/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE. #include "py/mphal.h" #include "py/mperrno.h" #include "py/ringbuf.h" #include "hardware/irq.h" #include "hardware/uart.h" #include "hardware/regs/uart.h" #include "pico/mutex.h" #define DEFAULT_UART_BAUDRATE (115200) #define DEFAULT_UART_BITS (8) #define DEFAULT_UART_STOP (1) #ifdef MICROPY_HW_UART_NO_DEFAULT_PINS // With no default I2C, need to require the pin args. #define MICROPY_UART_PINS_ARG_OPTS MP_ARG_REQUIRED #else // Most boards do not require pin args. #define MICROPY_UART_PINS_ARG_OPTS 0 #endif // UART 0 default pins #if !defined(MICROPY_HW_UART0_TX) #define MICROPY_HW_UART0_TX (0) #define MICROPY_HW_UART0_RX (1) #define MICROPY_HW_UART0_CTS (2) #define MICROPY_HW_UART0_RTS (3) #endif // UART 1 default pins #if !defined(MICROPY_HW_UART1_TX) #define MICROPY_HW_UART1_TX (4) #define MICROPY_HW_UART1_RX (5) #define MICROPY_HW_UART1_CTS (6) #define MICROPY_HW_UART1_RTS (7) #endif #define DEFAULT_BUFFER_SIZE (256) #define MIN_BUFFER_SIZE (32) #define MAX_BUFFER_SIZE (32766) #define IS_VALID_PERIPH(uart, pin) (((((pin) + 4) & 8) >> 3) == (uart)) #define IS_VALID_TX(uart, pin) (((pin) & 3) == 0 && IS_VALID_PERIPH(uart, pin)) #define IS_VALID_RX(uart, pin) (((pin) & 3) == 1 && IS_VALID_PERIPH(uart, pin)) #define IS_VALID_CTS(uart, pin) (((pin) & 3) == 2 && IS_VALID_PERIPH(uart, pin)) #define IS_VALID_RTS(uart, pin) (((pin) & 3) == 3 && IS_VALID_PERIPH(uart, pin)) #define UART_INVERT_TX (1) #define UART_INVERT_RX (2) #define UART_INVERT_MASK (UART_INVERT_TX | UART_INVERT_RX) #define UART_HWCONTROL_CTS (1) #define UART_HWCONTROL_RTS (2) STATIC mutex_t write_mutex_0; STATIC mutex_t write_mutex_1; STATIC mutex_t read_mutex_0; STATIC mutex_t read_mutex_1; auto_init_mutex(write_mutex_0); auto_init_mutex(write_mutex_1); auto_init_mutex(read_mutex_0); auto_init_mutex(read_mutex_1); typedef struct _machine_uart_obj_t { mp_obj_base_t base; uart_inst_t *const uart; uint8_t uart_id; uint32_t baudrate; uint8_t bits; uart_parity_t parity; uint8_t stop; uint8_t tx; uint8_t rx; uint8_t cts; uint8_t rts; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) uint8_t invert; uint8_t flow; ringbuf_t read_buffer; mutex_t *read_mutex; ringbuf_t write_buffer; mutex_t *write_mutex; } machine_uart_obj_t; STATIC machine_uart_obj_t machine_uart_obj[] = { {{&machine_uart_type}, uart0, 0, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, MICROPY_HW_UART0_TX, MICROPY_HW_UART0_RX, MICROPY_HW_UART0_CTS, MICROPY_HW_UART0_RTS, 0, 0, 0, 0, {NULL, 1, 0, 0}, &read_mutex_0, {NULL, 1, 0, 0}, &write_mutex_0}, {{&machine_uart_type}, uart1, 1, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, MICROPY_HW_UART1_TX, MICROPY_HW_UART1_RX, MICROPY_HW_UART1_CTS, MICROPY_HW_UART1_RTS, 0, 0, 0, 0, {NULL, 1, 0, 0}, &read_mutex_1, {NULL, 1, 0, 0}, &write_mutex_1}, }; STATIC const char *_parity_name[] = {"None", "0", "1"}; STATIC const char *_invert_name[] = {"None", "INV_TX", "INV_RX", "INV_TX|INV_RX"}; /******************************************************************************/ // IRQ and buffer handling static inline bool write_mutex_try_lock(machine_uart_obj_t *u) { return mutex_enter_timeout_ms(u->write_mutex, 0); } static inline void write_mutex_unlock(machine_uart_obj_t *u) { mutex_exit(u->write_mutex); } static inline bool read_mutex_try_lock(machine_uart_obj_t *u) { return mutex_enter_timeout_ms(u->read_mutex, 0); } static inline void read_mutex_unlock(machine_uart_obj_t *u) { mutex_exit(u->read_mutex); } // take all bytes from the fifo and store them in the buffer STATIC void uart_drain_rx_fifo(machine_uart_obj_t *self) { if (read_mutex_try_lock(self)) { while (uart_is_readable(self->uart) && ringbuf_free(&self->read_buffer) > 0) { // Get a byte from uart and put into the buffer. Every entry from // the FIFO is accompanied by 4 error bits, that may be used for // error handling. uint16_t c = uart_get_hw(self->uart)->dr; if (c & UART_UARTDR_OE_BITS) { // Overrun Error: We missed at least one byte. Not much we can do here. } if (c & UART_UARTDR_BE_BITS) { // Break Error: RX was held low for longer than one character // (11 bits). We did *not* read the zero byte that we seemed to // read from dr. continue; } if (c & UART_UARTDR_PE_BITS) { // Parity Error: The byte we read is invalid. } if (c & UART_UARTDR_FE_BITS) { // Framing Error: We did not receive a valid stop bit. } ringbuf_put(&(self->read_buffer), c); } read_mutex_unlock(self); } } // take bytes from the buffer and put them into the UART FIFO // Re-entrancy: quit if an instance already running STATIC void uart_fill_tx_fifo(machine_uart_obj_t *self) { if (write_mutex_try_lock(self)) { while (uart_is_writable(self->uart) && ringbuf_avail(&self->write_buffer) > 0) { // get a byte from the buffer and put it into the uart uart_get_hw(self->uart)->dr = ringbuf_get(&(self->write_buffer)); } write_mutex_unlock(self); } } STATIC inline void uart_service_interrupt(machine_uart_obj_t *self) { if (uart_get_hw(self->uart)->mis & (UART_UARTMIS_RXMIS_BITS | UART_UARTMIS_RTMIS_BITS)) { // rx interrupt? // clear all interrupt bits but tx uart_get_hw(self->uart)->icr = UART_UARTICR_BITS & (~UART_UARTICR_TXIC_BITS); uart_drain_rx_fifo(self); } if (uart_get_hw(self->uart)->mis & UART_UARTMIS_TXMIS_BITS) { // tx interrupt? // clear all interrupt bits but rx uart_get_hw(self->uart)->icr = UART_UARTICR_BITS & (~UART_UARTICR_RXIC_BITS); uart_fill_tx_fifo(self); } } STATIC void uart0_irq_handler(void) { uart_service_interrupt(&machine_uart_obj[0]); } STATIC void uart1_irq_handler(void) { uart_service_interrupt(&machine_uart_obj[1]); } /******************************************************************************/ // MicroPython bindings for UART #define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \ { MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INVERT_TX) }, \ { MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INVERT_RX) }, \ { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, \ { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, \ STATIC void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, " "txbuf=%d, rxbuf=%d, timeout=%u, timeout_char=%u, invert=%s)", self->uart_id, self->baudrate, self->bits, _parity_name[self->parity], self->stop, self->tx, self->rx, self->write_buffer.size - 1, self->read_buffer.size - 1, self->timeout, self->timeout_char, _invert_name[self->invert]); } STATIC void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_cts, ARG_rts, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow, ARG_txbuf, ARG_rxbuf}; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_tx, MICROPY_UART_PINS_ARG_OPTS | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rx, MICROPY_UART_PINS_ARG_OPTS | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Set baudrate if configured. if (args[ARG_baudrate].u_int > 0) { self->baudrate = args[ARG_baudrate].u_int; } // Set bits if configured. if (args[ARG_bits].u_int > 0) { self->bits = args[ARG_bits].u_int; } // Set parity if configured. if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) { if (args[ARG_parity].u_obj == mp_const_none) { self->parity = UART_PARITY_NONE; } else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) { self->parity = UART_PARITY_ODD; } else { self->parity = UART_PARITY_EVEN; } } // Set stop bits if configured. if (args[ARG_stop].u_int > 0) { self->stop = args[ARG_stop].u_int; } // Set TX/RX pins if configured. if (args[ARG_tx].u_obj != mp_const_none) { int tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj); if (!IS_VALID_TX(self->uart_id, tx)) { mp_raise_ValueError(MP_ERROR_TEXT("bad TX pin")); } self->tx = tx; } if (args[ARG_rx].u_obj != mp_const_none) { int rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj); if (!IS_VALID_RX(self->uart_id, rx)) { mp_raise_ValueError(MP_ERROR_TEXT("bad RX pin")); } self->rx = rx; } // Set CTS/RTS pins if configured. if (args[ARG_cts].u_obj != mp_const_none) { int cts = mp_hal_get_pin_obj(args[ARG_cts].u_obj); if (!IS_VALID_CTS(self->uart_id, cts)) { mp_raise_ValueError(MP_ERROR_TEXT("bad CTS pin")); } self->cts = cts; } if (args[ARG_rts].u_obj != mp_const_none) { int rts = mp_hal_get_pin_obj(args[ARG_rts].u_obj); if (!IS_VALID_RTS(self->uart_id, rts)) { mp_raise_ValueError(MP_ERROR_TEXT("bad RTS pin")); } self->rts = rts; } // Set timeout if configured. if (args[ARG_timeout].u_int >= 0) { self->timeout = args[ARG_timeout].u_int; } // Set timeout_char if configured. if (args[ARG_timeout_char].u_int >= 0) { self->timeout_char = args[ARG_timeout_char].u_int; } // Set line inversion if configured. if (args[ARG_invert].u_int >= 0) { if (args[ARG_invert].u_int & ~UART_INVERT_MASK) { mp_raise_ValueError(MP_ERROR_TEXT("bad inversion mask")); } self->invert = args[ARG_invert].u_int; } // Set hardware flow control if configured. if (args[ARG_flow].u_int >= 0) { if (args[ARG_flow].u_int & ~(UART_HWCONTROL_CTS | UART_HWCONTROL_RTS)) { mp_raise_ValueError(MP_ERROR_TEXT("bad hardware flow control mask")); } self->flow = args[ARG_flow].u_int; } // Set the RX buffer size if configured. size_t rxbuf_len = DEFAULT_BUFFER_SIZE; if (args[ARG_rxbuf].u_int > 0) { rxbuf_len = args[ARG_rxbuf].u_int; if (rxbuf_len < MIN_BUFFER_SIZE) { rxbuf_len = MIN_BUFFER_SIZE; } else if (rxbuf_len > MAX_BUFFER_SIZE) { mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large")); } } // Set the TX buffer size if configured. size_t txbuf_len = DEFAULT_BUFFER_SIZE; if (args[ARG_txbuf].u_int > 0) { txbuf_len = args[ARG_txbuf].u_int; if (txbuf_len < MIN_BUFFER_SIZE) { txbuf_len = MIN_BUFFER_SIZE; } else if (txbuf_len > MAX_BUFFER_SIZE) { mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large")); } } // Initialise the UART peripheral if any arguments given, or it was not initialised previously. if (n_args > 0 || kw_args->used > 0 || self->baudrate == 0) { if (self->baudrate == 0) { self->baudrate = DEFAULT_UART_BAUDRATE; } // Make sure timeout_char is at least as long as a whole character (13 bits to be safe). uint32_t min_timeout_char = 13000 / self->baudrate + 1; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } uart_init(self->uart, self->baudrate); uart_set_format(self->uart, self->bits, self->stop, self->parity); __DSB(); // make sure UARTLCR_H register is written to uart_set_fifo_enabled(self->uart, true); __DSB(); // make sure UARTLCR_H register is written to gpio_set_function(self->tx, GPIO_FUNC_UART); gpio_set_function(self->rx, GPIO_FUNC_UART); if (self->invert & UART_INVERT_RX) { gpio_set_inover(self->rx, GPIO_OVERRIDE_INVERT); } if (self->invert & UART_INVERT_TX) { gpio_set_outover(self->tx, GPIO_OVERRIDE_INVERT); } // Set hardware flow control if configured. if (self->flow & UART_HWCONTROL_CTS) { gpio_set_function(self->cts, GPIO_FUNC_UART); } if (self->flow & UART_HWCONTROL_RTS) { gpio_set_function(self->rts, GPIO_FUNC_UART); } uart_set_hw_flow(self->uart, self->flow & UART_HWCONTROL_CTS, self->flow & UART_HWCONTROL_RTS); // Allocate the RX/TX buffers. ringbuf_alloc(&(self->read_buffer), rxbuf_len + 1); MP_STATE_PORT(rp2_uart_rx_buffer[self->uart_id]) = self->read_buffer.buf; ringbuf_alloc(&(self->write_buffer), txbuf_len + 1); MP_STATE_PORT(rp2_uart_tx_buffer[self->uart_id]) = self->write_buffer.buf; // Set the irq handler. if (self->uart_id == 0) { irq_set_exclusive_handler(UART0_IRQ, uart0_irq_handler); irq_set_enabled(UART0_IRQ, true); } else { irq_set_exclusive_handler(UART1_IRQ, uart1_irq_handler); irq_set_enabled(UART1_IRQ, true); } // Enable the uart irq; this macro sets the rx irq level to 4. uart_set_irq_enables(self->uart, true, true); } } STATIC mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Get UART bus. int uart_id = mp_obj_get_int(args[0]); if (uart_id < 0 || uart_id >= MP_ARRAY_SIZE(machine_uart_obj)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } // Get static peripheral object. machine_uart_obj_t *self = (machine_uart_obj_t *)&machine_uart_obj[uart_id]; // Initialise the UART peripheral. mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } STATIC void mp_machine_uart_deinit(machine_uart_obj_t *self) { uart_deinit(self->uart); if (self->uart_id == 0) { irq_set_enabled(UART0_IRQ, false); } else { irq_set_enabled(UART1_IRQ, false); } self->baudrate = 0; MP_STATE_PORT(rp2_uart_rx_buffer[self->uart_id]) = NULL; MP_STATE_PORT(rp2_uart_tx_buffer[self->uart_id]) = NULL; } STATIC mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) { // get all bytes from the fifo first uart_drain_rx_fifo(self); return ringbuf_avail(&self->read_buffer); } STATIC bool mp_machine_uart_txdone(machine_uart_obj_t *self) { return ringbuf_avail(&self->write_buffer) == 0 && (uart_get_hw(self->uart)->fr & UART_UARTFR_TXFE_BITS); } STATIC void mp_machine_uart_sendbreak(machine_uart_obj_t *self) { uart_set_break(self->uart, true); mp_hal_delay_us(13000000 / self->baudrate + 1); uart_set_break(self->uart, false); } STATIC mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t start = mp_hal_ticks_ms(); mp_uint_t timeout = self->timeout; uint8_t *dest = buf_in; for (size_t i = 0; i < size; i++) { // Wait for the first/next character while (ringbuf_avail(&self->read_buffer) == 0) { if (uart_is_readable(self->uart)) { // Force a few incoming bytes to the buffer uart_drain_rx_fifo(self); break; } mp_uint_t elapsed = mp_hal_ticks_ms() - start; if (elapsed > timeout) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } mp_event_wait_ms(timeout - elapsed); } *dest++ = ringbuf_get(&(self->read_buffer)); start = mp_hal_ticks_ms(); // Inter-character timeout timeout = self->timeout_char; } return size; } STATIC mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t start = mp_hal_ticks_ms(); mp_uint_t timeout = self->timeout; const uint8_t *src = buf_in; size_t i = 0; // Put as many bytes as possible into the transmit buffer. while (i < size && ringbuf_free(&(self->write_buffer)) > 0) { ringbuf_put(&(self->write_buffer), *src++); ++i; } // Kickstart the UART transmit. uart_fill_tx_fifo(self); // Send the next characters while busy waiting. while (i < size) { // Wait for the first/next character to be sent. while (ringbuf_free(&(self->write_buffer)) == 0) { mp_uint_t elapsed = mp_hal_ticks_ms() - start; if (elapsed > timeout) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } mp_event_wait_ms(timeout - elapsed); } ringbuf_put(&(self->write_buffer), *src++); ++i; start = mp_hal_ticks_ms(); // Inter-character timeout timeout = self->timeout_char; uart_fill_tx_fifo(self); } // Just in case the fifo was drained during refill of the ringbuf. return size; } STATIC mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && (uart_is_readable(self->uart) || ringbuf_avail(&self->read_buffer) > 0)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && ringbuf_free(&self->write_buffer) > 0) { ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { // The timeout is estimated using the buffer size and the baudrate. // Take the worst case assumptions at 13 bit symbol size times 2. uint64_t timeout = time_us_64() + (uint64_t)(33 + self->write_buffer.size) * 13000000ll * 2 / self->baudrate; while (1) { if (mp_machine_uart_txdone(self)) { return 0; } uint64_t now = time_us_64(); if (now >= timeout) { break; } mp_event_wait_ms((timeout - now) / 1000); } *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } MP_REGISTER_ROOT_POINTER(void *rp2_uart_rx_buffer[2]); MP_REGISTER_ROOT_POINTER(void *rp2_uart_tx_buffer[2]);