/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/mpconfig.h" #include MICROPY_HAL_H #include "py/obj.h" #include "py/runtime.h" #include "py/objlist.h" #include "py/stream.h" #include "inc/hw_types.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_uart.h" #include "rom_map.h" #include "interrupt.h" #include "prcm.h" #include "uart.h" #include "pybuart.h" #include "pybioctl.h" #include "pybsleep.h" #include "mpcallback.h" #include "mpexception.h" #include "py/mpstate.h" #include "osi.h" #include "utils.h" #include "pin.h" #include "pybpin.h" #include "pins.h" /// \moduleref pyb /// \class UART - duplex serial communication bus /****************************************************************************** DEFINE CONSTANTS *******-***********************************************************************/ #define PYBUART_FRAME_TIME_US(baud) ((11 * 1000000) / baud) #define PYBUART_2_FRAMES_TIME_US(baud) (PYBUART_FRAME_TIME_US(baud) * 2) #define PYBUART_RX_TIMEOUT_US(baud) (PYBUART_2_FRAMES_TIME_US(baud)) #define PYBUART_TX_WAIT_US(baud) ((PYBUART_FRAME_TIME_US(baud)) + 1) #define PYBUART_TX_MAX_TIMEOUT_MS (5) #define PYBUART_RX_BUFFER_LEN (128) /****************************************************************************** DECLARE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void uart_init (pyb_uart_obj_t *self); STATIC bool uart_rx_wait (pyb_uart_obj_t *self); STATIC void UARTGenericIntHandler(uint32_t uart_id); STATIC void UART0IntHandler(void); STATIC void UART1IntHandler(void); STATIC void uart_callback_enable (mp_obj_t self_in); STATIC void uart_callback_disable (mp_obj_t self_in); STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); /****************************************************************************** DEFINE PRIVATE TYPES ******************************************************************************/ struct _pyb_uart_obj_t { mp_obj_base_t base; pyb_uart_id_t uart_id; uint reg; uint baudrate; uint config; uint flowcontrol; byte *read_buf; // read buffer pointer volatile uint16_t read_buf_head; // indexes first empty slot uint16_t read_buf_tail; // indexes first full slot (not full if equals head) byte peripheral; byte irq_trigger; }; /****************************************************************************** DECLARE PRIVATE DATA ******************************************************************************/ STATIC pyb_uart_obj_t pyb_uart_obj[PYB_NUM_UARTS] = { {.reg = UARTA0_BASE, .baudrate = 0, .read_buf = NULL, .peripheral = PRCM_UARTA0}, {.reg = UARTA1_BASE, .baudrate = 0, .read_buf = NULL, .peripheral = PRCM_UARTA1} }; STATIC const mp_cb_methods_t uart_cb_methods; STATIC const pin_fn_t pyb_uart_def_pin[PYB_NUM_UARTS][2] = { {{.pin = &pin_GP1, .af_idx = 3}, {.pin = &pin_GP2, .af_idx = 3}}, {{.pin = &pin_GP3, .af_idx = 6}, {.pin = &pin_GP4, .af_idx = 6}} }; /****************************************************************************** DEFINE PUBLIC FUNCTIONS ******************************************************************************/ void uart_init0 (void) { // save references of the UART objects, to prevent the read buffers from being trashed by the gc MP_STATE_PORT(pyb_uart_objs)[0] = &pyb_uart_obj[0]; MP_STATE_PORT(pyb_uart_objs)[1] = &pyb_uart_obj[1]; } uint32_t uart_rx_any(pyb_uart_obj_t *self) { if (self->read_buf_tail != self->read_buf_head) { // buffering via irq return (self->read_buf_head > self->read_buf_tail) ? self->read_buf_head - self->read_buf_tail : PYBUART_RX_BUFFER_LEN - self->read_buf_tail + self->read_buf_head; } return MAP_UARTCharsAvail(self->reg) ? 1 : 0; } int uart_rx_char(pyb_uart_obj_t *self) { if (self->read_buf_tail != self->read_buf_head) { // buffering via irq int data = self->read_buf[self->read_buf_tail]; self->read_buf_tail = (self->read_buf_tail + 1) % PYBUART_RX_BUFFER_LEN; return data; } else { // no buffering return MAP_UARTCharGetNonBlocking(self->reg); } } bool uart_tx_char(pyb_uart_obj_t *self, int c) { uint32_t timeout = 0; while (!MAP_UARTCharPutNonBlocking(self->reg, c)) { if (timeout++ > ((PYBUART_TX_MAX_TIMEOUT_MS * 1000) / PYBUART_TX_WAIT_US(self->baudrate))) { return false; } UtilsDelay(UTILS_DELAY_US_TO_COUNT(PYBUART_TX_WAIT_US(self->baudrate))); } return true; } bool uart_tx_strn(pyb_uart_obj_t *self, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (!uart_tx_char(self, *str)) { return false; } } return true; } void uart_tx_strn_cooked(pyb_uart_obj_t *self, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(self, '\r'); } uart_tx_char(self, *str); } } mp_obj_t uart_callback_new (pyb_uart_obj_t *self, mp_obj_t handler, mp_int_t priority, byte trigger) { // disable the uart interrupts before updating anything uart_callback_disable (self); if (self->uart_id == PYB_UART_0) { MAP_IntPrioritySet(INT_UARTA0, priority); MAP_UARTIntRegister(self->reg, UART0IntHandler); } else { MAP_IntPrioritySet(INT_UARTA1, priority); MAP_UARTIntRegister(self->reg, UART1IntHandler); } // create the callback mp_obj_t _callback = mpcallback_new ((mp_obj_t)self, handler, &uart_cb_methods, true); // enable the interrupts now self->irq_trigger = trigger; uart_callback_enable (self); return _callback; } /****************************************************************************** DEFINE PRIVATE FUNCTIONS ******************************************************************************/ // assumes init parameters have been set up correctly STATIC void uart_init (pyb_uart_obj_t *self) { // Enable the peripheral clock MAP_PRCMPeripheralClkEnable(self->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); // Reset the uart MAP_PRCMPeripheralReset(self->peripheral); // re-allocate the read buffer after resetting the uart (which automatically disables any irqs) self->read_buf_head = 0; self->read_buf_tail = 0; self->read_buf = MP_OBJ_NULL; // free the read buffer before allocating again self->read_buf = m_new(byte, PYBUART_RX_BUFFER_LEN); // Initialize the UART MAP_UARTConfigSetExpClk(self->reg, MAP_PRCMPeripheralClockGet(self->peripheral), self->baudrate, self->config); // Enable the FIFO MAP_UARTFIFOEnable(self->reg); // Configure the FIFO interrupt levels MAP_UARTFIFOLevelSet(self->reg, UART_FIFO_TX4_8, UART_FIFO_RX4_8); // Configure the flow control mode UARTFlowControlSet(self->reg, self->flowcontrol); } // Waits at most timeout microseconds for at least 1 char to become ready for // reading (from buf or for direct reading). // Returns true if something available, false if not. STATIC bool uart_rx_wait (pyb_uart_obj_t *self) { int timeout = PYBUART_RX_TIMEOUT_US(self->baudrate); for ( ; ; ) { if (uart_rx_any(self)) { return true; // we have at least 1 char ready for reading } if (timeout > 0) { UtilsDelay(UTILS_DELAY_US_TO_COUNT(1)); timeout--; } else { return false; } } } STATIC void UARTGenericIntHandler(uint32_t uart_id) { pyb_uart_obj_t *self; uint32_t status; self = &pyb_uart_obj[uart_id]; status = MAP_UARTIntStatus(self->reg, true); // receive interrupt if (status & (UART_INT_RX | UART_INT_RT)) { MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT); while (UARTCharsAvail(self->reg)) { int data = MAP_UARTCharGetNonBlocking(self->reg); if (pyb_stdio_uart == self && data == user_interrupt_char) { // raise an exception when interrupts are finished mpexception_keyboard_nlr_jump(); } // there's always a read buffer available else { uint16_t next_head = (self->read_buf_head + 1) % PYBUART_RX_BUFFER_LEN; if (next_head != self->read_buf_tail) { // only store data if room in buf self->read_buf[self->read_buf_head] = data; self->read_buf_head = next_head; } } } // call the user defined handler mp_obj_t _callback = mpcallback_find(self); mpcallback_handler(_callback); } } STATIC void UART0IntHandler(void) { UARTGenericIntHandler(0); } STATIC void UART1IntHandler(void) { UARTGenericIntHandler(1); } STATIC void uart_callback_enable (mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; // check for any of the rx interrupt types if (self->irq_trigger & (E_UART_TRIGGER_RX_ANY | E_UART_TRIGGER_RX_HALF | E_UART_TRIGGER_RX_FULL)) { MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT); MAP_UARTIntEnable(self->reg, UART_INT_RX | UART_INT_RT); } } STATIC void uart_callback_disable (mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT); } /******************************************************************************/ /* Micro Python bindings */ STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = self_in; if (self->baudrate > 0) { mp_printf(print, "UART(%u, baudrate=%u, bits=", self->uart_id, self->baudrate); switch (self->config & UART_CONFIG_WLEN_MASK) { case UART_CONFIG_WLEN_5: mp_print_str(print, "5"); break; case UART_CONFIG_WLEN_6: mp_print_str(print, "6"); break; case UART_CONFIG_WLEN_7: mp_print_str(print, "7"); break; case UART_CONFIG_WLEN_8: mp_print_str(print, "8"); break; default: break; } if ((self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_NONE) { mp_print_str(print, ", parity=None"); } else { mp_printf(print, ", parity=%u", (self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_EVEN ? 0 : 1); } mp_printf(print, ", stop=%u)", (self->config & UART_CONFIG_STOP_MASK) == UART_CONFIG_STOP_ONE ? 1 : 2); } else { mp_printf(print, "UART(%u)", self->uart_id); } } STATIC const mp_arg_t pyb_uart_init_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_pins, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args mp_arg_val_t args[MP_ARRAY_SIZE(pyb_uart_init_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pyb_uart_init_args), pyb_uart_init_args, args); // get the baudrate if (args[0].u_int <= 0) { goto error; } uint baudrate = args[0].u_int; uint config; switch (args[1].u_int) { case 5: config = UART_CONFIG_WLEN_5; break; case 6: config = UART_CONFIG_WLEN_6; break; case 7: config = UART_CONFIG_WLEN_7; break; case 8: config = UART_CONFIG_WLEN_8; break; default: goto error; break; } // parity if (args[2].u_obj == mp_const_none) { config |= UART_CONFIG_PAR_NONE; } else { config |= ((mp_obj_get_int(args[2].u_obj) & 1) ? UART_CONFIG_PAR_ODD : UART_CONFIG_PAR_EVEN); } // stop bits config |= (args[3].u_int == 1 ? UART_CONFIG_STOP_ONE : UART_CONFIG_STOP_TWO); mp_obj_t pins_o = args[4].u_obj; uint flowcontrol = UART_FLOWCONTROL_NONE; if (pins_o != mp_const_none) { if (pins_o == MP_OBJ_NULL) { // use the default pins pin_config (pyb_uart_def_pin[self->uart_id][PIN_TYPE_UART_TX].pin, pyb_uart_def_pin[self->uart_id][PIN_TYPE_UART_TX].af_idx, 0, PIN_TYPE_STD_PU, -1, PIN_STRENGTH_2MA); pin_config (pyb_uart_def_pin[self->uart_id][PIN_TYPE_UART_RX].pin, pyb_uart_def_pin[self->uart_id][PIN_TYPE_UART_RX].af_idx, 0, PIN_TYPE_STD_PU, -1, PIN_STRENGTH_2MA); } else { mp_obj_t *pins_t; mp_uint_t n_pins; mp_obj_get_array(pins_o, &n_pins, &pins_t); if (n_pins != 2 && n_pins != 4) { goto error; } if (n_pins == 4) { if (pins_t[PIN_TYPE_UART_RTS] != mp_const_none && pins_t[PIN_TYPE_UART_RX] == mp_const_none) { goto error; // RTS pin given in TX only mode } else if (pins_t[PIN_TYPE_UART_CTS] != mp_const_none && pins_t[PIN_TYPE_UART_TX] == mp_const_none) { goto error; // CTS pin given in RX only mode } else { if (pins_t[PIN_TYPE_UART_RTS] != mp_const_none) { flowcontrol |= UART_FLOWCONTROL_RX; } if (pins_t[PIN_TYPE_UART_CTS] != mp_const_none) { flowcontrol |= UART_FLOWCONTROL_TX; } } } // the pins tuple passed looks good so far for (int i = 0; i < n_pins; i++) { if (pins_t[i] != mp_const_none) { pin_obj_t *pin = pin_find(pins_t[i]); pin_config (pin, pin_find_af_index(pin, PIN_FN_UART, self->uart_id, i), 0, PIN_TYPE_STD_PU, -1, PIN_STRENGTH_2MA); } } } } self->baudrate = baudrate; self->config = config; self->flowcontrol = flowcontrol; // initialize and enable the uart uart_init (self); // register it with the sleep module pybsleep_add ((const mp_obj_t)self, (WakeUpCB_t)uart_init); return mp_const_none; error: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_ARRAY_SIZE(pyb_uart_init_args), true); // work out the uart id int32_t uart_id = mp_obj_get_int(args[0]); if (uart_id < PYB_UART_0 || uart_id > PYB_UART_1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable)); } // get the correct uart instance pyb_uart_obj_t *self = &pyb_uart_obj[uart_id]; self->base.type = &pyb_uart_type; self->uart_id = uart_id; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); } return self; } STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; // unregister it with the sleep module pybsleep_remove (self); // invalidate the baudrate self->baudrate = 0; // free the read buffer m_del(byte, self->read_buf, PYBUART_RX_BUFFER_LEN); MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT); MAP_UARTDisable(self->reg); MAP_PRCMPeripheralClkDisable(self->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; return mp_obj_new_int(uart_rx_any(self)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; // send a break signal for at least 2 complete frames MAP_UARTBreakCtl(self->reg, true); UtilsDelay(UTILS_DELAY_US_TO_COUNT(PYBUART_2_FRAMES_TIME_US(self->baudrate))); MAP_UARTBreakCtl(self->reg, false); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); STATIC mp_obj_t pyb_uart_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[mpcallback_INIT_NUM_ARGS]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args); // check if any parameters were passed pyb_uart_obj_t *self = pos_args[0]; mp_obj_t _callback = mpcallback_find((mp_obj_t)self); if (kw_args->used > 0) { // convert the priority to the correct value uint priority = mpcallback_translate_priority (args[2].u_int); // check the power mode if (PYB_PWR_MODE_ACTIVE != args[4].u_int) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } // register a new callback // FIXME triggers!! return uart_callback_new (self, args[1].u_obj, mp_obj_get_int(args[3].u_obj), priority); } else if (!_callback) { _callback = mpcallback_new (self, mp_const_none, &uart_cb_methods, false); } return _callback; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_callback_obj, 1, pyb_uart_callback); STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&pyb_uart_sendbreak_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_uart_callback_obj }, /// \method read([nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, /// \method readall() { MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj }, /// \method readline() { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, /// \method readinto(buf[, nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, /// \method write(buf) { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_RX_ANY), MP_OBJ_NEW_SMALL_INT(E_UART_TRIGGER_RX_ANY) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; byte *buf = buf_in; // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self)) { // we can either return 0 to indicate EOF (then read() method returns b'') // or return EAGAIN error to indicate non-blocking (then read() method returns None) return 0; } // read the data byte *orig_buf = buf; for ( ; ; ) { *buf++ = uart_rx_char(self); if (--size == 0 || !uart_rx_wait(self)) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; const char *buf = buf_in; // write the data if (!uart_tx_strn(self, buf, size)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } return size; } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { pyb_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) { ret |= MP_IOCTL_POLL_RD; } if ((flags & MP_IOCTL_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) { ret |= MP_IOCTL_POLL_WR; } } else { *errcode = EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; STATIC const mp_cb_methods_t uart_cb_methods = { .init = pyb_uart_callback, .enable = uart_callback_enable, .disable = uart_callback_disable, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity, .iternext = mp_stream_unbuffered_iter, .stream_p = &uart_stream_p, .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, };