/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/stream.h" #include "py/mphal.h" #include "extmod/misc.h" #include "shared/runtime/interrupt_char.h" #include "shared/timeutils/timeutils.h" #include "shared/tinyusb/mp_usbd.h" #include "tusb.h" #include "uart.h" #include "hardware/rtc.h" #include "pico/unique_id.h" #if MICROPY_PY_NETWORK_CYW43 #include "lib/cyw43-driver/src/cyw43.h" #endif // This needs to be added to the result of time_us_64() to get the number of // microseconds since the Epoch. STATIC uint64_t time_us_64_offset_from_epoch; #if MICROPY_HW_ENABLE_UART_REPL || MICROPY_HW_USB_CDC #ifndef MICROPY_HW_STDIN_BUFFER_LEN #define MICROPY_HW_STDIN_BUFFER_LEN 512 #endif STATIC uint8_t stdin_ringbuf_array[MICROPY_HW_STDIN_BUFFER_LEN]; ringbuf_t stdin_ringbuf = { stdin_ringbuf_array, sizeof(stdin_ringbuf_array) }; #endif #if MICROPY_HW_USB_CDC // Explicitly run the USB stack in case the scheduler is locked (eg we are in an // interrupt handler) and there is in/out data pending on the USB CDC interface. #define MICROPY_EVENT_POLL_HOOK_WITH_USB \ do { \ MICROPY_EVENT_POLL_HOOK; \ mp_usbd_task(); \ } while (0) #else #define MICROPY_EVENT_POLL_HOOK_WITH_USB MICROPY_EVENT_POLL_HOOK #endif #if MICROPY_HW_USB_CDC uint8_t cdc_itf_pending; // keep track of cdc interfaces which need attention to poll void poll_cdc_interfaces(void) { // any CDC interfaces left to poll? if (cdc_itf_pending && ringbuf_free(&stdin_ringbuf)) { for (uint8_t itf = 0; itf < 8; ++itf) { if (cdc_itf_pending & (1 << itf)) { tud_cdc_rx_cb(itf); if (!cdc_itf_pending) { break; } } } } } void tud_cdc_rx_cb(uint8_t itf) { // consume pending USB data immediately to free usb buffer and keep the endpoint from stalling. // in case the ringbuffer is full, mark the CDC interface that need attention later on for polling cdc_itf_pending &= ~(1 << itf); for (uint32_t bytes_avail = tud_cdc_n_available(itf); bytes_avail > 0; --bytes_avail) { if (ringbuf_free(&stdin_ringbuf)) { int data_char = tud_cdc_read_char(); if (data_char == mp_interrupt_char) { mp_sched_keyboard_interrupt(); } else { ringbuf_put(&stdin_ringbuf, data_char); } } else { cdc_itf_pending |= (1 << itf); return; } } } #endif uintptr_t mp_hal_stdio_poll(uintptr_t poll_flags) { uintptr_t ret = 0; #if MICROPY_HW_USB_CDC poll_cdc_interfaces(); #endif #if MICROPY_HW_ENABLE_UART_REPL || MICROPY_HW_USB_CDC if ((poll_flags & MP_STREAM_POLL_RD) && ringbuf_peek(&stdin_ringbuf) != -1) { ret |= MP_STREAM_POLL_RD; } if (poll_flags & MP_STREAM_POLL_WR) { #if MICROPY_HW_ENABLE_UART_REPL ret |= MP_STREAM_POLL_WR; #else if (tud_cdc_connected() && tud_cdc_write_available() > 0) { ret |= MP_STREAM_POLL_WR; } #endif } #endif #if MICROPY_PY_OS_DUPTERM ret |= mp_os_dupterm_poll(poll_flags); #endif return ret; } // Receive single character int mp_hal_stdin_rx_chr(void) { for (;;) { #if MICROPY_HW_USB_CDC poll_cdc_interfaces(); #endif int c = ringbuf_get(&stdin_ringbuf); if (c != -1) { return c; } #if MICROPY_PY_OS_DUPTERM int dupterm_c = mp_os_dupterm_rx_chr(); if (dupterm_c >= 0) { return dupterm_c; } #endif MICROPY_EVENT_POLL_HOOK_WITH_USB; } } // Send string of given length void mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) { #if MICROPY_HW_ENABLE_UART_REPL mp_uart_write_strn(str, len); #endif #if MICROPY_HW_USB_CDC if (tud_cdc_connected()) { for (size_t i = 0; i < len;) { uint32_t n = len - i; if (n > CFG_TUD_CDC_EP_BUFSIZE) { n = CFG_TUD_CDC_EP_BUFSIZE; } int timeout = 0; // Wait with a max of USC_CDC_TIMEOUT ms while (n > tud_cdc_write_available() && timeout++ < MICROPY_HW_USB_CDC_TX_TIMEOUT) { MICROPY_EVENT_POLL_HOOK_WITH_USB; } if (timeout >= MICROPY_HW_USB_CDC_TX_TIMEOUT) { break; } uint32_t n2 = tud_cdc_write(str + i, n); tud_cdc_write_flush(); i += n2; } } #endif #if MICROPY_PY_OS_DUPTERM mp_os_dupterm_tx_strn(str, len); #endif } void mp_hal_delay_ms(mp_uint_t ms) { absolute_time_t t = make_timeout_time_ms(ms); while (!time_reached(t)) { MICROPY_EVENT_POLL_HOOK_FAST; best_effort_wfe_or_timeout(t); } } void mp_hal_time_ns_set_from_rtc(void) { // Delay at least one RTC clock cycle so it's registers have updated with the most // recent time settings. sleep_us(23); // Sample RTC and time_us_64() as close together as possible, so the offset // calculated for the latter can be as accurate as possible. datetime_t t; rtc_get_datetime(&t); uint64_t us = time_us_64(); // Calculate the difference between the RTC Epoch seconds and time_us_64(). uint64_t s = timeutils_seconds_since_epoch(t.year, t.month, t.day, t.hour, t.min, t.sec); time_us_64_offset_from_epoch = (uint64_t)s * 1000000ULL - us; } uint64_t mp_hal_time_ns(void) { // The RTC only has seconds resolution, so instead use time_us_64() to get a more // precise measure of Epoch time. Both these "clocks" are clocked from the same // source so they remain synchronised, and only differ by a fixed offset (calculated // in mp_hal_time_ns_set_from_rtc). return (time_us_64_offset_from_epoch + time_us_64()) * 1000ULL; } // Generate a random locally administered MAC address (LAA) void mp_hal_generate_laa_mac(int idx, uint8_t buf[6]) { #ifndef NDEBUG printf("Warning: No MAC in OTP, generating MAC from board id\n"); #endif pico_unique_board_id_t pid; pico_get_unique_board_id(&pid); buf[0] = 0x02; // LAA range buf[1] = (pid.id[7] << 4) | (pid.id[6] & 0xf); buf[2] = (pid.id[5] << 4) | (pid.id[4] & 0xf); buf[3] = (pid.id[3] << 4) | (pid.id[2] & 0xf); buf[4] = pid.id[1]; buf[5] = (pid.id[0] << 2) | idx; } // A board can override this if needed MP_WEAK void mp_hal_get_mac(int idx, uint8_t buf[6]) { #if MICROPY_PY_NETWORK_CYW43 // The mac should come from cyw43 otp when CYW43_USE_OTP_MAC is defined // This is loaded into the state after the driver is initialised // cyw43_hal_generate_laa_mac is only called by the driver to generate a mac if otp is not set if (idx == MP_HAL_MAC_WLAN0) { memcpy(buf, cyw43_state.mac, 6); return; } #endif mp_hal_generate_laa_mac(idx, buf); } void mp_hal_get_mac_ascii(int idx, size_t chr_off, size_t chr_len, char *dest) { static const char hexchr[16] = "0123456789ABCDEF"; uint8_t mac[6]; mp_hal_get_mac(idx, mac); for (; chr_len; ++chr_off, --chr_len) { *dest++ = hexchr[mac[chr_off >> 1] >> (4 * (1 - (chr_off & 1))) & 0xf]; } } // Shouldn't be used, needed by cyw43-driver in debug build. uint32_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { panic_unsupported(); }