/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014-2018 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <assert.h> #include <stdarg.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include "py/parsenum.h" #include "py/compile.h" #include "py/objstr.h" #include "py/objtuple.h" #include "py/objlist.h" #include "py/objtype.h" #include "py/objmodule.h" #include "py/objgenerator.h" #include "py/smallint.h" #include "py/runtime.h" #include "py/builtin.h" #include "py/stackctrl.h" #include "py/gc.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) #else // don't print debugging info #define DEBUG_printf(...) (void)0 #define DEBUG_OP_printf(...) (void)0 #endif const mp_obj_module_t mp_module___main__ = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&MP_STATE_VM(dict_main), }; MP_REGISTER_MODULE(MP_QSTR___main__, mp_module___main__); #define TYPE_HAS_ITERNEXT(type) (type->flags & (MP_TYPE_FLAG_ITER_IS_ITERNEXT | MP_TYPE_FLAG_ITER_IS_CUSTOM | MP_TYPE_FLAG_ITER_IS_STREAM)) void mp_init(void) { qstr_init(); // no pending exceptions to start with MP_STATE_THREAD(mp_pending_exception) = MP_OBJ_NULL; #if MICROPY_ENABLE_SCHEDULER #if MICROPY_SCHEDULER_STATIC_NODES if (MP_STATE_VM(sched_head) == NULL) { // no pending callbacks to start with MP_STATE_VM(sched_state) = MP_SCHED_IDLE; } else { // pending callbacks are on the list, eg from before a soft reset MP_STATE_VM(sched_state) = MP_SCHED_PENDING; } #endif MP_STATE_VM(sched_idx) = 0; MP_STATE_VM(sched_len) = 0; #endif #if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF mp_init_emergency_exception_buf(); #endif #if MICROPY_KBD_EXCEPTION // initialise the exception object for raising KeyboardInterrupt MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt; MP_STATE_VM(mp_kbd_exception).traceback_alloc = 0; MP_STATE_VM(mp_kbd_exception).traceback_len = 0; MP_STATE_VM(mp_kbd_exception).traceback_data = NULL; MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj; #endif #if MICROPY_ENABLE_COMPILER // optimization disabled by default MP_STATE_VM(mp_optimise_value) = 0; #if MICROPY_EMIT_NATIVE MP_STATE_VM(default_emit_opt) = MP_EMIT_OPT_NONE; #endif #endif // init global module dict mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), MICROPY_LOADED_MODULES_DICT_SIZE); // initialise the __main__ module mp_obj_dict_init(&MP_STATE_VM(dict_main), 1); mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__)); // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) mp_locals_set(&MP_STATE_VM(dict_main)); mp_globals_set(&MP_STATE_VM(dict_main)); #if MICROPY_CAN_OVERRIDE_BUILTINS // start with no extensions to builtins MP_STATE_VM(mp_module_builtins_override_dict) = NULL; #endif #if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE MP_STATE_VM(track_reloc_code_list) = MP_OBJ_NULL; #endif #if MICROPY_PY_OS_DUPTERM for (size_t i = 0; i < MICROPY_PY_OS_DUPTERM; ++i) { MP_STATE_VM(dupterm_objs[i]) = MP_OBJ_NULL; } #endif #if MICROPY_VFS // initialise the VFS sub-system MP_STATE_VM(vfs_cur) = NULL; MP_STATE_VM(vfs_mount_table) = NULL; #endif #if MICROPY_PY_SYS_PATH_ARGV_DEFAULTS mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) #if MICROPY_MODULE_FROZEN mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen)); #endif mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0); #endif #if MICROPY_PY_SYS_ATEXIT MP_STATE_VM(sys_exitfunc) = mp_const_none; #endif #if MICROPY_PY_SYS_PS1_PS2 MP_STATE_VM(sys_mutable[MP_SYS_MUTABLE_PS1]) = MP_OBJ_NEW_QSTR(MP_QSTR__gt__gt__gt__space_); MP_STATE_VM(sys_mutable[MP_SYS_MUTABLE_PS2]) = MP_OBJ_NEW_QSTR(MP_QSTR__dot__dot__dot__space_); #endif #if MICROPY_PY_SYS_SETTRACE MP_STATE_THREAD(prof_trace_callback) = MP_OBJ_NULL; MP_STATE_THREAD(prof_callback_is_executing) = false; MP_STATE_THREAD(current_code_state) = NULL; #endif #if MICROPY_PY_SYS_TRACEBACKLIMIT MP_STATE_VM(sys_mutable[MP_SYS_MUTABLE_TRACEBACKLIMIT]) = MP_OBJ_NEW_SMALL_INT(1000); #endif #if MICROPY_PY_BLUETOOTH MP_STATE_VM(bluetooth) = MP_OBJ_NULL; #endif #if MICROPY_PY_THREAD_GIL mp_thread_mutex_init(&MP_STATE_VM(gil_mutex)); #endif // call port specific initialization if any #ifdef MICROPY_PORT_INIT_FUNC MICROPY_PORT_INIT_FUNC; #endif MP_THREAD_GIL_ENTER(); } void mp_deinit(void) { MP_THREAD_GIL_EXIT(); // call port specific deinitialization if any #ifdef MICROPY_PORT_DEINIT_FUNC MICROPY_PORT_DEINIT_FUNC; #endif } void mp_globals_locals_set_from_nlr_jump_callback(void *ctx_in) { nlr_jump_callback_node_globals_locals_t *ctx = ctx_in; mp_globals_set(ctx->globals); mp_locals_set(ctx->locals); } mp_obj_t MICROPY_WRAP_MP_LOAD_NAME(mp_load_name)(qstr qst) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qst)); // If we're at the outer scope (locals == globals), dispatch to load_global right away if (mp_locals_get() != mp_globals_get()) { mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } return mp_load_global(qst); } mp_obj_t MICROPY_WRAP_MP_LOAD_GLOBAL(mp_load_global)(qstr qst) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qst)); mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem == NULL) { #if MICROPY_CAN_OVERRIDE_BUILTINS if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { // lookup in additional dynamic table of builtins first elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } #endif elem = mp_map_lookup((mp_map_t *)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem == NULL) { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_msg(&mp_type_NameError, MP_ERROR_TEXT("name not defined")); #else mp_raise_msg_varg(&mp_type_NameError, MP_ERROR_TEXT("name '%q' isn't defined"), qst); #endif } } return elem->value; } mp_obj_t mp_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); #if MICROPY_CAN_OVERRIDE_BUILTINS if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) { // lookup in additional dynamic table of builtins first mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } #endif return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj); } void mp_store_name(qstr qst, mp_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj); mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj); } void mp_delete_name(qstr qst) { DEBUG_OP_printf("delete name %s\n", qstr_str(qst)); // TODO convert KeyError to NameError if qst not found mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst)); } void mp_store_global(qstr qst, mp_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj); mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj); } void mp_delete_global(qstr qst) { DEBUG_OP_printf("delete global %s\n", qstr_str(qst)); // TODO convert KeyError to NameError if qst not found mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst)); } mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) { DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg); if (op == MP_UNARY_OP_NOT) { // "not x" is the negative of whether "x" is true per Python semantics return mp_obj_new_bool(mp_obj_is_true(arg) == 0); } else if (mp_obj_is_small_int(arg)) { mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(val != 0); case MP_UNARY_OP_HASH: return arg; case MP_UNARY_OP_POSITIVE: case MP_UNARY_OP_INT_MAYBE: return arg; case MP_UNARY_OP_NEGATIVE: // check for overflow if (val == MP_SMALL_INT_MIN) { return mp_obj_new_int(-val); } else { return MP_OBJ_NEW_SMALL_INT(-val); } case MP_UNARY_OP_ABS: if (val >= 0) { return arg; } else if (val == MP_SMALL_INT_MIN) { // check for overflow return mp_obj_new_int(-val); } else { return MP_OBJ_NEW_SMALL_INT(-val); } default: assert(op == MP_UNARY_OP_INVERT); return MP_OBJ_NEW_SMALL_INT(~val); } } else if (op == MP_UNARY_OP_HASH && mp_obj_is_str_or_bytes(arg)) { // fast path for hashing str/bytes GET_STR_HASH(arg, h); if (h == 0) { GET_STR_DATA_LEN(arg, data, len); h = qstr_compute_hash(data, len); } return MP_OBJ_NEW_SMALL_INT(h); } else { const mp_obj_type_t *type = mp_obj_get_type(arg); if (MP_OBJ_TYPE_HAS_SLOT(type, unary_op)) { mp_obj_t result = MP_OBJ_TYPE_GET_SLOT(type, unary_op)(op, arg); if (result != MP_OBJ_NULL) { return result; } } else if (op == MP_UNARY_OP_HASH) { // Type doesn't have unary_op so use hash of object instance. return MP_OBJ_NEW_SMALL_INT((mp_uint_t)arg); } if (op == MP_UNARY_OP_BOOL) { // Type doesn't have unary_op (or didn't handle MP_UNARY_OP_BOOL), // so is implicitly True as this code path is impossible to reach // if arg==mp_const_none. return mp_const_true; } if (op == MP_UNARY_OP_INT_MAYBE #if MICROPY_PY_BUILTINS_FLOAT || op == MP_UNARY_OP_FLOAT_MAYBE #if MICROPY_PY_BUILTINS_COMPLEX || op == MP_UNARY_OP_COMPLEX_MAYBE #endif #endif ) { // These operators may return MP_OBJ_NULL if they are not supported by the type. return MP_OBJ_NULL; } #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("unsupported type for %q: '%s'"), mp_unary_op_method_name[op], mp_obj_get_type_str(arg)); #endif } } mp_obj_t MICROPY_WRAP_MP_BINARY_OP(mp_binary_op)(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs); // TODO correctly distinguish inplace operators for mutable objects // lookup logic that CPython uses for +=: // check for implemented += // then check for implemented + // then check for implemented seq.inplace_concat // then check for implemented seq.concat // then fail // note that list does not implement + or +=, so that inplace_concat is reached first for += // deal with is if (op == MP_BINARY_OP_IS) { return mp_obj_new_bool(lhs == rhs); } // deal with == and != for all types if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) { // mp_obj_equal_not_equal supports a bunch of shortcuts return mp_obj_equal_not_equal(op, lhs, rhs); } // deal with exception_match for all types if (op == MP_BINARY_OP_EXCEPTION_MATCH) { // rhs must be issubclass(rhs, BaseException) if (mp_obj_is_exception_type(rhs)) { if (mp_obj_exception_match(lhs, rhs)) { return mp_const_true; } else { return mp_const_false; } } else if (mp_obj_is_type(rhs, &mp_type_tuple)) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs); for (size_t i = 0; i < tuple->len; i++) { rhs = tuple->items[i]; if (!mp_obj_is_exception_type(rhs)) { goto unsupported_op; } if (mp_obj_exception_match(lhs, rhs)) { return mp_const_true; } } return mp_const_false; } goto unsupported_op; } if (mp_obj_is_small_int(lhs)) { mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); if (mp_obj_is_small_int(rhs)) { mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); // This is a binary operation: lhs_val op rhs_val // We need to be careful to handle overflow; see CERT INT32-C // Operations that can overflow: // + result always fits in mp_int_t, then handled by SMALL_INT check // - result always fits in mp_int_t, then handled by SMALL_INT check // * checked explicitly // / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check // % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check // << checked explicitly switch (op) { case MP_BINARY_OP_OR: case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case MP_BINARY_OP_XOR: case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case MP_BINARY_OP_AND: case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case MP_BINARY_OP_LSHIFT: case MP_BINARY_OP_INPLACE_LSHIFT: { if (rhs_val < 0) { // negative shift not allowed mp_raise_ValueError(MP_ERROR_TEXT("negative shift count")); } else if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE) || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) { // left-shift will overflow, so use higher precision integer lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; } else { // use standard precision lhs_val = (mp_uint_t)lhs_val << rhs_val; } break; } case MP_BINARY_OP_RSHIFT: case MP_BINARY_OP_INPLACE_RSHIFT: if (rhs_val < 0) { // negative shift not allowed mp_raise_ValueError(MP_ERROR_TEXT("negative shift count")); } else { // standard precision is enough for right-shift if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)) { // Shifting to big amounts is undefined behavior // in C and is CPU-dependent; propagate sign bit. rhs_val = sizeof(lhs_val) * MP_BITS_PER_BYTE - 1; } lhs_val >>= rhs_val; } break; case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case MP_BINARY_OP_SUBTRACT: case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case MP_BINARY_OP_MULTIPLY: case MP_BINARY_OP_INPLACE_MULTIPLY: { // If long long type exists and is larger than mp_int_t, then // we can use the following code to perform overflow-checked multiplication. // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow. #if 0 // compute result using long long precision long long res = (long long)lhs_val * (long long)rhs_val; if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) { // result overflowed SMALL_INT, so return higher precision integer return mp_obj_new_int_from_ll(res); } else { // use standard precision lhs_val = (mp_int_t)res; } #endif if (mp_small_int_mul_overflow(lhs_val, rhs_val)) { // use higher precision lhs = mp_obj_new_int_from_ll(lhs_val); goto generic_binary_op; } else { // use standard precision return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val); } } case MP_BINARY_OP_FLOOR_DIVIDE: case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: if (rhs_val == 0) { goto zero_division; } lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val); break; #if MICROPY_PY_BUILTINS_FLOAT case MP_BINARY_OP_TRUE_DIVIDE: case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: if (rhs_val == 0) { goto zero_division; } return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); #endif case MP_BINARY_OP_MODULO: case MP_BINARY_OP_INPLACE_MODULO: { if (rhs_val == 0) { goto zero_division; } lhs_val = mp_small_int_modulo(lhs_val, rhs_val); break; } case MP_BINARY_OP_POWER: case MP_BINARY_OP_INPLACE_POWER: if (rhs_val < 0) { #if MICROPY_PY_BUILTINS_FLOAT return mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs); #else mp_raise_ValueError(MP_ERROR_TEXT("negative power with no float support")); #endif } else { mp_int_t ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { if (mp_small_int_mul_overflow(ans, lhs_val)) { goto power_overflow; } ans *= lhs_val; } if (rhs_val == 1) { break; } rhs_val /= 2; if (mp_small_int_mul_overflow(lhs_val, lhs_val)) { goto power_overflow; } lhs_val *= lhs_val; } lhs_val = ans; } break; power_overflow: // use higher precision lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs)); goto generic_binary_op; case MP_BINARY_OP_DIVMOD: { if (rhs_val == 0) { goto zero_division; } // to reduce stack usage we don't pass a temp array of the 2 items mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL)); tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val)); tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val)); return MP_OBJ_FROM_PTR(tuple); } case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val); case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val); case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val); case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val); default: goto unsupported_op; } // This is an inlined version of mp_obj_new_int, for speed if (MP_SMALL_INT_FITS(lhs_val)) { return MP_OBJ_NEW_SMALL_INT(lhs_val); } else { return mp_obj_new_int_from_ll(lhs_val); } #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(rhs)) { mp_obj_t res = mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs); if (res == MP_OBJ_NULL) { goto unsupported_op; } else { return res; } #endif #if MICROPY_PY_BUILTINS_COMPLEX } else if (mp_obj_is_type(rhs, &mp_type_complex)) { mp_obj_t res = mp_obj_complex_binary_op(op, (mp_float_t)lhs_val, 0, rhs); if (res == MP_OBJ_NULL) { goto unsupported_op; } else { return res; } #endif } } // Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args. if (op == MP_BINARY_OP_IN) { op = MP_BINARY_OP_CONTAINS; mp_obj_t temp = lhs; lhs = rhs; rhs = temp; } // generic binary_op supplied by type const mp_obj_type_t *type; generic_binary_op: type = mp_obj_get_type(lhs); if (MP_OBJ_TYPE_HAS_SLOT(type, binary_op)) { mp_obj_t result = MP_OBJ_TYPE_GET_SLOT(type, binary_op)(op, lhs, rhs); if (result != MP_OBJ_NULL) { return result; } } // If this was an inplace method, fallback to the corresponding normal method. // https://docs.python.org/3/reference/datamodel.html#object.__iadd__ : // "If a specific method is not defined, the augmented assignment falls back // to the normal methods." if (op >= MP_BINARY_OP_INPLACE_OR && op <= MP_BINARY_OP_INPLACE_POWER) { op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR; goto generic_binary_op; } #if MICROPY_PY_REVERSE_SPECIAL_METHODS if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_POWER) { mp_obj_t t = rhs; rhs = lhs; lhs = t; op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR; goto generic_binary_op; } else if (op >= MP_BINARY_OP_REVERSE_OR) { // Convert __rop__ back to __op__ for error message mp_obj_t t = rhs; rhs = lhs; lhs = t; op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR; } #endif if (op == MP_BINARY_OP_CONTAINS) { // If type didn't support containment then explicitly walk the iterator. // mp_getiter will raise the appropriate exception if lhs is not iterable. mp_obj_iter_buf_t iter_buf; mp_obj_t iter = mp_getiter(lhs, &iter_buf); mp_obj_t next; while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) { if (mp_obj_equal(next, rhs)) { return mp_const_true; } } return mp_const_false; } unsupported_op: #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("unsupported types for %q: '%s', '%s'"), mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)); #endif zero_division: mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero")); } mp_obj_t mp_call_function_0(mp_obj_t fun) { return mp_call_function_n_kw(fun, 0, 0, NULL); } mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) { return mp_call_function_n_kw(fun, 1, 0, &arg); } mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { mp_obj_t args[2]; args[0] = arg1; args[1] = arg2; return mp_call_function_n_kw(fun, 2, 0, args); } // args contains, eg: arg0 arg1 key0 value0 key1 value1 mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { // TODO improve this: fun object can specify its type and we parse here the arguments, // passing to the function arrays of fixed and keyword arguments DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args); // get the type const mp_obj_type_t *type = mp_obj_get_type(fun_in); // do the call if (MP_OBJ_TYPE_HAS_SLOT(type, call)) { return MP_OBJ_TYPE_GET_SLOT(type, call)(fun_in, n_args, n_kw, args); } #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("object not callable")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("'%s' object isn't callable"), mp_obj_get_type_str(fun_in)); #endif } // args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) // if n_args==0 and n_kw==0 then there are only fun and self/NULL mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) { DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args); int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1; return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); } // This function only needs to be exposed externally when in stackless mode. #if !MICROPY_STACKLESS STATIC #endif void mp_call_prepare_args_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) { mp_obj_t fun = *args++; mp_obj_t self = MP_OBJ_NULL; if (have_self) { self = *args++; // may be MP_OBJ_NULL } size_t n_args = n_args_n_kw & 0xff; size_t n_kw = (n_args_n_kw >> 8) & 0xff; mp_uint_t star_args = MP_OBJ_SMALL_INT_VALUE(args[n_args + 2 * n_kw]); DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, map=%u)\n", fun, self, n_args, n_kw, args, star_args); // We need to create the following array of objects: // args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict) // TODO: optimize one day to avoid constructing new arg array? Will be hard. // The new args array mp_obj_t *args2; size_t args2_alloc; size_t args2_len = 0; // Try to get a hint for unpacked * args length ssize_t list_len = 0; if (star_args != 0) { for (size_t i = 0; i < n_args; i++) { if ((star_args >> i) & 1) { mp_obj_t len = mp_obj_len_maybe(args[i]); if (len != MP_OBJ_NULL) { // -1 accounts for 1 of n_args occupied by this arg list_len += mp_obj_get_int(len) - 1; } } } } // Try to get a hint for the size of the kw_dict ssize_t kw_dict_len = 0; for (size_t i = 0; i < n_kw; i++) { mp_obj_t key = args[n_args + i * 2]; mp_obj_t value = args[n_args + i * 2 + 1]; if (key == MP_OBJ_NULL && value != MP_OBJ_NULL && mp_obj_is_type(value, &mp_type_dict)) { // -1 accounts for 1 of n_kw occupied by this arg kw_dict_len += mp_obj_dict_len(value) - 1; } } // Extract the pos_seq sequence to the new args array. // Note that it can be arbitrary iterator. if (star_args == 0) { // no star args to unpack // allocate memory for the new array of args args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len); args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t)); // copy the self if (self != MP_OBJ_NULL) { args2[args2_len++] = self; } // copy the fixed pos args mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t); args2_len += n_args; } else { // at least one star arg to unpack // allocate memory for the new array of args args2_alloc = 1 + n_args + list_len + 2 * (n_kw + kw_dict_len); args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t)); // copy the self if (self != MP_OBJ_NULL) { args2[args2_len++] = self; } for (size_t i = 0; i < n_args; i++) { mp_obj_t arg = args[i]; if ((star_args >> i) & 1) { // star arg if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) { // optimise the case of a tuple and list // get the items size_t len; mp_obj_t *items; mp_obj_get_array(arg, &len, &items); // copy the items assert(args2_len + len <= args2_alloc); mp_seq_copy(args2 + args2_len, items, len, mp_obj_t); args2_len += len; } else { // generic iterator // extract the variable position args from the iterator mp_obj_iter_buf_t iter_buf; mp_obj_t iterable = mp_getiter(arg, &iter_buf); mp_obj_t item; while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { if (args2_len + (n_args - i) >= args2_alloc) { args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t)); args2_alloc *= 2; } args2[args2_len++] = item; } } } else { // normal argument assert(args2_len < args2_alloc); args2[args2_len++] = arg; } } } // The size of the args2 array now is the number of positional args. size_t pos_args_len = args2_len; // ensure there is still enough room for kw args if (args2_len + 2 * (n_kw + kw_dict_len) > args2_alloc) { size_t new_alloc = args2_len + 2 * (n_kw + kw_dict_len); args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t)); args2_alloc = new_alloc; } // Copy the kw args. for (size_t i = 0; i < n_kw; i++) { mp_obj_t kw_key = args[n_args + i * 2]; mp_obj_t kw_value = args[n_args + i * 2 + 1]; if (kw_key == MP_OBJ_NULL) { // double-star args if (mp_obj_is_type(kw_value, &mp_type_dict)) { // dictionary mp_map_t *map = mp_obj_dict_get_map(kw_value); // should have enough, since kw_dict_len is in this case hinted correctly above assert(args2_len + 2 * map->used <= args2_alloc); for (size_t j = 0; j < map->alloc; j++) { if (mp_map_slot_is_filled(map, j)) { // the key must be a qstr, so intern it if it's a string mp_obj_t key = map->table[j].key; if (!mp_obj_is_qstr(key)) { key = mp_obj_str_intern_checked(key); } args2[args2_len++] = key; args2[args2_len++] = map->table[j].value; } } } else { // generic mapping: // - call keys() to get an iterable of all keys in the mapping // - call __getitem__ for each key to get the corresponding value // get the keys iterable mp_obj_t dest[3]; mp_load_method(kw_value, MP_QSTR_keys, dest); mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL); mp_obj_t key; while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { // expand size of args array if needed if (args2_len + 1 >= args2_alloc) { size_t new_alloc = args2_alloc * 2; args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t)); args2_alloc = new_alloc; } // the key must be a qstr, so intern it if it's a string if (!mp_obj_is_qstr(key)) { key = mp_obj_str_intern_checked(key); } // get the value corresponding to the key mp_load_method(kw_value, MP_QSTR___getitem__, dest); dest[2] = key; mp_obj_t value = mp_call_method_n_kw(1, 0, dest); // store the key/value pair in the argument array args2[args2_len++] = key; args2[args2_len++] = value; } } } else { // normal kwarg assert(args2_len + 2 <= args2_alloc); args2[args2_len++] = kw_key; args2[args2_len++] = kw_value; } } out_args->fun = fun; out_args->args = args2; out_args->n_args = pos_args_len; out_args->n_kw = (args2_len - pos_args_len) / 2; out_args->n_alloc = args2_alloc; } mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) { mp_call_args_t out_args; mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args); mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args); mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t)); return res; } // unpacked items are stored in reverse order into the array pointed to by items void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) { size_t seq_len; if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) { mp_obj_t *seq_items; mp_obj_get_array(seq_in, &seq_len, &seq_items); if (seq_len < num) { goto too_short; } else if (seq_len > num) { goto too_long; } for (size_t i = 0; i < num; i++) { items[i] = seq_items[num - 1 - i]; } } else { mp_obj_iter_buf_t iter_buf; mp_obj_t iterable = mp_getiter(seq_in, &iter_buf); for (seq_len = 0; seq_len < num; seq_len++) { mp_obj_t el = mp_iternext(iterable); if (el == MP_OBJ_STOP_ITERATION) { goto too_short; } items[num - 1 - seq_len] = el; } if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) { goto too_long; } } return; too_short: #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); #else mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("need more than %d values to unpack"), (int)seq_len); #endif too_long: #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); #else mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("too many values to unpack (expected %d)"), (int)num); #endif } // unpacked items are stored in reverse order into the array pointed to by items void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) { size_t num_left = num_in & 0xff; size_t num_right = (num_in >> 8) & 0xff; DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right); size_t seq_len; if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) { // Make the seq variable volatile so the compiler keeps a reference to it, // since if it's a tuple then seq_items points to the interior of the GC cell // and mp_obj_new_list may trigger a GC which doesn't trace this and reclaims seq. volatile mp_obj_t seq = seq_in; mp_obj_t *seq_items; mp_obj_get_array(seq, &seq_len, &seq_items); if (seq_len < num_left + num_right) { goto too_short; } for (size_t i = 0; i < num_right; i++) { items[i] = seq_items[seq_len - 1 - i]; } items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left); for (size_t i = 0; i < num_left; i++) { items[num_right + 1 + i] = seq_items[num_left - 1 - i]; } seq = MP_OBJ_NULL; } else { // Generic iterable; this gets a bit messy: we unpack known left length to the // items destination array, then the rest to a dynamically created list. Once the // iterable is exhausted, we take from this list for the right part of the items. // TODO Improve to waste less memory in the dynamically created list. mp_obj_t iterable = mp_getiter(seq_in, NULL); mp_obj_t item; for (seq_len = 0; seq_len < num_left; seq_len++) { item = mp_iternext(iterable); if (item == MP_OBJ_STOP_ITERATION) { goto too_short; } items[num_left + num_right + 1 - 1 - seq_len] = item; } mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL)); while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item); } if (rest->len < num_right) { goto too_short; } items[num_right] = MP_OBJ_FROM_PTR(rest); for (size_t i = 0; i < num_right; i++) { items[num_right - 1 - i] = rest->items[rest->len - num_right + i]; } mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right); } return; too_short: #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack")); #else mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("need more than %d values to unpack"), (int)seq_len); #endif } mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); // use load_method mp_obj_t dest[2]; mp_load_method(base, attr, dest); if (dest[1] == MP_OBJ_NULL) { // load_method returned just a normal attribute return dest[0]; } else { // load_method returned a method, so build a bound method object return mp_obj_new_bound_meth(dest[0], dest[1]); } } #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG // The following "checked fun" type is local to the mp_convert_member_lookup // function, and serves to check that the first argument to a builtin function // has the correct type. typedef struct _mp_obj_checked_fun_t { mp_obj_base_t base; const mp_obj_type_t *type; mp_obj_t fun; } mp_obj_checked_fun_t; STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in); if (n_args > 0) { const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]); if (arg0_type != self->type) { #if MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED mp_raise_TypeError(MP_ERROR_TEXT("argument has wrong type")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("argument should be a '%q' not a '%q'"), self->type->name, arg0_type->name); #endif } } return mp_call_function_n_kw(self->fun, n_args, n_kw, args); } STATIC MP_DEFINE_CONST_OBJ_TYPE( mp_type_checked_fun, MP_QSTR_function, MP_TYPE_FLAG_BINDS_SELF, call, checked_fun_call ); STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) { mp_obj_checked_fun_t *o = mp_obj_malloc(mp_obj_checked_fun_t, &mp_type_checked_fun); o->type = type; o->fun = fun; return MP_OBJ_FROM_PTR(o); } #endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG // Given a member that was extracted from an instance, convert it correctly // and put the result in the dest[] array for a possible method call. // Conversion means dealing with static/class methods, callables, and values. // see http://docs.python.org/3/howto/descriptor.html // and also https://mail.python.org/pipermail/python-dev/2015-March/138950.html void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) { if (mp_obj_is_obj(member)) { const mp_obj_type_t *m_type = ((mp_obj_base_t *)MP_OBJ_TO_PTR(member))->type; if (m_type->flags & MP_TYPE_FLAG_BINDS_SELF) { // `member` is a function that binds self as its first argument. if (m_type->flags & MP_TYPE_FLAG_BUILTIN_FUN) { // `member` is a built-in function, which has special behaviour. if (mp_obj_is_instance_type(type)) { // Built-in functions on user types always behave like a staticmethod. dest[0] = member; } #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG else if (self == MP_OBJ_NULL && type != &mp_type_object) { // `member` is a built-in method without a first argument, so wrap // it in a type checker that will check self when it's supplied. // Note that object will do its own checking so shouldn't be wrapped. dest[0] = mp_obj_new_checked_fun(type, member); } #endif else { // Return a (built-in) bound method, with self being this object. dest[0] = member; dest[1] = self; } } else { // Return a bound method, with self being this object. dest[0] = member; dest[1] = self; } } else if (m_type == &mp_type_staticmethod) { // `member` is a staticmethod, return the function that it wraps. dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun; } else if (m_type == &mp_type_classmethod) { // `member` is a classmethod, return a bound method with self being the type of // this object. This type should be the type of the original instance, not the // base type (which is what is passed in the `type` argument to this function). if (self != MP_OBJ_NULL) { type = mp_obj_get_type(self); } dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun; dest[1] = MP_OBJ_FROM_PTR(type); } else { // `member` is a value, so just return that value. dest[0] = member; } } else { // `member` is a value, so just return that value. dest[0] = member; } } // no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL // normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL // method attribute found, returns: dest[0] == <method>, dest[1] == <self> void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) { // clear output to indicate no attribute/method found yet dest[0] = MP_OBJ_NULL; dest[1] = MP_OBJ_NULL; // Note: the specific case of obj being an instance type is fast-path'ed in the VM // for the MP_BC_LOAD_ATTR opcode. Instance types handle type->attr and look up directly // in their member's map. // get the type const mp_obj_type_t *type = mp_obj_get_type(obj); // look for built-in names #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___class__) { // a.__class__ is equivalent to type(a) dest[0] = MP_OBJ_FROM_PTR(type); return; } #endif if (attr == MP_QSTR___next__ && TYPE_HAS_ITERNEXT(type)) { dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj); dest[1] = obj; return; } if (MP_OBJ_TYPE_HAS_SLOT(type, attr)) { // this type can do its own load, so call it MP_OBJ_TYPE_GET_SLOT(type, attr)(obj, attr, dest); // If type->attr has set dest[1] = MP_OBJ_SENTINEL, we should proceed // with lookups below (i.e. in locals_dict). If not, return right away. if (dest[1] != MP_OBJ_SENTINEL) { return; } // Clear the fail flag set by type->attr so it's like it never ran. dest[1] = MP_OBJ_NULL; } if (MP_OBJ_TYPE_HAS_SLOT(type, locals_dict)) { // generic method lookup // this is a lookup in the object (ie not class or type) assert(MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->base.type == &mp_type_dict); // MicroPython restriction, for now mp_map_t *locals_map = &MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->map; mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { mp_convert_member_lookup(obj, type, elem->value, dest); } return; } } void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); mp_load_method_maybe(base, attr, dest); if (dest[0] == MP_OBJ_NULL) { // no attribute/method called attr #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_msg(&mp_type_AttributeError, MP_ERROR_TEXT("no such attribute")); #else // following CPython, we give a more detailed error message for type objects if (mp_obj_is_type(base, &mp_type_type)) { mp_raise_msg_varg(&mp_type_AttributeError, MP_ERROR_TEXT("type object '%q' has no attribute '%q'"), ((mp_obj_type_t *)MP_OBJ_TO_PTR(base))->name, attr); } else { mp_raise_msg_varg(&mp_type_AttributeError, MP_ERROR_TEXT("'%s' object has no attribute '%q'"), mp_obj_get_type_str(base), attr); } #endif } } // Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) { nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_load_method_maybe(obj, attr, dest); nlr_pop(); } else { if (!catch_all_exc && !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_AttributeError))) { // Re-raise the exception nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val)); } } } void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); const mp_obj_type_t *type = mp_obj_get_type(base); if (MP_OBJ_TYPE_HAS_SLOT(type, attr)) { mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value}; MP_OBJ_TYPE_GET_SLOT(type, attr)(base, attr, dest); if (dest[0] == MP_OBJ_NULL) { // success return; } } #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_msg(&mp_type_AttributeError, MP_ERROR_TEXT("no such attribute")); #else mp_raise_msg_varg(&mp_type_AttributeError, MP_ERROR_TEXT("'%s' object has no attribute '%q'"), mp_obj_get_type_str(base), attr); #endif } mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) { assert(o_in); const mp_obj_type_t *type = mp_obj_get_type(o_in); // Most types that use iternext just use the identity getiter. We handle this case explicitly // so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used. if ((type->flags & MP_TYPE_FLAG_ITER_IS_ITERNEXT) == MP_TYPE_FLAG_ITER_IS_ITERNEXT || (type->flags & MP_TYPE_FLAG_ITER_IS_STREAM) == MP_TYPE_FLAG_ITER_IS_STREAM) { return o_in; } if (MP_OBJ_TYPE_HAS_SLOT(type, iter)) { // check for native getiter (corresponds to __iter__) if (iter_buf == NULL && MP_OBJ_TYPE_GET_SLOT(type, iter) != mp_obj_instance_getiter) { // if caller did not provide a buffer then allocate one on the heap // mp_obj_instance_getiter is special, it will allocate only if needed iter_buf = m_new_obj(mp_obj_iter_buf_t); } mp_getiter_fun_t getiter; if (type->flags & MP_TYPE_FLAG_ITER_IS_CUSTOM) { getiter = ((mp_getiter_iternext_custom_t *)MP_OBJ_TYPE_GET_SLOT(type, iter))->getiter; } else { getiter = (mp_getiter_fun_t)MP_OBJ_TYPE_GET_SLOT(type, iter); } mp_obj_t iter = getiter(o_in, iter_buf); if (iter != MP_OBJ_NULL) { return iter; } } // check for __getitem__ mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest); if (dest[0] != MP_OBJ_NULL) { // __getitem__ exists, create and return an iterator if (iter_buf == NULL) { // if caller did not provide a buffer then allocate one on the heap iter_buf = m_new_obj(mp_obj_iter_buf_t); } return mp_obj_new_getitem_iter(dest, iter_buf); } // object not iterable #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("object not iterable")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("'%s' object isn't iterable"), mp_obj_get_type_str(o_in)); #endif } STATIC mp_fun_1_t type_get_iternext(const mp_obj_type_t *type) { if ((type->flags & MP_TYPE_FLAG_ITER_IS_STREAM) == MP_TYPE_FLAG_ITER_IS_STREAM) { mp_obj_t mp_stream_unbuffered_iter(mp_obj_t self); return mp_stream_unbuffered_iter; } else if (type->flags & MP_TYPE_FLAG_ITER_IS_ITERNEXT) { return (mp_fun_1_t)MP_OBJ_TYPE_GET_SLOT(type, iter); } else if (type->flags & MP_TYPE_FLAG_ITER_IS_CUSTOM) { return ((mp_getiter_iternext_custom_t *)MP_OBJ_TYPE_GET_SLOT(type, iter))->iternext; } else { return NULL; } } // may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration() // may also raise StopIteration() mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) { const mp_obj_type_t *type = mp_obj_get_type(o_in); if (TYPE_HAS_ITERNEXT(type)) { MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; return type_get_iternext(type)(o_in); } else { // check for __next__ method mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { // __next__ exists, call it and return its result return mp_call_method_n_kw(0, 0, dest); } else { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("'%s' object isn't an iterator"), mp_obj_get_type_str(o_in)); #endif } } } // will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof) // may raise other exceptions mp_obj_t mp_iternext(mp_obj_t o_in) { MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext const mp_obj_type_t *type = mp_obj_get_type(o_in); if (TYPE_HAS_ITERNEXT(type)) { MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; return type_get_iternext(type)(o_in); } else { // check for __next__ method mp_obj_t dest[2]; mp_load_method_maybe(o_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { // __next__ exists, call it and return its result nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_obj_t ret = mp_call_method_n_kw(0, 0, dest); nlr_pop(); return ret; } else { if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { return mp_make_stop_iteration(mp_obj_exception_get_value(MP_OBJ_FROM_PTR(nlr.ret_val))); } else { nlr_jump(nlr.ret_val); } } } else { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("'%s' object isn't an iterator"), mp_obj_get_type_str(o_in)); #endif } } } mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) { assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL)); const mp_obj_type_t *type = mp_obj_get_type(self_in); if (type == &mp_type_gen_instance) { return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val); } if (TYPE_HAS_ITERNEXT(type) && send_value == mp_const_none) { MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL; mp_obj_t ret = type_get_iternext(type)(self_in); *ret_val = ret; if (ret != MP_OBJ_STOP_ITERATION) { return MP_VM_RETURN_YIELD; } else { // The generator is finished. // This is an optimised "raise StopIteration(*ret_val)". *ret_val = MP_STATE_THREAD(stop_iteration_arg); if (*ret_val == MP_OBJ_NULL) { *ret_val = mp_const_none; } return MP_VM_RETURN_NORMAL; } } mp_obj_t dest[3]; // Reserve slot for send() arg // Python instance iterator protocol if (send_value == mp_const_none) { mp_load_method_maybe(self_in, MP_QSTR___next__, dest); if (dest[0] != MP_OBJ_NULL) { *ret_val = mp_call_method_n_kw(0, 0, dest); return MP_VM_RETURN_YIELD; } } // Either python instance generator protocol, or native object // generator protocol. if (send_value != MP_OBJ_NULL) { mp_load_method(self_in, MP_QSTR_send, dest); dest[2] = send_value; *ret_val = mp_call_method_n_kw(1, 0, dest); return MP_VM_RETURN_YIELD; } assert(throw_value != MP_OBJ_NULL); { if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) { mp_load_method_maybe(self_in, MP_QSTR_close, dest); if (dest[0] != MP_OBJ_NULL) { // TODO: Exceptions raised in close() are not propagated, // printed to sys.stderr *ret_val = mp_call_method_n_kw(0, 0, dest); // We assume one can't "yield" from close() return MP_VM_RETURN_NORMAL; } } else { mp_load_method_maybe(self_in, MP_QSTR_throw, dest); if (dest[0] != MP_OBJ_NULL) { dest[2] = throw_value; *ret_val = mp_call_method_n_kw(1, 0, dest); // If .throw() method returned, we assume it's value to yield // - any exception would be thrown with nlr_raise(). return MP_VM_RETURN_YIELD; } } // If there's nowhere to throw exception into, then we assume that object // is just incapable to handle it, so any exception thrown into it // will be propagated up. This behavior is approved by test_pep380.py // test_delegation_of_close_to_non_generator(), // test_delegating_throw_to_non_generator() if (mp_obj_exception_match(throw_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { // PEP479: if StopIteration is raised inside a generator it is replaced with RuntimeError *ret_val = mp_obj_new_exception_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("generator raised StopIteration")); } else { *ret_val = mp_make_raise_obj(throw_value); } return MP_VM_RETURN_EXCEPTION; } } mp_obj_t mp_make_raise_obj(mp_obj_t o) { DEBUG_printf("raise %p\n", o); if (mp_obj_is_exception_type(o)) { // o is an exception type (it is derived from BaseException (or is BaseException)) // create and return a new exception instance by calling o // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError) // could have const instances in ROM which we return here instead o = mp_call_function_n_kw(o, 0, 0, NULL); } if (mp_obj_is_exception_instance(o)) { // o is an instance of an exception, so use it as the exception return o; } else { // o cannot be used as an exception, so return a type error (which will be raised by the caller) return mp_obj_new_exception_msg(&mp_type_TypeError, MP_ERROR_TEXT("exceptions must derive from BaseException")); } } mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level)); // build args array mp_obj_t args[5]; args[0] = MP_OBJ_NEW_QSTR(name); args[1] = mp_const_none; // TODO should be globals args[2] = mp_const_none; // TODO should be locals args[3] = fromlist; args[4] = level; #if MICROPY_CAN_OVERRIDE_BUILTINS // Lookup __import__ and call that if it exists mp_obj_dict_t *bo_dict = MP_STATE_VM(mp_module_builtins_override_dict); if (bo_dict != NULL) { mp_map_elem_t *import = mp_map_lookup(&bo_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___import__), MP_MAP_LOOKUP); if (import != NULL) { return mp_call_function_n_kw(import->value, 5, 0, args); } } #endif return mp_builtin___import__(5, args); } mp_obj_t mp_import_from(mp_obj_t module, qstr name) { DEBUG_printf("import from %p %s\n", module, qstr_str(name)); mp_obj_t dest[2]; mp_load_method_maybe(module, name, dest); if (dest[1] != MP_OBJ_NULL) { // Hopefully we can't import bound method from an object import_error: mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("can't import name %q"), name); } if (dest[0] != MP_OBJ_NULL) { return dest[0]; } #if MICROPY_ENABLE_EXTERNAL_IMPORT // See if it's a package, then can try FS import mp_load_method_maybe(module, MP_QSTR___path__, dest); if (dest[0] == MP_OBJ_NULL) { goto import_error; } mp_load_method_maybe(module, MP_QSTR___name__, dest); size_t pkg_name_len; const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len); const uint dot_name_len = pkg_name_len + 1 + qstr_len(name); char *dot_name = mp_local_alloc(dot_name_len); memcpy(dot_name, pkg_name, pkg_name_len); dot_name[pkg_name_len] = '.'; memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name)); qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len); mp_local_free(dot_name); // For fromlist, pass sentinel "non empty" value to force returning of leaf module return mp_import_name(dot_name_q, mp_const_true, MP_OBJ_NEW_SMALL_INT(0)); #else // Package import not supported with external imports disabled goto import_error; #endif } void mp_import_all(mp_obj_t module) { DEBUG_printf("import all %p\n", module); // TODO: Support __all__ mp_map_t *map = &mp_obj_module_get_globals(module)->map; for (size_t i = 0; i < map->alloc; i++) { if (mp_map_slot_is_filled(map, i)) { // Entry in module global scope may be generated programmatically // (and thus be not a qstr for longer names). Avoid turning it in // qstr if it has '_' and was used exactly to save memory. const char *name = mp_obj_str_get_str(map->table[i].key); if (*name != '_') { qstr qname = mp_obj_str_get_qstr(map->table[i].key); mp_store_name(qname, map->table[i].value); } } } } #if MICROPY_ENABLE_COMPILER mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) { // save context nlr_jump_callback_node_globals_locals_t ctx; ctx.globals = mp_globals_get(); ctx.locals = mp_locals_get(); // set new context mp_globals_set(globals); mp_locals_set(locals); // set exception handler to restore context if an exception is raised nlr_push_jump_callback(&ctx.callback, mp_globals_locals_set_from_nlr_jump_callback); qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, parse_input_kind == MP_PARSE_SINGLE_INPUT); mp_obj_t ret; if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) { // for compile only, return value is the module function ret = module_fun; } else { // execute module function and get return value ret = mp_call_function_0(module_fun); } // deregister exception handler and restore context nlr_pop_jump_callback(true); // return value return ret; } #endif // MICROPY_ENABLE_COMPILER NORETURN void m_malloc_fail(size_t num_bytes) { DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes); #if MICROPY_ENABLE_GC if (gc_is_locked()) { mp_raise_msg(&mp_type_MemoryError, MP_ERROR_TEXT("memory allocation failed, heap is locked")); } #endif mp_raise_msg_varg(&mp_type_MemoryError, MP_ERROR_TEXT("memory allocation failed, allocating %u bytes"), (uint)num_bytes); } #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE NORETURN void mp_raise_type(const mp_obj_type_t *exc_type) { nlr_raise(mp_obj_new_exception(exc_type)); } NORETURN void mp_raise_ValueError_no_msg(void) { mp_raise_type(&mp_type_ValueError); } NORETURN void mp_raise_TypeError_no_msg(void) { mp_raise_type(&mp_type_TypeError); } NORETURN void mp_raise_NotImplementedError_no_msg(void) { mp_raise_type(&mp_type_NotImplementedError); } #else NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, mp_rom_error_text_t msg) { if (msg == NULL) { nlr_raise(mp_obj_new_exception(exc_type)); } else { nlr_raise(mp_obj_new_exception_msg(exc_type, msg)); } } NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, mp_rom_error_text_t fmt, ...) { va_list args; va_start(args, fmt); mp_obj_t exc = mp_obj_new_exception_msg_vlist(exc_type, fmt, args); va_end(args); nlr_raise(exc); } NORETURN void mp_raise_ValueError(mp_rom_error_text_t msg) { mp_raise_msg(&mp_type_ValueError, msg); } NORETURN void mp_raise_TypeError(mp_rom_error_text_t msg) { mp_raise_msg(&mp_type_TypeError, msg); } NORETURN void mp_raise_NotImplementedError(mp_rom_error_text_t msg) { mp_raise_msg(&mp_type_NotImplementedError, msg); } #endif NORETURN void mp_raise_type_arg(const mp_obj_type_t *exc_type, mp_obj_t arg) { nlr_raise(mp_obj_new_exception_arg1(exc_type, arg)); } NORETURN void mp_raise_StopIteration(mp_obj_t arg) { if (arg == MP_OBJ_NULL) { mp_raise_type(&mp_type_StopIteration); } else { mp_raise_type_arg(&mp_type_StopIteration, arg); } } NORETURN void mp_raise_TypeError_int_conversion(mp_const_obj_t arg) { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE (void)arg; mp_raise_TypeError(MP_ERROR_TEXT("can't convert to int")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("can't convert %s to int"), mp_obj_get_type_str(arg)); #endif } NORETURN void mp_raise_OSError(int errno_) { mp_raise_type_arg(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)); } NORETURN void mp_raise_OSError_with_filename(int errno_, const char *filename) { vstr_t vstr; vstr_init(&vstr, 32); vstr_printf(&vstr, "can't open %s", filename); mp_obj_t o_str = mp_obj_new_str_from_vstr(&vstr); mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(errno_), MP_OBJ_FROM_PTR(o_str)}; nlr_raise(mp_obj_exception_make_new(&mp_type_OSError, 2, 0, args)); } #if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK NORETURN void mp_raise_recursion_depth(void) { mp_raise_type_arg(&mp_type_RuntimeError, MP_OBJ_NEW_QSTR(MP_QSTR_maximum_space_recursion_space_depth_space_exceeded)); } #endif