef DEBUG_PRINT DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); fflush(fp_write_code); } #endif #endif } void rt_assign_inline_asm_code(uint unique_code_id, void *fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM; unique_codes[unique_code_id].scope_flags = 0; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_state = 0; unique_codes[unique_code_id].u_inline_asm.fun = fun; #ifdef DEBUG_PRINT DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE if (fp_write_code != NULL) { fwrite(fun_data, len, 1, fp_write_code); } #endif #endif } int rt_is_true(mp_obj_t arg) { DEBUG_OP_printf("is true %p\n", arg); if (arg == mp_const_false) { return 0; } else if (arg == mp_const_true) { return 1; } else if (arg == mp_const_none) { return 0; } else if (MP_OBJ_IS_SMALL_INT(arg)) { if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) { return 0; } else { return 1; } } else { mp_obj_type_t *type = mp_obj_get_type(arg); if (type->unary_op != NULL) { mp_obj_t result = type->unary_op(RT_UNARY_OP_BOOL, arg); if (result != MP_OBJ_NULL) { return result == mp_const_true; } } mp_obj_t len = mp_obj_len_maybe(arg); if (len != MP_OBJ_NULL) { // obj has a length, truth determined if len != 0 return len != MP_OBJ_NEW_SMALL_INT(0); } else { // any other obj is true per Python semantics return 1; } } } mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) { return mp_obj_list_append(self_in, arg); } mp_obj_t rt_load_const_dec(qstr qstr) { DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); uint len; const byte* data = qstr_data(qstr, &len); return mp_parse_num_decimal((const char*)data, len, true, false); } mp_obj_t rt_load_const_str(qstr qstr) { DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); return MP_OBJ_NEW_QSTR(qstr); } mp_obj_t rt_load_const_bytes(qstr qstr) { DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr)); uint len; const byte *data = qstr_data(qstr, &len); return mp_obj_new_bytes(data, len); } mp_obj_t rt_load_name(qstr qstr) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } else { return rt_load_global(qstr); } } mp_obj_t rt_load_global(qstr qstr) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); if (elem == NULL) { elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); if (elem == NULL) { for (const mp_builtin_elem_t *e = &builtin_table[0]; e->qstr != MP_QSTR_; e++) { if (e->qstr == qstr) { return e->fun; } } nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr))); } } return elem->value; } mp_obj_t rt_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } else { return (mp_obj_t)&mp_builtin___build_class___obj; } } mp_obj_t rt_get_cell(mp_obj_t cell) { return mp_obj_cell_get(cell); } void rt_set_cell(mp_obj_t cell, mp_obj_t val) { mp_obj_cell_set(cell, val); } void rt_store_name(qstr qstr, mp_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; } void rt_store_global(qstr qstr, mp_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; } mp_obj_t rt_unary_op(int op, mp_obj_t arg) { DEBUG_OP_printf("unary %d %p\n", op, arg); if (MP_OBJ_IS_SMALL_INT(arg)) { mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); switch (op) { case RT_UNARY_OP_BOOL: return MP_BOOL(val != 0); case RT_UNARY_OP_POSITIVE: return arg; case RT_UNARY_OP_NEGATIVE: // check for overflow if (val == MP_SMALL_INT_MIN) { return mp_obj_new_int(-val); } else { return MP_OBJ_NEW_SMALL_INT(-val); } case RT_UNARY_OP_INVERT: return MP_OBJ_NEW_SMALL_INT(~val); default: assert(0); return arg; } } else { mp_obj_type_t *type = mp_obj_get_type(arg); if (type->unary_op != NULL) { mp_obj_t result = type->unary_op(op, arg); if (result != NULL) { return result; } } // TODO specify in error message what the operator is nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg))); } } mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); // TODO correctly distinguish inplace operators for mutable objects // lookup logic that CPython uses for +=: // check for implemented += // then check for implemented + // then check for implemented seq.inplace_concat // then check for implemented seq.concat // then fail // note that list does not implement + or +=, so that inplace_concat is reached first for += // deal with is if (op == RT_BINARY_OP_IS) { return MP_BOOL(lhs == rhs); } // deal with == and != for all types if (op == RT_BINARY_OP_EQUAL || op == RT_BINARY_OP_NOT_EQUAL) { if (mp_obj_equal(lhs, rhs)) { if (op == RT_BINARY_OP_EQUAL) { return mp_const_true; } else { return mp_const_false; } } else { if (op == RT_BINARY_OP_EQUAL) { return mp_const_false; } else { return mp_const_true; } } } // deal with exception_match for all types if (op == RT_BINARY_OP_EXCEPTION_MATCH) { // rhs must be issubclass(rhs, BaseException) if (mp_obj_is_exception_type(rhs)) { // if lhs is an instance of an exception, then extract and use its type if (mp_obj_is_exception_instance(lhs)) { lhs = mp_obj_get_type(lhs); } if (mp_obj_is_subclass_fast(lhs, rhs)) { return mp_const_true; } else { return mp_const_false; } } } if (MP_OBJ_IS_SMALL_INT(lhs)) { mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); if (MP_OBJ_IS_SMALL_INT(rhs)) { mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); // This is a binary operation: lhs_val op rhs_val // We need to be careful to handle overflow; see CERT INT32-C // Operations that can overflow: // + result always fits in machine_int_t, then handled by SMALL_INT check // - result always fits in machine_int_t, then handled by SMALL_INT check // * checked explicitly // / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check // % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check // << checked explicitly switch (op) { case RT_BINARY_OP_OR: case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case RT_BINARY_OP_XOR: case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case RT_BINARY_OP_AND: case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case RT_BINARY_OP_LSHIFT: case RT_BINARY_OP_INPLACE_LSHIFT: { if (rhs_val < 0) { // negative shift not allowed nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count")); } else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) { // left-shift will overflow, so use higher precision integer lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; } else { // use standard precision lhs_val <<= rhs_val; } break; } case RT_BINARY_OP_RSHIFT: case RT_BINARY_OP_INPLACE_RSHIFT: if (rhs_val < 0) { // negative shift not allowed nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count")); } else { // standard precision is enough for right-shift lhs_val >>= rhs_val; } break; case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: { // If long long type exists and is larger than machine_int_t, then // we can use the following code to perform overflow-checked multiplication. // Otherwise (eg in x64 case) we must use the branching code below. #if 0 // compute result using long long precision long long res = (long long)lhs_val * (long long)rhs_val; if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) { // result overflowed SMALL_INT, so return higher precision integer return mp_obj_new_int_from_ll(res); } else { // use standard precision lhs_val = (mp_small_int_t)res; } #endif if (lhs_val > 0) { // lhs_val is positive if (rhs_val > 0) { // lhs_val and rhs_val are positive if (lhs_val > (MP_SMALL_INT_MAX / rhs_val)) { goto mul_overflow; } } else { // lhs_val positive, rhs_val nonpositive if (rhs_val < (MP_SMALL_INT_MIN / lhs_val)) { goto mul_overflow; } } // lhs_val positive, rhs_val nonpositive } else { // lhs_val is nonpositive if (rhs_val > 0) { // lhs_val is nonpositive, rhs_val is positive if (lhs_val < (MP_SMALL_INT_MIN / rhs_val)) { goto mul_overflow; } } else { // lhs_val and rhs_val are nonpositive if (lhs_val != 0 && rhs_val < (MP_SMALL_INT_MAX / lhs_val)) { goto mul_overflow; } } // End if lhs_val and rhs_val are nonpositive } // End if lhs_val is nonpositive // use standard precision return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val); mul_overflow: // use higher precision lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; break; } case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; #if MICROPY_ENABLE_FLOAT case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); #endif // TODO implement modulo as specified by Python case RT_BINARY_OP_MODULO: case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break; case RT_BINARY_OP_POWER: case RT_BINARY_OP_INPLACE_POWER: if (rhs_val < 0) { #if MICROPY_ENABLE_FLOAT lhs = mp_obj_new_float(lhs_val); goto generic_binary_op; #else nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support")); #endif } else { // TODO check for overflow machine_int_t ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { ans *= lhs_val; } lhs_val *= lhs_val; rhs_val /= 2; } lhs_val = ans; } break; case RT_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break; case RT_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break; case RT_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break; case RT_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break; default: assert(0); } // TODO: We just should make mp_obj_new_int() inline and use that if (MP_OBJ_FITS_SMALL_INT(lhs_val)) { return MP_OBJ_NEW_SMALL_INT(lhs_val); } else { return mp_obj_new_int(lhs_val); } #if MICROPY_ENABLE_FLOAT } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) { return mp_obj_float_binary_op(op, lhs_val, rhs); } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) { return mp_obj_complex_binary_op(op, lhs_val, 0, rhs); #endif } } /* deal with `in` * * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch * needs to go below with swapped arguments */ if (op == RT_BINARY_OP_IN) { mp_obj_type_t *type = mp_obj_get_type(rhs); if (type->binary_op != NULL) { mp_obj_t res = type->binary_op(op, rhs, lhs); if (res != MP_OBJ_NULL) { return res; } } if (type->getiter != NULL) { /* second attempt, walk the iterator */ mp_obj_t next = NULL; mp_obj_t iter = rt_getiter(rhs); while ((next = rt_iternext(iter)) != mp_const_stop_iteration) { if (mp_obj_equal(next, lhs)) { return mp_const_true; } } return mp_const_false; } nlr_jump(mp_obj_new_exception_msg_varg( &mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(rhs))); return mp_const_none; } // generic binary_op supplied by type mp_obj_type_t *type; generic_binary_op: type = mp_obj_get_type(lhs); if (type->binary_op != NULL) { mp_obj_t result = type->binary_op(op, lhs, rhs); if (result != MP_OBJ_NULL) { return result; } } // TODO implement dispatch for reverse binary ops // TODO specify in error message what the operator is nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "unsupported operand types for binary operator: '%s', '%s'", mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs))); return mp_const_none; } mp_obj_t rt_make_function_from_id(int unique_code_id, mp_obj_t def_args) { DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { // illegal code id return mp_const_none; } // make the function, depending on the code kind mp_code_t *c = &unique_codes[unique_code_id]; mp_obj_t fun; switch (c->kind) { case MP_CODE_BYTE: fun = mp_obj_new_fun_bc(c->scope_flags, c->arg_names, c->n_args, def_args, c->n_state, c->u_byte.code); break; case MP_CODE_NATIVE: fun = rt_make_function_n(c->n_args, c->u_native.fun); break; case MP_CODE_INLINE_ASM: fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun); break; default: assert(0); fun = mp_const_none; } // check for generator functions and if so wrap in generator object if ((c->scope_flags & MP_SCOPE_FLAG_GENERATOR) != 0) { fun = mp_obj_new_gen_wrap(fun); } return fun; } mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) { DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id); // make function object mp_obj_t ffun = rt_make_function_from_id(unique_code_id, MP_OBJ_NULL); // wrap function in closure object return mp_obj_new_closure(ffun, closure_tuple); } mp_obj_t rt_call_function_0(mp_obj_t fun) { return rt_call_function_n_kw(fun, 0, 0, NULL); } mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) { return rt_call_function_n_kw(fun, 1, 0, &arg); } mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { mp_obj_t args[2]; args[0] = arg1; args[1] = arg2; return rt_call_function_n_kw(fun, 2, 0, args); } // wrapper that accepts n_args and n_kw in one argument // native emitter can only pass at most 3 arguments to a function mp_obj_t rt_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) { return rt_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args); } // args contains, eg: arg0 arg1 key0 value0 key1 value1 mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) { // TODO improve this: fun object can specify its type and we parse here the arguments, // passing to the function arrays of fixed and keyword arguments DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args); // get the type mp_obj_type_t *type = mp_obj_get_type(fun_in); // do the call if (type->call != NULL) { return type->call(fun_in, n_args, n_kw, args); } else { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in))); } } // args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) // if n_args==0 and n_kw==0 then there are only fun and self/NULL mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) { DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args); int adjust = (args[1] == NULL) ? 0 : 1; return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); } mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) { return mp_obj_new_tuple(n_args, items); } mp_obj_t rt_build_list(int n_args, mp_obj_t *items) { return mp_obj_new_list(n_args, items); } mp_obj_t rt_build_set(int n_args, mp_obj_t *items) { return mp_obj_new_set(n_args, items); } mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) { mp_obj_set_store(set, item); return set; } // unpacked items are stored in reverse order into the array pointed to by items void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) { uint seq_len; if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) { mp_obj_t *seq_items; if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) { mp_obj_tuple_get(seq_in, &seq_len, &seq_items); } else { mp_obj_list_get(seq_in, &seq_len, &seq_items); } if (seq_len < num) { goto too_short; } else if (seq_len > num) { goto too_long; } for (uint i = 0; i < num; i++) { items[i] = seq_items[num - 1 - i]; } } else { mp_obj_t iterable = rt_getiter(seq_in); for (seq_len = 0; seq_len < num; seq_len++) { mp_obj_t el = rt_iternext(iterable); if (el == mp_const_stop_iteration) { goto too_short; } items[num - 1 - seq_len] = el; } if (rt_iternext(iterable) != mp_const_stop_iteration) { goto too_long; } } return; too_short: nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len)); too_long: nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num)); } mp_obj_t rt_build_map(int n_args) { return mp_obj_new_dict(n_args); } mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) { // map should always be a dict return mp_obj_dict_store(map, key, value); } mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); // use load_method mp_obj_t dest[2]; rt_load_method(base, attr, dest); if (dest[1] == MP_OBJ_NULL) { // load_method returned just a normal attribute return dest[0]; } else { // load_method returned a method, so build a bound method object return mp_obj_new_bound_meth(dest[0], dest[1]); } } // no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL // normal attribute found, returns: dest[0] == , dest[1] == MP_OBJ_NULL // method attribute found, returns: dest[0] == , dest[1] == STATIC void rt_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) { // clear output to indicate no attribute/method found yet dest[0] = MP_OBJ_NULL; dest[1] = MP_OBJ_NULL; // get the type mp_obj_type_t *type = mp_obj_get_type(base); // if this type can do its own load, then call it if (type->load_attr != NULL) { type->load_attr(base, attr, dest); } // if nothing found yet, look for built-in and generic names if (dest[0] == MP_OBJ_NULL) { if (attr == MP_QSTR___class__) { // a.__class__ is equivalent to type(a) dest[0] = type; } else if (attr == MP_QSTR___next__ && type->iternext != NULL) { dest[0] = (mp_obj_t)&mp_builtin_next_obj; dest[1] = base; } else if (type->load_attr == NULL) { // generic method lookup if type didn't provide a specific one // this is a lookup in the object (ie not class or type) const mp_method_t *meth = type->methods; if (meth != NULL) { for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun; } else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) { // return a bound method, with self being the type of this object dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun; dest[1] = mp_obj_get_type(base); } else { // return a bound method, with self being this object dest[0] = (mp_obj_t)meth->fun; dest[1] = base; } break; } } } } } } void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); rt_load_method_maybe(base, attr, dest); if (dest[0] == MP_OBJ_NULL) { // no attribute/method called attr // following CPython, we give a more detailed error message for type objects if (MP_OBJ_IS_TYPE(base, &mp_type_type)) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr))); } else { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); } } } void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); mp_obj_type_t *type = mp_obj_get_type(base); if (type->store_attr != NULL) { if (type->store_attr(base, attr, value)) { return; } } nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); } void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) { DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); if (MP_OBJ_IS_TYPE(base, &list_type)) { // list store mp_obj_list_store(base, index, value); } else if (MP_OBJ_IS_TYPE(base, &dict_type)) { // dict store mp_obj_dict_store(base, index, value); } else { mp_obj_type_t *type = mp_obj_get_type(base); if (type->store_item != NULL) { bool r = type->store_item(base, index, value); if (r) { return; } // TODO: call base classes here? } nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base))); } } mp_obj_t rt_getiter(mp_obj_t o_in) { mp_obj_type_t *type = mp_obj_get_type(o_in); if (type->getiter != NULL) { return type->getiter(o_in); } else { // check for __getitem__ method mp_obj_t dest[2]; rt_load_method_maybe(o_in, MP_QSTR___getitem__, dest); if (dest[0] != MP_OBJ_NULL) { // __getitem__ exists, create an iterator return mp_obj_new_getitem_iter(dest); } else { // object not iterable nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in))); } } } mp_obj_t rt_iternext(mp_obj_t o_in) { mp_obj_type_t *type = mp_obj_get_type(o_in); if (type->iternext != NULL) { return type->iternext(o_in); } else { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in))); } } mp_obj_t rt_make_raise_obj(mp_obj_t o) { DEBUG_printf("raise %p\n", o); if (mp_obj_is_exception_type(o)) { // o is an exception type (it is derived from BaseException (or is BaseException)) // create and return a new exception instance by calling o // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError) // could have const instances in ROM which we return here instead return rt_call_function_n_kw(o, 0, 0, NULL); } else if (mp_obj_is_exception_instance(o)) { // o is an instance of an exception, so use it as the exception return o; } else { // o cannot be used as an exception, so return a type error (which will be raised by the caller) return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException"); } } mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { DEBUG_printf("import name %s\n", qstr_str(name)); // build args array mp_obj_t args[5]; args[0] = MP_OBJ_NEW_QSTR(name); args[1] = mp_const_none; // TODO should be globals args[2] = mp_const_none; // TODO should be locals args[3] = fromlist; args[4] = level; // must be 0; we don't yet support other values // TODO lookup __import__ and call that instead of going straight to builtin implementation return mp_builtin___import__(5, args); } mp_obj_t rt_import_from(mp_obj_t module, qstr name) { DEBUG_printf("import from %p %s\n", module, qstr_str(name)); mp_obj_t x = rt_load_attr(module, name); /* TODO convert AttributeError to ImportError if (fail) { (ImportError, "cannot import name %s", qstr_str(name), NULL) } */ return x; } void rt_import_all(mp_obj_t module) { DEBUG_printf("import all %p\n", module); mp_map_t *map = mp_obj_module_get_globals(module); for (uint i = 0; i < map->alloc; i++) { if (map->table[i].key != MP_OBJ_NULL) { rt_store_name(MP_OBJ_QSTR_VALUE(map->table[i].key), map->table[i].value); } } } mp_map_t *rt_locals_get(void) { return map_locals; } void rt_locals_set(mp_map_t *m) { DEBUG_OP_printf("rt_locals_set(%p)\n", m); map_locals = m; } mp_map_t *rt_globals_get(void) { return map_globals; } void rt_globals_set(mp_map_t *m) { DEBUG_OP_printf("rt_globals_set(%p)\n", m); map_globals = m; } mp_map_t *rt_loaded_modules_get(void) { return &map_loaded_modules; } // these must correspond to the respective enum void *const rt_fun_table[RT_F_NUMBER_OF] = { rt_load_const_dec, rt_load_const_str, rt_load_name, rt_load_global, rt_load_build_class, rt_load_attr, rt_load_method, rt_store_name, rt_store_attr, rt_store_subscr, rt_is_true, rt_unary_op, rt_binary_op, rt_build_tuple, rt_build_list, rt_list_append, rt_build_map, rt_store_map, rt_build_set, rt_store_set, rt_make_function_from_id, rt_call_function_n_kw_for_native, rt_call_method_n_kw, rt_getiter, rt_iternext, }; /* void rt_f_vector(rt_fun_kind_t fun_kind) { (rt_f_table[fun_kind])(); } */